Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 6 Chân trời sáng tạo

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 6: Hàm số mũ và hàm số lôgarit nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm hàm số nghịch biến trên tập xác định

    Hàm số nào sau đây nghịch biến trên tập xác định?

    Ta có: 0 < \frac{{\sqrt 2 }}{2} < 1 \Rightarrow y = {\log _{\frac{{\sqrt 2 }}{2}}}x nghịch biến trên tập xác định.

  • Câu 2: Thông hiểu

    Chọn đáp án đúng

    Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?

    Hàm số y = \log_{\sqrt{5}}x có \sqrt{5} > 1 nên hàm số y = \log_{\sqrt{5}}x đồng biến trên tập xác định của nó là (0; +\infty).

    Hàm số y = \left( 3\sqrt{2} ight)^{-x}0 < \frac{1}{3\sqrt{2}}< 1 nên nghịch biến trên tập xác định của nó.

    Hàm số y = \left( \frac{e}{3\pi}ight)^{x}0 <\frac{e}{3\pi} < 1 nên hàm số nghịch biến trên tập xác định của nó.

    Hàm số y = \log_{\frac{\pi}{6}}x có 0 < \frac{\pi}{6} < 1 nên hàm số nghịch biến trên tập xác định của nó.

  • Câu 3: Thông hiểu

    Tìm nghiệm của phương trình

    Xác định nghiệm của phương trình 4^{2x + 1} = 64?

    Ta có:

    4^{2x + 1} = 64 \Leftrightarrow 4^{2x +
1} = 4^{3}

    \Leftrightarrow 2x + 1 = 3
\Leftrightarrow x = 1(tm)

    Vậy phương trình có nghiệm x = 1.

  • Câu 4: Vận dụng

    Tính giá trị nhỏ nhất số tiền anh B gửi vào ngân hàng

    Anh B dự định gửi x triệu đồng vào ngân hàng với lãi suất 6,5%/ năm. Để sau 3 năm số tiền lãi thu được đủ để mua một vật dụng trị giá 30 triệu đồng thì số tiền x;\left( x\mathbb{\in N} ight) tối thiểu mà anh B cần gửi vào ngân hàng là bao nhiêu? Biết cứ sau mỗi năm, số tiền lãi sẽ được nhập với vốn ban đầu

    Áp dụng công thức tính lãi kép: T_{n} =
x(1 + x)^{n}

    Với T_{n} là tổng giá trị đạt được sau n kì, x là số vốn gốc, r là lãi suất mỗi kì.

    Số tiền lãi thu được sau n kì là:

    P_{n} -
x = x(1 + r)^{n} - x = x\left\lbrack (1 + r)^{n} - 1
ightbrack

    Khi dó:

    30 = x\left\lbrack (1 + 6,5\%)^{3} - 1
ightbrack

    \Leftrightarrow x \approx
144,27 triệu đồng

  • Câu 5: Vận dụng

    Tìm các giá trị của tham số m

    Tìm tất cả các giá trị của tham số m để phương trình \left( \frac{1}{5}
ight)^{\left| x^{2} - 4x + 3 ight|} = m^{4} - m^{2} + 1 có bốn nghiệm phân biệt.

    Phương trình đã cho viết lại như sau:

    \left| x^{2} - 4x + 3 ight| =\log_{\frac{1}{5}}\left( m^{4} - m^{2} + 1 ight)

    Xét đồ thị hàm số y = \left| x^{2} - 4x +
3 ight| như hình vẽ.

    Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:

    0 < {\log _{\frac{1}{5}}}\left( {{m^4} - {m^2} + 1} ight) < 1

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {{m^4} - {m^2} < 0} \\ 
  {{m^4} - {m^2} + \dfrac{4}{5} > 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 0 \\
- 1 < m < 1 \\
\end{matrix} ight.

  • Câu 6: Nhận biết

    Tính giá trị biểu thức

    Biết m,n là hai số dương tùy ý thì \log\left( m^{3}n^{2} ight) có giá trị tương ứng với biểu thức nào sau đây?

    Ta có: m,n > 0

    \log\left( m^{3}n^{2} ight) = \log m^{3} + \log n^{2} = 3\log m + 2\log n

  • Câu 7: Thông hiểu

    Tính giá trị α

    Ta có: \sqrt[3]{x^{5}\sqrt{x^{2}\sqrt{x}}} =
x^{\alpha}. Giá trị \alpha là:

    Ta có:

    \sqrt[3]{x\sqrt[5]{x^{2}\sqrt{x}}} =
\sqrt[3]{x\sqrt[5]{x^{2}.x^{\frac{1}{2}}}} =
\sqrt[3]{x\sqrt[5]{x^{\frac{5}{2}}}} = \sqrt[3]{x^{\frac{3}{2}}} =
x^{\frac{1}{2}}

    \Rightarrow \alpha =
\frac{1}{2}

  • Câu 8: Nhận biết

    Giải phương trình

    Xác định nghiệm của phương trình 3^{x + 1} = \left( \frac{1}{9}
ight)^{2x}?

    Ta có:

    3^{x + 1} = \left( \frac{1}{9}
ight)^{2x} \Leftrightarrow 3^{x + 1} = \left( 3^{- 2}
ight)^{2x}

    \Leftrightarrow 3^{x + 1} = 3^{- 2.2x}
\Leftrightarrow 3^{x + 1} = 3^{- 4x}

    \Leftrightarrow x + 1 = - 4x
\Leftrightarrow x = - \frac{1}{5}(tm)

    Vậy phương trình có nghiệm là x = -
\frac{1}{5}

  • Câu 9: Vận dụng

    Chọn khẳng định sai

    Trong các khẳng định dưới đây, khẳng định nào sai?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 2  - 1 < 1} \\   {2017 < 2018} \end{array}} ight. \Rightarrow {\left( {\sqrt 2  - 1} ight)^{2017}} > {\left( {\sqrt 2  - 1} ight)^{2018}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 3  - 1 < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {\sqrt 3  - 1} ight)^{2018}} < {\left( {\sqrt 3  - 1} ight)^{2017}}

    \left\{ {\begin{array}{*{20}{c}}  {2 > 1} \\   {\sqrt 2  + 1 > \sqrt 3 } \end{array}} ight. \Rightarrow {2^{\sqrt 2  + 1}} > {2^{\sqrt 3 }}

    \left\{ {\begin{array}{*{20}{c}}  {0 < 1 - \dfrac{{\sqrt 2 }}{2} < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2018}} < {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2017}}

    Vậy đáp án sai là: {\left( {\sqrt 3  - 1} ight)^{2018}} > {\left( {\sqrt 3  - 1} ight)^{2017}}

  • Câu 10: Nhận biết

    Chọn khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    \left\{ \begin{matrix}
3 > 1 \\
5 > 1 \\
\end{matrix} ight. nên \log_{3}5> \log_{3}1.

    \left\{ \begin{matrix}
2 + x^{2} > 1 \\
2016 < 2017 \\
\end{matrix} ight. nên {\log _{2 + {x^2}}}2016 < {\log _{2 + {x^2}}}2017.

    \left\{ \begin{gathered}
  {\log _3}4 > 0 \hfill \\
  {\log _4}\left( {\frac{1}{3}} ight) < 0 \hfill \\ 
\end{gathered}  ight. nên {\log _3}4 > {\log _4}\left( {\frac{1}{3}} ight).

    \left\{ \begin{matrix}
0,3 < 1 \\
0,8 < 1 \\
\end{matrix} ight. nên {\log _{0,3}}0,8 > {\log _{0,3}}1

    \Leftrightarrow \log_{0,3}0,8 >0

  • Câu 11: Thông hiểu

    Biến đổi biểu thức T

    Biến đổi biểu thức T = \sqrt{x^{\frac{4}{3}}.\sqrt[6]{x^{4}}};(x >
0)thành dạng lũy thừa với số mũ hữu tỉ, ta được:

    Ta có:

    T =
\sqrt{x^{\frac{4}{3}}.\sqrt[6]{x^{4}}} =
\sqrt{x^{\frac{4}{3}}.x^{\frac{4}{6}}} = \sqrt{x^{2}} = x

  • Câu 12: Nhận biết

    Giải bất phương trình logarit

    Tìm tập nghiệm của bất phương trình \log_{\frac{1}{2}}(x - 3) \geq \log_{\frac{1}{2}}(9- 2x).

    Ta có:

    \log_{\frac{1}{2}}(x - 3) \geq  \log_{\frac{1}{2}}(9 - 2x)

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 \leq 9 - 2x \\
x - 3 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < x \leq 4

    Vậy tập nghiệm của bất phương trình là: S
= (3;4brack

  • Câu 13: Thông hiểu

    Tìm các giá trị nguyên của tham số m

    Cho phương trình 5^{x} + m^{2} = 9 với m là tham số. Hỏi có tất cả các giá trị nguyên của tham số m để phương trình có nghiệm thực?

    Ta có: 5^{x} + m^{2} = 9 \Leftrightarrow
5^{x} = 9 - m^{2}

    Để phương trình đã cho có nghiệm thực thì 9 - m^{2} > 0 \Leftrightarrow m \in ( -
3;3)

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 14: Nhận biết

    Tìm tập xác định của hàm số

    Cho hàm số y =
\ln(x - 2) + \sqrt{9 - x}. Tìm tập xác định của hàm số?

    Điều kiện xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x} là:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là: D =
(2;9brack

  • Câu 15: Nhận biết

    Tính giá trị biểu thức C

    Với a là một số thực dương, biểu thức C =
a^{\frac{1}{3}}.\sqrt{a} có giá trị là:

    Ta có: C = a^{\frac{1}{3}}.\sqrt{a} =
a^{\frac{1}{3}}.a^{\frac{1}{2}} = a^{\frac{1}{3} + \frac{1}{2}} =
a^{\frac{5}{6}}

    NB

  • Câu 16: Vận dụng cao

    Tính số tháng để rút hết số tiền

    Một người gửi 150 triệu đồng vào ngân hàng theo hình thức lãi kép với lãi suất 0,8%/tháng. Kể từ ngày gửi nếu mỗi cuối tháng người đó rút đều đặn 3 triệu đồng (trừ tháng cuối) thì sau bao nhiêu tháng số tiền đó sẽ được tút hết? (Tháng cuối cùng là tháng mà số tiền còn trong ngân hàng không vượt quá 3 triệu đồng và khi đó người đó rút hết toàn bộ số tiền còn lại).

    Gọi A_{n} là số tiền còn lại sau khi người đó rút đến tháng thứ n, A là số tiền gửi vào, r là lãi suất hàng tháng và X là số tiền rút ra hàng tháng.

    Ta có:

    A_{1} = A(1 + r) - X

    A_{2} = A(1 + r)^{2} - X\left\lbrack (1
+ r) + 1 ightbrack

    A_{3} = A(1 + r)^{3} - X\left\lbrack (1
+ r)^{2} + (1 + r) + 1 ightbrack

    ….

    A_{n} = A(1 + r)^{n} - X\left\lbrack (1
+ r)^{n - 1} + (1 + r)^{n - 2} + ... + (1 + r) + 1
ightbrack

    \Rightarrow A_{n} = A(1 + r)^{n} -
X.\frac{(1 + r)^{n - 1} - 1}{r}

    \Rightarrow n = \log_{1 + r}\frac{A_{n}.r- X}{A.r - X}

    \Rightarrow n = log_{1 + 0,8\%}\frac{-
3.10^{6}}{150.10^{6}.0,8\% - 3.10^{6}} = 64,10827659

    Vậy n = 64 tháng.

  • Câu 17: Nhận biết

    Tìm mệnh đề sai

    Với m là một số thực bất kì, mệnh đề nào dưới đây là mệnh đề sai?

    Theo định nghĩa và các tính chất của lũy thừa ta thấy:

    \sqrt{10^{m}} = \left( \sqrt{10}
ight)^{m}; \sqrt{10^{m}} = \left(
\sqrt{10} ight)^{m}; \left(
10^{m} ight)^{2} = 100^{m} là các mệnh đề đúng.

    Xét mệnh đề \left( 10^{m} ight)^{2} =
(10)^{m^{2}} với m = 1 ta có: \left( 10^{1} ight)^{2} = 100 eq
(10)^{1^{2}} nên mệnh đề sai.

  • Câu 18: Thông hiểu

    Tìm hàm số tương ứng đồ thị

    Cho đồ thị hàm số:

    Xác định hàm số tương ứng?

    Đồ thị hàm số đi lên và qua điểm có tọa độ (1;3) nên hàm số thỏa mãn là y = 3^{x}

  • Câu 19: Thông hiểu

    Biểu diễn m theo a, b, c

    Biết \log_{2}m =6\log_{4}a - 4\log_{2}\sqrt{b} - \log_{\frac{1}{2}}c. Biểu diễn m theo a,b,c?

    Ta có:

    \log_{2}m = 6\log_{4}a - 4\log_{2}\sqrt{b}- \log_{\frac{1}{2}}c

    \Leftrightarrow \log_{2}m = \log_{2}a^{3}- \log_{2}b^{2} + \log_{2}c

    \Leftrightarrow \log_{2}m =\log_{2}\frac{a^{3}.c}{b^{2}} \Leftrightarrow m =\frac{a^{3}.c}{b^{2}}

  • Câu 20: Thông hiểu

    Chọn kết quả đúng

    Biết x,y là các số thực dương khác 1 thỏa mãn \log_{x}y = 2. Biến đổi biểu thức C = \log_{\frac{\sqrt{x}}{y}}\left(x\sqrt[3]{y} ight) ta được kết quả là:

    Ta có:

    C = \log_{\frac{\sqrt{x}}{y}}\left(x\sqrt[3]{y} ight) = \frac{\log_{x}\left( x\sqrt[3]{y}ight)}{\log_{x}\left( \dfrac{\sqrt{x}}{y} ight)}

    = \dfrac{\log_{x}x +\log_{x}y^{\frac{1}{3}}}{\dfrac{1}{2}\log_{x}x - \log_{x}y}

    = \dfrac{1 +\dfrac{1}{3}\log_{x}y}{\dfrac{1}{2} - \log_{x}y} = \dfrac{1 +\dfrac{1}{3}.2}{\dfrac{1}{2} - 2} = - \dfrac{10}{9}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo