Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 8 Chân trời sáng tạo

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 8: Quan hệ vuông góc trong không gian nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Xác định thể tích hình chóp

    Cho khối chóp tam giác có chiều cao bằng 5, diện tích đáy bằng 6. Thể tích của hình chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 6 \\
h = 5 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.6.5 = 10

  • Câu 2: Nhận biết

    Tìm mệnh đề sai

    Cho hình chóp S.ABCDSA vuông góc với mặt phẳng đáy (ABCD). Tìm mệnh đề sai trong các mệnh đề dưới đây?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) \Rightarrow \left\{
\begin{matrix}
SA\bot CD \\
SA\bot BD \\
SA\bot BC \\
\end{matrix} ight.

    Vậy mệnh đề sai là: SA\bot
SB

  • Câu 3: Vận dụng cao

    Tính khoảng cách d giữa SA và BD

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:

    Hình vẽ minh họa:

    Kẻ HI // BC (I ∈ CD) ta có: \left\{\begin{matrix}CD\bot HI \\CD\bot SI \\\end{matrix} ight.

    => Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc \widehat{SIH} = 45^{0}

    Dựng hình bình hành ADBE

    Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))

    Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ

    Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))

    Ta có: HK = \frac{HJ.HS}{\sqrt{HJ^{2} +HS^{2}}}

    Với \left\{ \begin{matrix}HJ = AO = a\sqrt{2} \\HS = HI = \dfrac{3}{4}BC = \dfrac{3}{2} \\\end{matrix} ight.

    Vậy HK =\dfrac{a\sqrt{2}.\dfrac{3}{2}a}{\sqrt{\left( a\sqrt{2} ight)^{2} +\left( \dfrac{3}{2}a ight)^{2}}} = \dfrac{3a\sqrt{31}}{17}

  • Câu 4: Thông hiểu

    Chọn kết luận đúng

    Cho hình chóp S.ABC, SA\bot(ABC) có đáy ABC là tam giác vuông cân tại B. Biết rằng SA = a\sqrt{2};AB = a. Gọi \alpha là góc giữa đường thẳng SC và mặt phẳng (ABC). Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta thấy hình chiếu vuông góc của SC lên mặt phẳng ABCAC nên \left(
SC;(ABC) ight) = \widehat{SCA}

    Do tam giác ABC vuông cân tại B nên AC =
\sqrt{BC^{2} + AB^{2}} = a\sqrt{2}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = 1

    \Rightarrow \left( SC;(ABC) ight) =
\widehat{SCA} = 45^{0}

  • Câu 5: Thông hiểu

    Ghi đáp án vào ô trống

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, các cạnh AB = AC = a, các góc \widehat{SBA} = \widehat{SCA} = 90^{0}. Gọi H là hình chiếu vuông góc của S trên (ABC)SH =
a\sqrt{2}. Tính cosin góc giữa hai mặt phẳng (SAB)(SAC).

    Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Đáp án là:

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, các cạnh AB = AC = a, các góc \widehat{SBA} = \widehat{SCA} = 90^{0}. Gọi H là hình chiếu vuông góc của S trên (ABC)SH =
a\sqrt{2}. Tính cosin góc giữa hai mặt phẳng (SAB)(SAC).

    Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Hình vẽ minh họa

    Gọi (\alpha) là mặt phẳng qua B và vuông góc với AB \Rightarrow (\alpha) \cap (ABC) =
Bt//AC.

    Gọi (\beta) là mặt phẳng qua C và vuông góc với AC

    \Rightarrow (\beta) \cap (ABC) =Ct'//AB

    Khi đó, (\alpha) \cap (\beta) =
SH với H = Bt \cap Ct' là đỉnh thứ tư của hình vuông ABHC.

    Khi đó: \Delta SAB,\ \ \Delta
SAC là hai tam giác vuông bằng nhau có SB = SC = a\sqrt{3},SA = 2a.

    Gọi I là chân đường cao hạ từ đỉnh B của tam giác SAB, ta có BI\bot SA,CI\bot SA.

    Vậy góc giữa hai mặt phẳng (SAB)(SAC)(IB;IC).

    Xét \Delta IBC cân tại IIB = IC
= \frac{a\sqrt{3}.a}{2a} = \frac{a\sqrt{3}}{2},BC =
a\sqrt{2}.

    Ta có: \cos\widehat{BIC} = \frac{IB^{2} +IC^{2} - BC^{2}}{2IB.IC}= \dfrac{\dfrac{3a^{2}}{4} + \dfrac{3a^{2}}{4} -2a^{2}}{2.\dfrac{3a^{2}}{4}} = - \dfrac{1}{3}.

    Vậy cosin góc giữa hai mặt phẳng (SAB)(SAC) bằng \frac{1}{3}.

  • Câu 6: Vận dụng

    Tính thể tích tứ diện

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 7: Nhận biết

    Tính khoảng cách

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 8: Nhận biết

    Tính cosin góc giữa hai đường thẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, biết \Delta SAD đều. Tính \cos(BC;SA)?

    Hình vẽ minh họa

    Ta có: BC//AD \Rightarrow (BC;SA) =
(AD;SA) = 60^{0}

    \Rightarrow \cos(BC;SA) =
\frac{1}{2}.

  • Câu 9: Nhận biết

    Tính góc giữa SC với mặt phẳng (ABCD)

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 10: Thông hiểu

    Tính độ dài MN

    Cho tứ diện ABCD;AC = 6a;BD = 8a. Gọi trung điểm của AD,BC lần lượt là M,N. Biết AC\bot DB. Độ dài đoạn thẳng MN là:

    Hình vẽ minh họa

    Gọi P là trung điểm của CD. Khi đó \left\{ \begin{matrix}MP = \dfrac{1}{2}AC = 3a \\NP = \dfrac{1}{2}BD = 4a \\\end{matrix} ight.

    Lại có \left\{ \begin{matrix}
NP//BD;MP//AC \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow MP\bot NP hay tam giác MNP vuông tại P

    Theo định lí Pythagore ta có:

    MN = \sqrt{NP^{2} + MP^{2}} =
5a

  • Câu 11: Thông hiểu

    Chọn đáp án đúng

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0} và cạnh AA' = 2a. Tính thể tích khối lăng trụ đã cho bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của BC. Khi đó

    \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(A'AM)

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 30^{0}

    Ta có: AM = \frac{AA'}{tan30^{0}} =
2a\sqrt{3}

    \Rightarrow BC = 2AM =
4a\sqrt{3}

    \Rightarrow S_{ABC} = \frac{1}{2}.AM.BC
= 12a^{3}

    \Rightarrow V_{ABC.A'B'C'} =
AA'.S_{ABC} = 24a^{3}

  • Câu 12: Vận dụng

    Tính diện tích thiết diện

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SA\bot(ABCD);SA = a\sqrt{3}. Giả sử (\alpha) là mặt phẳng đi qua điểm B và vuông góc với SC. Tính diện tích thiết diện tạo bởi hình chóp và mặt phẳng (\alpha)?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BD\bot AC \\
BD\bot SA \\
\end{matrix} ight.\  \Rightarrow BD\bot(SAC)

    Từ O dựng OH vuông góc với SC

    Ta có: \left\{ \begin{matrix}
SC\bot BD \\
SC\bot OE \\
\end{matrix} ight.\  \Rightarrow SC\bot(BDH)

    Lại có \left\{ \begin{matrix}
(\alpha) \cap (SBC) = BH \\
(\alpha) \cap (SCD) = HD \\
(\alpha) \cap (ABCD) = DB \\
\end{matrix} ight.

    Vậy thiết diện cần tìm là tam giác BHD

    S_{BHD} = \frac{1}{2}OH.BD =
\frac{1}{2}\frac{SA.CO}{CA}.BD = \frac{a^{2}\sqrt{15}}{10}

  • Câu 13: Thông hiểu

    Tính độ dài đoạn thẳng MN

    Cho tứ diện ABCD có AC = a, BD = 3a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm của AB => PN, PM lần lượt là đường trung bình của tam giác ABC và tam giác ABD.

    => \left\{ \begin{matrix}PN = \dfrac{1}{2}AC = \dfrac{a}{2} \\PM = \dfrac{1}{2}BD = \dfrac{3a}{2} \\\end{matrix} ight.

    Ta có: AC\bot BD \Rightarrow PN\botPM

    => MN = \sqrt{PN^{2} + PM^{2}} =\sqrt{\frac{a^{2}}{4} + \frac{9a^{2}}{4}} =\frac{a\sqrt{10}}{2}

  • Câu 14: Thông hiểu

    Xác định các mặt phẳng vuông góc với nhau

    Cho hình lập phương ABCD.A’B’C’D. Mặt phẳng (A’BCD’) vuông góc với mặt phẳng:

    Hình vẽ minh họa:

    Dễ thấy: \left\{ \begin{matrix}
AB’\bot A’B \\
AB’\bot A’D’ \\
\end{matrix} \Rightarrow AB’\bot(A’BCD’) ight.

    Do đó: (ADC’B’)⊥(A’BCD’)

    Vậy mặt phẳng (A’BCD’) vuông góc với mặt phẳng (ADC’B’).

  • Câu 15: Nhận biết

    Tổng số mệnh đề đúng

    Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến ∆. Gọi ϕ là góc giữa (P) và (Q). Có tất cả bao nhiêu mệnh đề đúng trong các mệnh đề sau?

    (1) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆.

    (2) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    (3) ϕ bằng góc giữa hai đường thẳng a và b đồng quy với ∆, cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    Ta có: a và b chỉ cần lần lượt nằm trong (P), (Q) cùng vuông góc với ∆ là đủ, thêm đồng quy với ∆ càng tốt nên có tất cả 2 mệnh đề đúng.

  • Câu 16: Vận dụng

    Tính khoảng cách d giữa hai đường thẳng AB và SO

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc \widehat{SBD}=60^0. Tính khoảng cách d giữa hai đường thẳng AB và SO.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng AB và SO

    Ta có ΔSAB = ΔSAD(c−g−c) suy ra SB=SD

    \widehat {SBD} = {60^0} => ΔSBD đều cạnh SB=SD=BD=a\sqrt2

    Xét tam giác vuông SAB có:

    SA = \sqrt {S{B^2} - A{B^2}}  = a

    Gọi E là trung điểm AD, suy ra OE//ABAE⊥OE

    Do đó d(AB;SO)=d(AB;(SOE))=d(A;(SOE))

    Kẻ AK⊥SE(1)

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {OE \bot AD} \\   {OE \bot SA} \end{array}} ight.

    ⇒ OE⊥(SAD)⇒OE⊥AK(2)

    Từ (1) và (2) ⇒ AK⊥(SOE)

    => d\left( {A;\left( {SOE} ight)} ight) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \frac{{a\sqrt 5 }}{5}

  • Câu 17: Nhận biết

    Xác định góc giữa SB và mặt phẳng (ABCD)

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 18: Thông hiểu

    Chọn khẳng định sai

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Vì H là trung điểm của AB, tam giác ABC cân => CH⊥AB

    Ta có: SA⊥(ABC) => SA⊥CHCH⊥AB => CH⊥(SAB)

    Mặt khác AK⊂(SAB) => CH vuông góc với các đường thẳng SA,SB,AK

    AK⊥SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 19: Vận dụng

    Tính cosin góc giữa KM và SQ

    Cho S.ABCD là hình chóp có đáy là hình chữ nhật. SA \bot \left( {ABCD} ight). Gọi K nằm trên cạnh BC sao cho KC = 2KB, Q nằm trên cạnh CD sao cho QD = 3QC và M là trung điểm của cạnh SD. Biết AB = a,AD = 2aKM = \frac{{a\sqrt {67} }}{6}. Tính cosin góc giữa KM và SQ.

    Gọi N là trung điểm AD. Như vậy MN là đường trung bình của tam giác SAD nên MB // SA.

    Vậy MN \bot \left( {ABCD} ight)

    Ta có:

    \begin{matrix}  \overrightarrow {NK}  = \overrightarrow {NA}  + \overrightarrow {AB}  + \overrightarrow {BK}  \hfill \\   =  - \dfrac{1}{2}\overrightarrow {AD}  + \overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AD}  = \overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD}  \hfill \\ \end{matrix}

    Suy ra

    \begin{matrix}  N{K^2} = {\left( {\overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD} } ight)^2} = A{B^2} + \dfrac{1}{{36}}A{D^2} \hfill \\   = {a^2} + \dfrac{1}{{36}}.4{a^2} = \dfrac{{10}}{9}{a^2} \hfill \\ \end{matrix}

    Xét tam giác MNK vuông tại N (do MN \bot \left( {ABCD} ight)) ta có:

    \begin{matrix}  M{N^2} = M{K^2} - N{K^2} = \dfrac{{67}}{{36}}{a^2} - \dfrac{{10}}{9}{a^2} = \dfrac{3}{4}{a^2} \hfill \\   \Rightarrow MN = \dfrac{{a\sqrt 3 }}{2} \Rightarrow SA = a\sqrt 3  \hfill \\ \end{matrix}

    Lại có

    \begin{matrix}  \overrightarrow {AQ}  = \overrightarrow {AD}  + \overrightarrow {DQ}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  \hfill \\   \Rightarrow A{Q^2} = {\left( {\overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB} } ight)^2} \hfill \\   = A{D^2} + \dfrac{9}{{16}}A{B^2} \hfill \\   = {(2a)^2} + \dfrac{9}{{16}}{a^2} = \dfrac{{73}}{{16}}{a^2} \hfill \\ \end{matrix}

    Xét tam giác SAQ vuông tại A nên

    \begin{matrix}  S{Q^2} = A{S^2} + A{Q^2} = 3{a^2} + \dfrac{{73}}{{16}}{a^2} = \dfrac{{121}}{{16}}{a^2} \hfill \\   \Rightarrow SQ = \dfrac{{11}}{4}a \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  \overrightarrow {KM}  = \overrightarrow {NM}  - \overrightarrow {NK}  = \dfrac{1}{2}\overrightarrow {AS}  - \overrightarrow {AB}  + \dfrac{1}{6}\overrightarrow {AD}  \hfill \\  \overrightarrow {SQ}  = \overrightarrow {AQ}  - \overrightarrow {AS}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  - \overrightarrow {AS}  \hfill \\ \end{matrix}

    Khi đó

    \begin{matrix}  \overrightarrow {KM} .\overrightarrow {SQ}  =  - \dfrac{3}{4}A{B^2} + \dfrac{1}{6}A{D^2} - \dfrac{1}{2}A{S^2} \hfill \\   =  - \dfrac{3}{4}{a^2} + \dfrac{1}{6}.4{a^2} - \dfrac{1}{2}.3{a^2} = \dfrac{{ - 19}}{{12}}{a^2} \hfill \\ \end{matrix}

    Vậy

    \begin{matrix}  \cos \left( {KM,SQ} ight) = \left| {\cos \left( {\overrightarrow {KM} ,\overrightarrow {SQ} } ight)} ight| \hfill \\   = \dfrac{{\left| {\overrightarrow {KM} .\overrightarrow {SQ} } ight|}}{{KM.SQ}} = \dfrac{{\left| {\dfrac{{ - 19}}{{12}}{a^2}} ight|}}{{\dfrac{{a\sqrt {67} }}{6}.\dfrac{{11a}}{4}}} = \dfrac{{38}}{{11\sqrt {67} }} \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Chọn đáp án đúng

    Cho hình chóp S.ABC có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu vuông góc của điểm S trên mặt phẳng (ABC) là:

    Gọi I là hình chiếu vuông góc của S trên mặt phẳng (ABCD)

    M, N, P lần lượt là hình chiếu vuông góc của S trên các cạnh AB, AC, BC.

    Khi đó ta có: \left\{ \begin{matrix}SI\bot AB \\SM\bot AB \\\end{matrix} ight.\  \Rightarrow AB\bot(SIM) \Rightarrow AB\botIM

    Tương tự ta có: AC\bot IN,IP\botBC

    Khi đó \left( (SAB);(ABC) ight) =(SM,IM) = \widehat{SMI}

    Tương tự suy ra \widehat{SMI} =\widehat{SNI} = \widehat{SPI}

    => \Delta SMI = \Delta SNI = \DeltaSPI \Rightarrow IM = IN = IP

    => I là tâm đường tròn nội tiếp tam giác ABC.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo