Tính số đo góc giữa hai đường thẳng AB và CD
Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:
Gọi a là độ dài cạnh tứ diện. Khi đó
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 8: Quan hệ vuông góc trong không gian nha!
Tính số đo góc giữa hai đường thẳng AB và CD
Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:
Gọi a là độ dài cạnh tứ diện. Khi đó
Tìm mệnh đề sai
Cho hình chóp
có
vuông góc với mặt phẳng đáy
. Tìm mệnh đề sai trong các mệnh đề dưới đây?
Hình vẽ minh họa
Ta có:
Vậy mệnh đề sai là:
Tính thể tích khối chóp
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Tính khoảng cách giữa hai đường thẳng
Cho hình chóp
có đáy là tam giác vuông cân tại
. Tam giác
là tam giác đều cạnh
và nằm trong mặt phẳng vuông góc với mặt đáy. Tính
?
Hình vẽ minh họa
Gọi H là trung điểm của . Suy ra
Kẻ
Ta có:
Từ (1) và (2) suy ra HK là đoạn vuông góc chung của SA và BC
Do đó
Tính tan góc giữa đường thẳng SA và mặt phẳng (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SC vuông góc với đáy và
. Tính tan góc giữa đường thẳng SA và mặt phẳng (SBC).
Hình vẽ minh họa:
Ta có:
=> AB ⊥ (SBC)
Suy ra hình chiếu của SA lên (SBC) là SB
=>
Trong tam giác SCB vuông tại C, ta có:
Trong tam giác SBA vuông tại B, ta có:
Vậy tan góc giữa đường thẳng SA và mặt phẳng (SBC) là
Tính diện tích tam giác BCD
Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Chọn khẳng định đúng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). Gọi I là tâm đường tròn ngoại tiếp tam giác SBC, H là hình chiếu của I trên mặt phẳng đáy. Chọn khẳng định đúng trong các khẳng định dưới đây?
Hình vẽ minh họa:

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mà AB ⊥ BC => BC ⊥ (SAB) => BC ⊥ SB
=> Tam giác SBC vuông tại B => I là trung điểm của SC
Theo bài ra ta có: IH ⊥ (ABC) => IH // SA
=> H là trung điểm của cạnh AC,
Mà tam giác ABC vuông tại B => H là tâm đường tròn ngoại tiếp tam giác ABC.
Tính góc giữa SC với mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Tính khoảng cách khoảng cách giữa hai đường thẳng SM và AC
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB đều, góc giữa (SCD) và (ABCD) bằng 60◦. Gọi M là trung điểm của cạnh AB. Biết hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính theo a khoảng cách giữa hai đường thẳng SM và AC.
Hình vẽ minh họa:
Gọi H là hình chiếu của S lên (ABCD).
Ta có:
=> AB ⊥ MH
=> MH là đường trung bình của hình vuông ABCD
Giả sử MH cắt CD tại N, ta có N là trung điểm CD
Ta cũng có SN ⊥ CD nên
Gọi P là trung điểm BC, ta có MP // AC nên AC // (SMP)
Do đó, d(SM, AC) = d(AC,(SMP)) = d(O,(SMP))
Gọi K là hình chiếu của H lên MP (nhận thấy HK // OB), I là hình chiếu của H lên SK
Khi đó d(H, (SMP)) = HI
Áp dụng định lý cosin cho tam giác SMN, ta có:
Xét tam giác vuông SHN ta có:
Xét tam giác SHK vuông tại H, ta có:
Mặt khác:
Tính khoảng cách từ điểm đến mặt phẳng
Cho hình lăng trụ tam giác đều
có tất cả các cạnh bằng
. (như hình vẽ).

Tính
?
Hình vẽ minh họa
Gọi M là trung điểm cạnh BC.
Ta có tam giác ABC đều cạnh a nên ;
là hình lăng trụ tam giác đều nên
Do đó và
theo giao tuyến
Kẻ
Lại có
Góc giữa AO và CD bằng bao nhiêu?
Cho tứ diện ABCD đều cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Góc giữa AO và CD bằng bao nhiêu?
Hình vẽ minh họa

Gọi M là trung điểm của CD
Vì ABCD là tứ diện đều nên AM ⊥ CD, OM ⊥ CD
Ta có:
=> nên số đo góc giữa AO và CD là 900
Xác định góc giữa đường thẳng và mặt phẳng
Cho hình chóp
có
. Kết luận nào sau đây sai về góc giữa
và ![]()
Vì nên AB là hình chiếu của SB trên (ABC)
Vậy .
Hoàn thành mệnh đề
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:
Vì
Tương tự:
Vậy H là trực tâm tam giác ABC.
Chọn mệnh đề đúng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A,
, tam giác SBC là tam giác đều có bằng cạnh 2a và nằm trong mặt phẳng vuông với đáy. Gọi
là góc giữa hai mặt phẳng (SAC) và (ABC). Mệnh đề nào sau đây đúng?
Hình vẽ minh họa:
Gọi H là trung điểm của BC, suy ra SH ⊥ BC
=> SH ⊥ (ABC).
Gọi K là trung điểm AC=> HK // AB nên HK ⊥ AC.
Ta có:
=> ((SAC), (ABC)) = (SK, HK) =
Xét tam giác vuông ABC ta có:
Xét tam giác vuông SHK ta có:
Tính thể tích khối chóp tam giác theo a
Một hình chóp
có đáy
là cân
. Tam giác
đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính thể tích khối chóp
theo
.
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp tam giác S.ABC
Xét tam giác AHS vuông tại H ta có:
Chọn đáp án thích hợp
Cho hình chóp
có đáy
là tam giác đều cạnh
, cạnh bên
vuông góc với mặt đáy và
. Gọi
là trung điểm của
. Tính côsin của góc
là góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
.
Khi đó nên
vuông góc
tại
.
Do đó do
vuông tại
.
Ta có:
.
Góc giữa đường thẳng SB và mặt phẳng đáy
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)
Cho hình lăng trụ ABC.A’B’C’ có
. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

Trong (ABC) kẻ ( điểm N thuộc cạnh AC)
Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)
Góc giữa MC’ và mp(ACC’A’) là góc
Ta có
CM là đường trung tuyến của tam giác ABC, nên có
Tam giác CMC’ vuông tại M, nên
Diện tích
Xét tam giác vuông MC’N, có
Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là
Tính thể tích tứ diện AJQK
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Chọn mệnh đề đúng trong các mệnh đề đã cho
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Hình vẽ minh họa:
Ta có: SM ⊥ (ABCD)
=> Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.
Ta tính được:
Xét tam giác ADM có:
=>
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: