Đổi số đo của góc
Đổi số đo của góc
sang đơn vị radian
Cách 1: Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 4 để chuyển về chế độ rad.
Bước 2. Bấm 70 shift DRG 1 =
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 CTST Chương 1: Hàm số lượng giác và phương trình lượng giác nha!
Đổi số đo của góc
Đổi số đo của góc
sang đơn vị radian
Cách 1: Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 4 để chuyển về chế độ rad.
Bước 2. Bấm 70 shift DRG 1 =
Xác định giá trị lớn nhất của biểu thức
Giá trị lớn nhất của hàm số
tại điểm là nghiệm của phương trình nào dưới đây?
Theo bài ra ta có:
Phương trình (*) có nghiệm
Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó
Tính tổng các nghiệm?
Tính tổng T các nghiệm của phương trình
trên khoảng
?
Phương trình
Do
Suy ra .
Điểu kiện xác định của hàm số lượng giác
Hàm số
xác định khi và chỉ khi:
Điều kiện các định:
Ghi đáp án vào ô trống
Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp
là bình thường. Giả sử một người nào đó có nhịp tim là
lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số
ở đó
là huyết áp tính theo đơn vị
( milimét thuỷ ngân) và thời gian
tính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120
?
Đáp án: 1
Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp
là bình thường. Giả sử một người nào đó có nhịp tim là
lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số
ở đó
là huyết áp tính theo đơn vị
( milimét thuỷ ngân) và thời gian
tính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120
?
Đáp án: 1
Huyết áp là 120 khi
Xét
vì .
Vậy trong khoảng từ 0 đến 1 giây, có 1 lần huyết áp là 120 .
Chọn mệnh đề đúng
Mệnh đề nào sau đây đúng?
Đáp án đúng là:
Tìm đẳng thức đúng
Trong các đẳng thức sau, đẳng thức nào đúng?
Công thức đúng là:
Tính giá trị F
Cho góc lượng giác
thỏa mãn
và
. Tính ![]()
Ta có:
Từ hệ thức
Do nên
Thay vào biểu thức ta được:
Giải PT
Nghiệm của phương trình
là
Ta có
.
Tìm tập xác định của hàm số
Tìm tập xác định của hàm số 
Hàm số xác định
Vậy tập xác định
Tìm chu kì T của hàm số
Hàm số
có chu kì bằng bao nhiêu?
Chu kì của hàm số là:
Rút gọn biểu thức S
Rút gọn biểu thức ![]()
Vì hai góc và
phụ nhau nên
Chọn đáp án đúng
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Chọn đáp án thích hợp
Phương trình lượng giác
có nghiệm là:
Ta có
Giải phương trình lượng giác
Giải phương trình: ![]()
Giải phương trình:
Điều kiện xác định của hàm số lượng giác
Điều kiện xác định của hàm số ![]()
Điều kiện xác định của hàm số:
Tìm giá trị tham số m thỏa mãn yêu cầu bài toán
Hàm số
tuần hoàn có chu kì
khi
Hàm số có nghĩa
.
Chu kì của hàm số .
Tính giá trị biểu thức
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính ![]()
Điều kiện
Ta có:
Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành
Vậy nên
.
Tính độ dài cung
Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo
(lấy 2 chữ số thập phân).
Cung có số đo thì có số đó radian là
Bán kính đường tròn
=>
Đếm số nghiệm
Số nghiệm của phương trình
với
là?
4 || Bốn || bốn || 4 nghiệm
Số nghiệm của phương trình
với
là?
4 || Bốn || bốn || 4 nghiệm
Phương trình
Vì
Vì
Vậy có tất cả 4 nghiệm thỏa mãn bài toán.
Tìm tập xác định của hàm số
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Xác định tập xác định của hàm số
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Tính giá trị P
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Tìm khẳng định đúng
Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Chọn đáp án sai trong các đáp án sau?
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi và chỉ khi:
Chọn k = 3 =>
Nhưng điểm thuộc khoảng
Vậy hàm số không xác định trên
Tìm tất cả các nghiệm?
Tất cả các nghiệm của phương trình tan (x) = cot (x) là?
Điều kiện
thỏa mãn điều kiện.
Tìm số đẳng thức đúng
Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?
i)
.
iii) ![]()
ii)
.
iv)
.
i) Ta có:
Vậy i) đúng.
ii) .
Vậy ii) đúng.
iii) .
Vậy iii) sai.
iv) Ta lấy . Ta có
.
Ta có VP VT.
Do đó iv) sai.
Vậy có 2 đẳng thức đúng.
Tính giá trị biểu thức Q
Cho tam giác
có các góc
thỏa mãn biểu thức
. Biết rằng
với
. Tính giá trị biểu thức
?
Ta có:
Dấy “=” xảy ra khi
PT có tập nghiệm trùng?
Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình
?
Ta có
Vậy .
Tính giá trị của M
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
=>
Biến đổi biểu thức
Đơn giản biểu thức
, ta có
Ta có:
Giải phương trình lượng giác cơ bản
Phương trình
có nghiệm là:
Giải phương trình:
Tìm giá trị lớn nhất, nhỏ nhất của hàm số
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số ![]()
Ta có
Biểu diễn nghiệm của phương trình
Cho vòng tròn lượng giác được kí hiệu như sau:

Điểm nào biểu diễn nghiệm của phương trình
?
Ta có:
Vậy chỉ có hai điểm C và điểm D thỏa mãn yêu cầu bài toán.
Tìm chu kì T của hàm số?
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Tìm nghiệm dương nhỏ nhất
Tìm nghiệm dương nhỏ nhất của phương trình ![]()
Ta có
TH1. Với
TH2. Với
So sánh hai nghiệm ta được là nghiệm dương nhỏ nhất.
PT nào có nghiệm đã cho?
Cho
là nghiệm của phương trình nào sau đây?
Ta có:
Xác định biểu thức H
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Mặt khác
Do
Khi đó giá trị biểu thức H là:
Xác định khoảng đồng biến của hàm số
Hàm số đồng biến trên khoảng
là:
Với thuộc góc phần tư thứ IV và thứ nhất nên hàm số
đồng biến trên khoảng
Rút gọn biểu thức E
Rút gọn biểu thức ![]()
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: