Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 6 Chân trời sáng tạo

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 6: Hàm số mũ và hàm số lôgarit nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Ghi đáp án vào ô trống

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Đáp án là:

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Ta có:

    m\log_{28}2 + n\log_{28}7 = 2

    \Leftrightarrow \log_{28}\left(2^{x}.7^{y} ight) = 2 \Leftrightarrow 2^{x}.7^{y} =28^{2}

    \Leftrightarrow 2^{x}.7^{y} = \left(2^{2}.7 ight)^{2} \Leftrightarrow 2^{x}.7^{y} =2^{4}.7^{2}

    \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 2 \\\end{matrix} ight.\  \Rightarrow x + y = 6

  • Câu 2: Thông hiểu

    Tính giá trị biểu thức

    Cho bất phương trình \left( \frac{1}{3} ight)^{\frac{2}{x}} +
3.\left( \frac{1}{3} ight)^{\frac{1}{x} + 1} > 12 có tập nghiệm S = (a;b). Giá trị của biểu thức T = 3a + 10b bằng:

    Ta có:

    \left( \frac{1}{3} ight)^{\frac{2}{x}}
+ 3.\left( \frac{1}{3} ight)^{\frac{1}{x} + 1} > 12

    Đặt t = \left( \frac{1}{3}
ight)^{\frac{1}{x}};(t > 0) khi đó bất phương trình trở thành:

    \Leftrightarrow t^{2} + t > 12
\Leftrightarrow (t - 3)(t - 4) > 0

    \Leftrightarrow t > 3\ (do\ t >
0)

    Từ đó suy ra \left( \frac{1}{3}
ight)^{\frac{1}{x}} > 3 \Leftrightarrow \frac{1}{x} < - 1
\Leftrightarrow - 1 < x < 0

    Tập nghiệm của bất phương trình là: ( -
1;0) \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 0 \\
\end{matrix} ight.

    Vậy T = 3a + 10b = - 3

  • Câu 3: Thông hiểu

    Tìm hàm số đồng biến trên R

    Trong các hàm số sau đây, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{3} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{3} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 4: Vận dụng

    Chọn khẳng định đúng

    Cho hình vẽ:

    Ta có đường thẳng d = 3 song song trục hoành cắt trục tung và đồ thị hai hàm số y = m^{x},y = n^{x};m,n \in
\mathbb{R}^{+}\backslash\left\{ 1 ight\} lần lượt tại H,M,N. Biết \frac{MH}{MN} = \frac{3}{2}. Chọn khẳng định đúng?

    Ta có:\frac{MH}{MN} = \frac{3}{2}
\Rightarrow \frac{HM}{HN} = \frac{3}{5}

    Gọi M\left( x_{1};3 ight) \in y = m^{x}\Rightarrow x_{1} = \log_{m}3

    N\left( x_{2};3 ight) \in y = n^{x}\Rightarrow x_{2} = \log_{n}3

    Khi đó \frac{HM}{HN} = \frac{3}{5}\Leftrightarrow \log_{m}3 = \frac{3}{5}\log_{n}3

    \Leftrightarrow \frac{1}{\log_{3}m} =\frac{3}{5}\frac{1}{\log_{3}n}

    \Leftrightarrow log_{3}m =
\frac{5}{3}.log_{3}n

    \Leftrightarrow m = n^{\frac{5}{3}}\Leftrightarrow m^{3} = n^{5}

  • Câu 5: Nhận biết

    Tìm tập xác định hàm số

    Tìm giá trị của x để hàm số y = e^{x^{2} - 2x} có nghĩa.

    Hàm số y = e^{x^{2} - 2x} xác định với mọi x\in\mathbb{ R}

    Vật tập xác định của hàm số là: D=\mathbb{ R}.

  • Câu 6: Nhận biết

    Xác định nghiệm của phương trình mũ

    Giải phương trình 5^{x} = 10 thu được nghiệm:

    Ta có:

    5^{x} = 10 \Leftrightarrow x =\log_{5}10(tm)

    Vậy phương trình có nghiệm x =\log_{5}10.

  • Câu 7: Nhận biết

    Tìm biểu thức không có nghĩa

    Trong các biểu thức sau, biểu thức nào không có nghĩa?

    Lũy thừa với số mũ không nguyên thì cơ số phải dương nên biểu thức ( - 4)^{- \frac{1}{3}} không có nghĩa.

  • Câu 8: Thông hiểu

    Rút gọn biểu thức H

    Thu gọn biểu thức H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} với a,b là các số thực dương:

    Ta có:

    H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} = \frac{ab\left(
a^{\frac{1}{3}} + b^{\frac{1}{3}} ight)}{a^{\frac{1}{3}} +
b^{\frac{1}{3}}} = ab

  • Câu 9: Nhận biết

    Tìm hàm số nghịch biến trên tập xác định

    Hàm số nào sau đây nghịch biến trên tập xác định?

    Ta có: 0 < \frac{{\sqrt 2 }}{2} < 1 \Rightarrow y = {\log _{\frac{{\sqrt 2 }}{2}}}x nghịch biến trên tập xác định.

  • Câu 10: Vận dụng

    Tìm các giá trị nguyên của m

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 11: Thông hiểu

    Chọn mệnh đề đúng

    Chọn mệnh đề đúng trong các khẳng định dưới đây.

    Xét hàm số y = a^{x} y = \left( \frac{1}{a} ight)^{x}

    Với \forall x\in\mathbb{ R} ta có: f( - x) = a^{- x} = \left( \frac{1}{a}
ight)^{x} = g(x)

    Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.

  • Câu 12: Nhận biết

    Chọn kết luận đúng

    Biết a,b là các số thực dương tùy ý. Chọn khẳng định đúng dưới đây?

    Theo quy tắc Logarit ta có:

    \ln(ab) = \ln a + \ln b

  • Câu 13: Thông hiểu

    Tính giá trị biểu thức

    Số thực x thỏa mãn \log_{2}\left( \log_{4}x ight) = \log_{4}\left(\log_{3}x ight) - a với a\mathbb{\in R}. Giá trị của \log_{2}x bằng bao nhiêu?

    Ta có:

    \log_{2}\left( \log_{4}x ight) =\log_{4}\left( \log_{3}x ight) - a

    \Leftrightarrow \log_{2}\left(\frac{1}{2}\log_{2}x ight) = \frac{1}{2}\log_{2}\left( \log_{2}x ight)- a

    \Leftrightarrow \log_{2}\left( \log_{2}xight) = 2 - 2a

    \Leftrightarrow \log_{2}x = 4^{1 -a}

  • Câu 14: Vận dụng cao

    Tính số tháng để rút hết số tiền

    Một người gửi 150 triệu đồng vào ngân hàng theo hình thức lãi kép với lãi suất 0,8%/tháng. Kể từ ngày gửi nếu mỗi cuối tháng người đó rút đều đặn 3 triệu đồng (trừ tháng cuối) thì sau bao nhiêu tháng số tiền đó sẽ được tút hết? (Tháng cuối cùng là tháng mà số tiền còn trong ngân hàng không vượt quá 3 triệu đồng và khi đó người đó rút hết toàn bộ số tiền còn lại).

    Gọi A_{n} là số tiền còn lại sau khi người đó rút đến tháng thứ n, A là số tiền gửi vào, r là lãi suất hàng tháng và X là số tiền rút ra hàng tháng.

    Ta có:

    A_{1} = A(1 + r) - X

    A_{2} = A(1 + r)^{2} - X\left\lbrack (1
+ r) + 1 ightbrack

    A_{3} = A(1 + r)^{3} - X\left\lbrack (1
+ r)^{2} + (1 + r) + 1 ightbrack

    ….

    A_{n} = A(1 + r)^{n} - X\left\lbrack (1
+ r)^{n - 1} + (1 + r)^{n - 2} + ... + (1 + r) + 1
ightbrack

    \Rightarrow A_{n} = A(1 + r)^{n} -
X.\frac{(1 + r)^{n - 1} - 1}{r}

    \Rightarrow n = \log_{1 + r}\frac{A_{n}.r- X}{A.r - X}

    \Rightarrow n = log_{1 + 0,8\%}\frac{-
3.10^{6}}{150.10^{6}.0,8\% - 3.10^{6}} = 64,10827659

    Vậy n = 64 tháng.

  • Câu 15: Vận dụng

    Khẳng định nào dưới đây đúng

    Khẳng định nào dưới đây đúng?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   { - 2017 >  - 2018} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{ - 2017}} > {\left( {\sqrt 5  + 2} ight)^{ - 2018}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{2018}} < {\left( {\sqrt 5  + 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    Vậy đáp án đúng là: {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

  • Câu 16: Thông hiểu

    Biến đổi biểu thức

    Viết biểu thức Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} = {x^{\frac{1}{2}}}.{x^{\frac{1}{3}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{1}{3} + \frac{5}{6}}} = {x^{\frac{5}{3}}}

  • Câu 17: Nhận biết

    Biến đổi biểu thức

    Cho x là số thực dương. Viết x^{\frac{1}{3}}:\sqrt{x} dưới dạng lũy thừa với số mũ hữu tỉ ta được:

    Ta có: x^{\frac{1}{3}}:\sqrt{x} =
x^{\frac{1}{3}}:x^{\frac{1}{2}} = x^{\frac{1}{3} - \frac{1}{2}} = x^{-
\frac{1}{6}}

  • Câu 18: Thông hiểu

    Tính tổng các nghiệm phương trình

    Cho phương trình 2\log_{2}(2x - 2) + \log_{2}(x - 3)^{2} =2. Giả sử T là tổng giá trị tất cả các nghiệm của phương trình. Giá trị của T là:

    Điều kiện \left\{ \begin{matrix}
2x - 2 > 0 \\
(x - 3)^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 1 \\
\forall x\mathbb{\in R} \\
\end{matrix} ight.\  \Rightarrow x > 1

    Ta có:

    2\log_{2}(2x - 2) + \log_{2}(x - 3)^{2} =2

    \Leftrightarrow \log_{2}(2x - 2)^{2} +\log_{2}(x - 3)^{2} = 2

    \Leftrightarrow \log_{2}\left\lbrack (2x- 2)^{2}(x - 3)^{2} ightbrack = 2

    \Leftrightarrow log_{2}\left\lbrack
\left( 4x^{2} - 8x + 4 ight)\left( x^{2} - 6x + 9 ight)
ightbrack = 2

    \Leftrightarrow 4x^{4} - 32x^{3} +
88x^{2} - 96x + 32 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 + \sqrt{2}(tm) \\
x = 2(tm) \\
x = 2 - \sqrt{2}(ktm) \\
\end{matrix} ight.

    \Rightarrow T = 2 + \sqrt{2} + 2 = 4 +
\sqrt{2}

  • Câu 19: Nhận biết

    Chọn mệnh đề đúng

    Với a, b là các số thực dương tùy ý và a khác 1, đặt P = \log_{a}b^{3} +\log_{a^{2}}b^{6}. Mệnh đề nào dưới đây đúng?

    Ta có:

    P = \log_{a}b^{3} +\log_{a^{2}}b^{6}

    P = 3\log_{a}b +\frac{6}{2}\log_{a}b

    P = 3\log_{a}b + 3\log_{a}

    P = 6\log_{a}b

  • Câu 20: Nhận biết

    Tìm các nghiệm của phương trình

    Tích tất cả các nghiệm của phương trình 3^{x^{2} + x} = 9 là:

    Ta có: 3^{x^{2} + x} = 3^{2}

    \Leftrightarrow x^{2} + x =
2

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix}(tm) ight.

    Vậy tích các nghiệm phương trình là -2

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo