Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 6 Chân trời sáng tạo

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 CTST Chương 6: Hàm số mũ và hàm số lôgarit nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Biến đổi biểu thức

    Với a và b là hai số thực dương tùy ý, giá trị \ln\frac{a^{4}e}{b} bằng:

    Ta có:

    \ln\frac{a^{4}e}{b} = \ln a^{4} + \ln e- \ln b = 4\ln a + 1 - \ln b

  • Câu 2: Thông hiểu

    Tìm tập xác định của hàm số

    Tìm tập xác định của hàm số y = \ln\left( x - 2 - \sqrt{x^{2} - 3x - 10}
ight).

    Điều kiện xác định của hàm số

    \left\{ \begin{matrix}
x - 2 > \sqrt{x^{2} - 3x - 10} \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x^{2} - 4x + 4 > x^{2} - 3x - 10 \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow 5 \leq x <
14

    Vậy tập xác định của hàm số là D =
\lbrack 5;14)

  • Câu 3: Vận dụng cao

    Tính tổng của a và b

    Giả sử a,b là các số thực sao cho x^{3} + y^{3} = a.10^{3z} + b.10^{2z} đúng với mọi các số dương x,y,z thỏa mãn \log(x + y) = z\log\left( x^{2} + y^{2} ight) = z + 1. Tính giá trị của a + b bằng:

    Ta có: \left\{ \begin{matrix}
\log(x + y) = z \\
\log\left( x^{2} + y^{2} ight) = z + 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x + y = 10^{z} \\
x^{2} + y^{2} = 10^{z + 1} \\
\end{matrix} ight.

    \Rightarrow xy = \frac{10^{2x} -
10.10^{z}}{2}

    Khi đó:

    x^{3} + y^{3} = (x + y)\left( x^{2} +
y^{2} - xy ight)

    = 10^{z}\left( 10.10^{z} - \frac{10^{2x}
- 10.10^{z}}{2} ight)

    = 15.10^{2z} -
\frac{1}{2}.10^{3z}

    Vậy a = 15;b = - \frac{1}{2} \Rightarrow
a + b = \frac{29}{2}

  • Câu 4: Vận dụng

    Tính giá trị biểu thức P

    Cho a là một số thực dương khác 1. Tính giá trị của biểu thức:

    P = \log_{a}2018 + \log_{\sqrt{a}}2018 +\log_{\sqrt[3]{a}}2018 + ... + \log_{\sqrt[2018]{a}}2018

    Ta có:

    P = \log_{a}2018 + \log_{\sqrt{a}}2018 +\log_{\sqrt[3]{a}}2018 + ... + \log_{\sqrt[2018]{a}}2018

    P = \log_{a}2018 + 2\log_{a}2018 +3\log_{a}2018 + ... + 2018\log_{a}2018

    P = \log_{a}2018(1 + 2 + 3 + .... +2018)

    P = \log_{a}2018.\frac{(1 +2018).2018}{2}

    P = 1009.2019.\log_{a}2018

  • Câu 5: Thông hiểu

    Tính giá trị biểu thức

    Giá trị của biểu thức

    C = \frac{7}{16}\ln\left( 3 + 2\sqrt{2}ight) - 4\ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(\sqrt{2} - 1 ight)

    Ta có:

    C = \frac{7}{16}\ln\left( 3 + 2\sqrt{2}
ight) - 4ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(
\sqrt{2} - 1 ight)

    C = \frac{7}{16}\ln\left( \sqrt{2} + 1
ight)^{2} - 4ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(
\sqrt{2} + 1 ight)^{- 1}

    C = \frac{7}{8}\ln\left( \sqrt{2} + 1
ight) - 4ln\left( \sqrt{2} + 1 ight) + \frac{25}{8}\ln\left(
\sqrt{2} + 1 ight)

    C = \left( \frac{7}{8} - 4 +
\frac{25}{8} ight).ln\left( \sqrt{2} + 1 ight) = 0

  • Câu 6: Thông hiểu

    Tính giá trị biểu thức

    Cho hàm số f(x) =
\frac{9^{x}}{9^{x} + 3};\left( x\mathbb{\in R} ight) và hai số a,b thỏa mãn a + b = 1. Khi đó f(a) + f(b) bằng bao nhiêu?

    Ta có:

    f(a) + f(b) = \dfrac{9^{1 - b}}{9^{1 - b}+ 3} + \dfrac{9^{b}}{9^{b} + 3}

    = \dfrac{\dfrac{9}{9^{b}}}{\dfrac{9}{9^{b}}+ 3} + \dfrac{9^{b}}{9^{b} + 3} = \dfrac{9}{9 + 3.9^{b}} +\frac{9^{b}}{9^{b} + 3} = 1

  • Câu 7: Thông hiểu

    Tính tổng các nghiệm của phương trình

    Cho phương trình 2^{x^{2} - 3x + 2} + 2^{x^{2} + 6x + 5} =
2^{2x^{2} + 3x + 7} + 1. Tính tổng giá trị các nghiệm phương trình đã cho.

    Ta có:

    2^{x^{2} - 3x + 2} + 2^{x^{2} + 6x + 5}
= 2^{2x^{2} + 3x + 7} + 1

    \Leftrightarrow 2^{x^{2} - 3x + 2} +
2^{x^{2} + 6x + 5} = 2^{x^{2} - 3x + 2}.2^{x^{2} + 6x + 5} +
1

    \Leftrightarrow \left( 2^{x^{2} - 3x +
2} - 1 ight) - 2^{x^{2} + 6x + 5}.\left( 2^{x^{2} - 3x + 2} - 1
ight) = 0

    \Leftrightarrow \left( 2^{x^{2} + 6x +
5} - 1 ight).\left( 2^{x^{2} - 3x + 2} - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{x^{2} + 6x + 5} - 1 = 0 \\
2^{x^{2} - 3x + 2} - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
2^{x^{2} + 6x + 5} = 1 \\
2^{x^{2} - 3x + 2} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} + 6x + 5 = 0 \\
x^{2} - 3x + 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = - 5 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Vậy tổng tất cả các nghiệm của phương trình là S = 1 + 2 + ( - 1) + ( - 5) = - 3

  • Câu 8: Thông hiểu

    Tính giá trị biểu thức T

    Cho hàm số f(x)= \log_{2}m. Với m > 0, giá trị của biểu thức T = f\left(\frac{6}{m} ight) + f\left( \frac{8m}{3} ight) bằng:

    Ta có:

    T = f\left( \frac{6}{m} ight) +f\left( \frac{8m}{3} ight) = f\left( \frac{6}{m}.\frac{8m}{3} ight)= f(16) = 4

  • Câu 9: Vận dụng

    Tính giá trị biểu thức M

    Biết khi rút gọn biểu thức \frac{6 + 3\left( 3^{x} + 3^{- x} ight)}{2 -
3^{x + 1} - 3^{1 - x}} thu được phân số \frac{a}{b} tối giản và 9^{x} + 9^{- x} = 14 . Tính giá trị biểu thức M = a.b.

    Ta có:

    9^{x} + 9^{- x} = 14 \Leftrightarrow
\left( 3^{x} + 3^{- x} ight)^{2} = 16

    \Leftrightarrow 3^{x} + 3^{- x} =
4

    Ta lại có:

    \frac{6 + 3\left( 3^{x} + 3^{- x}
ight)}{2 - 3^{x + 1} - 3^{1 - x}} = \frac{6 + 3.4}{2 - 3.4} =
\frac{18}{- 10} = \frac{9}{- 5}

    \Rightarrow M = a.b = - 45

  • Câu 10: Vận dụng

    Điền lời giải bài toán vào chỗ trống

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Vận dụng

    Ghi đáp án vào ô trống

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Đáp án là:

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Phương trình đã cho tương đương

    \left\{ \begin{matrix}
x + 2 > 0 \\
x^{2} - (a - 1)x + a^{2} - 6a + 2 = x + 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > - 2 \\
x^{2} - ax + a^{2} - 6a = 0(*) \\
\end{matrix} ight.

    Theo yêu cầu đề bai khi và chỉ khi (*) có hai nghiệm x_{1};x_{2} thỏa mãn - 2 < x_{1} < 0 < x_{2}

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
\left( x_{1} + 2 ight)\left( x_{2} + 2 ight) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
x_{1}.x_{2} + 2\left( x_{1} + x_{2} ight) + 4 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a < 0 \\
a^{2} - 4a + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
0 < a < 6 \\
a eq 2 \\
\end{matrix} ight.

    Mặt khác a\mathbb{\in Z \Rightarrow}a \in
\left\{ 1;3;4;5 ight\}

    Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

  • Câu 12: Nhận biết

    Chọn khẳng đính đúng

    Cho biểu thức F =2^{x}.2^{y};\left( x;y\in \mathbb{R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    F = 2^{x}.2^{y} = 2^{x + y}

  • Câu 13: Nhận biết

    Giải phương trình

    Tìm nghiệm phương trình \log_{5}(2x - 1) = \log_{5}3?

    Điều kiện x > \frac{1}{2}

    Ta có:

    \log_{5}(2x - 1) = \log_{5}3

    \Leftrightarrow 2x - 1 = 3
\Leftrightarrow x = 2(tm)

    Vậy phương trình có nghiệm x =
2.

  • Câu 14: Thông hiểu

    Rút gọn biểu thức D

    Rút gọn biểu thức D =
log_{\frac{1}{2}}\frac{a.\sqrt[4]{a^{3}}.\sqrt[3]{2}}{\sqrt{a}.\sqrt[4]{a}}. (Giả sử tất cả các điều kiện đều xác định).

    Ta có:

    D =\log_{\frac{1}{2}}\frac{a.\sqrt[4]{a^{3}}.\sqrt[3]{2}}{\sqrt{a}.\sqrt[4]{a}}= \log_{a^{-1}}\frac{a.a^{\frac{3}{4}}.a^{\frac{2}{3}}}{a^{\frac{1}{2}}.a^{\frac{1}{4}}}

    = \log_{a^{-1}}\frac{a^{\frac{29}{12}}}{a^{\frac{3}{4}}} = \log_{a^{-1}}a^{\frac{5}{3}} = - \frac{5}{3}

  • Câu 15: Thông hiểu

    Rút gọn biểu thức A

    Rút gọn biểu thức A = \frac{\sqrt{a} + \sqrt[4]{ab}}{\sqrt[4]{a} +
\sqrt[4]{b}} - \frac{\sqrt{a} - \sqrt{b}}{\sqrt[4]{a} -
\sqrt[4]{b}} với a > 0;b >
0 ta được kết quả:

    Ta có:

    A = \frac{\sqrt{a} +
\sqrt[4]{ab}}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\sqrt{a} -
\sqrt{b}}{\sqrt[4]{a} - \sqrt[4]{b}}

    A = \frac{\left( \sqrt[4]{a} ight)^{2}
+ \sqrt[4]{ab}}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\left( \sqrt[4]{a}
ight)^{2} - \left( \sqrt[4]{b} ight)^{2}}{\sqrt[4]{a} -
\sqrt[4]{b}}

    A = \frac{\sqrt[4]{a}\left( \sqrt[4]{a}
+ \sqrt[4]{b} ight)}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\left(
\sqrt[4]{a} - \sqrt[4]{b} ight)\left( \sqrt[4]{a} + \sqrt[4]{b}
ight)}{\sqrt[4]{a} - \sqrt[4]{b}}

    A = \sqrt[4]{a} - \left( \sqrt[4]{a} +
\sqrt[4]{b} ight) = - \sqrt[4]{b}

  • Câu 16: Vận dụng

    Tìm số khẳng định sai

    Có bao nhiêu khẳng định sai trong các khẳng định cho dưới đây?

    (1) Với số thực a và các số nguyên m,n, ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n}.

    (2) Với hai số thực a,b cùng khác 0 và số nguyên n, ta có (ab)^{n} =
a^{n}.b^{n};\left( \frac{a}{b} ight)^{n} =
\frac{a^{n}}{b^{n}}

    (3) Với hai số thực a,b thỏa mãn 0 < a < b và số nguyên n, ta có a^{n}
< b^{n} khi và chỉ khi n >
0.

    (4) Cho số thực a và các số nguyên m,n. Khi đó, với a > 0 thì a^{m} > a^{n} khi và chỉ khi m > n.

    Khẳng định sai: "Với số thực a và các số nguyên m,n , ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n} "
  • Câu 17: Vận dụng

    Tính giá trị của biểu thức

    Cho các số thức a, b thỏa mãn 1 < a < b\log_{a}b + \log_{b}a^{2} = 3. Tính giá trị của biểu thức T = \log_{ab}\frac{a^{2} +b}{2}?

    Ta có:

    \log_{a}b + \log_{b}a^{2} = 3\Leftrightarrow \log_{a}b + 2\log_{b}a = 3(*)

    Đặt t = \log_{a}b. Do 1 < a < b \Rightarrow t > log_{a}b
\Rightarrow t > 1

    Khi đó t + \frac{2}{t} = 3
\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1(ktm) \\
t = 2(tm) \\
\end{matrix} ight.

    Với t = 2 ta có: \log_{a}b = 2 \Rightarrow b = a^{2}

    => T = \log_{ab}\frac{a^{2} + b}{2} =\log_{a^{3}}a^{2} = \frac{2}{3}\log_{a}a = \frac{2}{3}

  • Câu 18: Thông hiểu

    Phân tích sự đúng sai của các mệnh đề

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    a) Ta có: \left\{ \begin{matrix}2020^{0} = 1 \\5^{\frac{1}{2}} = \sqrt{5} \\\left( \dfrac{4}{5} ight)^{- 1} = \dfrac{5}{4} \\\end{matrix} ight. nên sắp xếp đúng là: 2020^{0};\left( \frac{4}{5} ight)^{-
1};5^{\frac{1}{2}}

    b) Ta có:

    y = \left( \frac{\pi + 3}{2\pi}
ight)^{x} có cơ số \frac{\pi +
3}{2\pi} \in (0;1) nên hàm số đã cho nghịch biến trên tập xác định của nó.

    c) Điều kiện xác định x > 2 +
\sqrt{5}

    \frac{1}{2}\log\left( x^{2} - 4x - 1ight) = \log8x - \log4x

    \Leftrightarrow \log\left( x^{2} - 4x -1 ight) = 2\log\left( \frac{8x}{4x} ight)

    \Leftrightarrow x^{2} - 4x - 1 = 4
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình là S
= 5

    d) Điều kiện xác định 3^{x + 1} - 1 \geq
0 \Leftrightarrow x \geq - 1

    Ta có: x = - 1 là một nghiệm của bất phương trình

    Với x > - 1 bất phương trình tương đương với \left( 3^{2x} - 9
ight)\left( 3^{x} - \frac{1}{27} ight) \leq 0

    Đặt t = 3^{x} > 0 ta có:

    \left( t^{2} - 9 ight)\left( t -
\frac{1}{27} ight) \leq 0 \Leftrightarrow (t - 3)(t + 3)\left( t -
\frac{1}{27} ight) \leq 0

    \Rightarrow \left\lbrack \begin{matrix}t \leq - 3 \\\dfrac{1}{27} \leq t \leq 3 \\\end{matrix} ight. kết hợp với điều kiện t = 3^{x} > 0 ta được nghiệm \frac{1}{27} \leq t \leq 3 \Leftrightarrow
\frac{1}{27} \leq 3^{x} \leq 3 \Leftrightarrow - 3 \leq x \leq
1

    Kết hợp với điều kiện x > - 1 ta được - 1 < x \leq 1 suy ra trường hợp này có 2 nghiệm nguyên

    Vậy bất phương trình có ba nghiệm nguyên.

  • Câu 19: Nhận biết

    Tìm hàm số đồng biến trên R

    Hàm số nào dưới đây đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{e} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{e} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 20: Thông hiểu

    Xác định x để hàm số có nghĩa

    Tìm tập xác định của hàm số y = f(x) = \log_{2}\frac{x + \sqrt{x} - 2}{x -2}?

    Hàm số xác định khi

    \frac{x + \sqrt{x} - 2}{x - 2} =\frac{\left( \sqrt{x} - 1 ight)\left( \sqrt{x} + 2 ight)}{x - 2}> 0

    \Leftrightarrow \frac{\sqrt{x} - 1}{x -2} > 0 \Leftrightarrow \left\lbrack \begin{matrix}0 \leq x < 1 \\2 < x \\\end{matrix} ight.

    Vậy tập xác định của hàm số là D =\lbrack 0;1) \cup (2; + \infty)

  • Câu 21: Thông hiểu

    Chọn phát biểu sai

    Chọn phát biểu sai?

    Ta có: 0,5^{3} > \left( \frac{1}{2}
ight)^{3}là phát biểu sai do a
< 1

  • Câu 22: Nhận biết

    Xác định khẳng định sai

    Chọn khẳng định sai trong các khẳng định sau?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty)

  • Câu 23: Thông hiểu

    Tìm khẳng định sai

    Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{3} - 1 < 1 \\
2018 > 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{3} - 1
ight)^{2018} < \left( \sqrt{3} - 1 ight)^{2017}

  • Câu 24: Thông hiểu

    Tìm tập xác định của hàm số

    Xác định tập xác định D của hàm số y = \sqrt{- 2x^{2} + 5x - 2} +
\ln\sqrt[4]{\frac{1}{x^{2} - 1}}.

    Hàm số đã cho xác định khi và chỉ khi:

    \left\{ \begin{matrix}- 2x^{2} + 5x - 2 \geq 0 \\\dfrac{1}{x^{2} - 1} > 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  \dfrac{1}{2} \leqslant x \leqslant 2 \hfill \\
  \left[ {\begin{array}{*{20}{c}}
  {x <  - 1} \\ 
  {x > 1} 
\end{array}} ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow 1 < x \leqslant 2

    Vậy tập xác định của hàm số là: D =
(1;2brack

  • Câu 25: Thông hiểu

    Tính giá trị biểu thức

    Cho bất phương trình \left( \frac{1}{3} ight)^{\frac{2}{x}} +
3.\left( \frac{1}{3} ight)^{\frac{1}{x} + 1} > 12 có tập nghiệm S = (a;b). Giá trị của biểu thức T = 3a + 10b bằng:

    Ta có:

    \left( \frac{1}{3} ight)^{\frac{2}{x}}
+ 3.\left( \frac{1}{3} ight)^{\frac{1}{x} + 1} > 12

    Đặt t = \left( \frac{1}{3}
ight)^{\frac{1}{x}};(t > 0) khi đó bất phương trình trở thành:

    \Leftrightarrow t^{2} + t > 12
\Leftrightarrow (t - 3)(t - 4) > 0

    \Leftrightarrow t > 3\ (do\ t >
0)

    Từ đó suy ra \left( \frac{1}{3}
ight)^{\frac{1}{x}} > 3 \Leftrightarrow \frac{1}{x} < - 1
\Leftrightarrow - 1 < x < 0

    Tập nghiệm của bất phương trình là: ( -
1;0) \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 0 \\
\end{matrix} ight.

    Vậy T = 3a + 10b = - 3

  • Câu 26: Thông hiểu

    Đơn giản biểu thức G

    Rút gọn biểu thức G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} với x > 0 ta được kết quả là:

    Ta có: G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} =
\frac{x^{\frac{1}{3}}.x^{\frac{1}{6}}}{x^{\frac{1}{4}}} =
\frac{x^{\frac{1}{3} + \frac{1}{6}}}{x^{\frac{1}{4}}} = x^{\frac{1}{4}}
= \sqrt[4]{x}

  • Câu 27: Nhận biết

    Giải bất phương trình

    Tìm tập nghiệm của bất phương trình: \log_{2}(3 - x) < 2.

    Điều kiện 3 - x > 0 \Leftrightarrow x
< 3

    Bất phương trình tương đương

    \Leftrightarrow 3 - x < 4
\Leftrightarrow x > - 1

    Kết hợp với điều kiện ta được tập nghiệm bất phương trình là: ( - 1;3)

  • Câu 28: Nhận biết

    Chọn mệnh đề sai

    Chọn mệnh đề sai trong các mệnh đều dưới đây.

    Mệnh đề sai là: 3^{\frac{x}{y}} =
\frac{3^{x}}{3^{y}}

    \frac{3^{x}}{3^{y}} = 3^{x -
y}

  • Câu 29: Nhận biết

    Điền kết quả vào chỗ trống

    Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: \sqrt{a^{3}.\sqrt[4]{a}} = ...

    Ta có:

    \sqrt{a^{3}.\sqrt[4]{a}} =
\sqrt{a^{3}.a^{\frac{1}{4}}} = \sqrt{a^{3 + \frac{1}{4}}} =
\sqrt{a^{\frac{13}{4}}} = a^{\frac{13}{8}}.

  • Câu 30: Thông hiểu

    Chọn khẳng định đúng

    Khẳng định nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{5} - 2 < 1 \\
2018 < 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{5} - 2
ight)^{2018} > \left( \sqrt{5} - 2 ight)^{2019}

  • Câu 31: Nhận biết

    Tìm các giá trị của tham số m

    Cho phương trình 3^{- m} = m - 1. Tìm tất cả các giá trị của tham số m để phương trình đã cho có nghiệm?

    Ta có: 3^{- m} = m - 1 \Leftrightarrow
\left( \frac{1}{3} ight)^{m} = m - 1

    Phương trình đã cho có nghiệm khi và chỉ khi m - 1 > 0 \Leftrightarrow m >
1.

  • Câu 32: Vận dụng cao

    Rút gọn biểu thức

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Tính giá trị biểu thức

    Cho biết \log_{2}a= x;\log_{2}b = y, biểu thức \log_{2}\left( 4a^{2}b^{3} ight) có giá trị là:

    Ta có:

    \log_{2}\left( 4a^{2}b^{3} ight) =\log_{2}4 + \log_{2}a^{2} + \log_{2}b^{3}

    = 2 + 2\log_{2}a + 3\log_{2}b = 2x + 3y +2

  • Câu 34: Nhận biết

    Tính giá trị biểu thức H

    Cho các số thực dương a,b bất kì thỏa mãn \log a = x;logb = y. Tính giá trị biểu thức H = \log\left( a^{2}b^{3}
ight).

    Ta có:

    H = \log\left( a^{2}b^{3} ight) =
\log\left( a^{2} ight) + \log\left( b^{3} ight)

    = 2\log a + 3\log b = 2x + 3y

  • Câu 35: Vận dụng

    Điền các bước giải toán vào ô trống

    Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là 1\% mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là 1\% mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Vận dụng cao

    Tính giá trị biểu thức

    Cho a,b là các số thực và hàm số:

    f\left( x ight) = a{\log ^{2019}}\left( {\sqrt {{x^2} + 1}  + x} ight) + b.\sin x.\cos 2018x + 6

    Biết f\left( {{{2018}^{\ln 2019}}} ight) = 10. Giá trị của biểu thức T = f\left( { - {{2019}^{\ln 2018}}} ight) bằng:

    Xét hàm số g\left( x ight) = f\left( x ight) - 6 = a{\log ^{2019}}\left( {\sqrt {{x^2} + 1}  + x} ight) + b.\sin x.\cos 2018x

    Do \sqrt{x^{2} + 1} + x \geq |x| + x
\geq nên hàm số g(x) có tập xác định D\mathbb{= R}

    Với \forall x \in D \Rightarrow - x \in
D

    Ta lại có

    g\left( { - x} ight) = a{\log ^{2019}}\left( {\sqrt {{{\left( { - x} ight)}^2} + 1}  - x} ight) + b.\sin \left( { - x} ight).\cos 2018\left( { - x} ight)

    \Rightarrow g\left( { - x} ight) = a{\log ^{2019}}\left( {\sqrt {{x^2} + 1}  - x} ight) - b.\sin x.\cos 2018x

    \Rightarrow g\left( { - x} ight) = a{\log ^{2019}}\left( {\frac{1}{{\sqrt {{x^2} + 1}  + x}}} ight) - b.\sin x.\cos 2018x

    \Rightarrow g\left( { - x} ight) =  - a{\log ^{2019}}\left( {\sqrt {{x^2} + 1}  + x} ight) - b.\sin x.\cos 2018x =  - g\left( x ight)

    Vậy hàm số g(x) là hàm số lẻ

    Ta có: \left\{ {\begin{array}{*{20}{c}}
  {{{2018}^{\ln 2019}} = {{2019}^{\ln 2018}}} \\ 
  {f\left( {{{2018}^{\ln 2019}}} ight) = 10} 
\end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {g\left( {{{2018}^{\ln 2019}}} ight) = 4} \\ 
  {g\left( { - {{2018}^{\ln 2018}}} ight) =  - g\left( {{{2019}^{\ln 2018}}} ight) =  - 4} 
\end{array}} ight.

    \Rightarrow f\left( {{{2019}^{\ln 2018}}} ight) = 2.

    Vậy giá trị của biểu thức T = f\left( -
2019^{ln2018} ight) = 2.

  • Câu 37: Thông hiểu

    Rút gọn biểu thức B

    Rút gọn biểu thức B =\log_{\frac{1}{a}}\frac{a\sqrt[5]{a^{3}}.\sqrt[3]{a^{2}}}{\sqrt{a}.\sqrt[4]{a}} thu được kết quả là:

    Ta có:

    B =\log_{\frac{1}{a}}\frac{a\sqrt[5]{a^{3}}.\sqrt[3]{a^{2}}}{\sqrt{a}.\sqrt[4]{a}}

    B = -\log_{a}\frac{a.a^{\frac{3}{5}}.a^{\frac{2}{3}}}{a^{\frac{1}{2}}.a^{\frac{1}{4}}}

    B = - \log_{a}a^{\frac{91}{60}} = -\frac{91}{60}

  • Câu 38: Thông hiểu

    Tính tổng các nghiệm phương trình

    Giả sử S là tổng các nghiệm của phương trình \frac{1}{4}\log_{4}(a - 3)^{8} +\frac{1}{2}\log_{\sqrt{2}}(a + 1) = \log_{2}(4a). Giá trị của S là:

    Điều kiện xác định \left\{ \begin{matrix}
(a - 3)^{8} > 0 \\
a + 1 > 0 \\
4a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a eq 3 \\
a > - 1 \\
a > 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a eq 3 \\
a > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \dfrac{1}{4}\log_{2^{2}}(a- 3)^{8} + \frac{1}{2}\log_{2^{\frac{1}{2}}}(a + 1) =\log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| +\log_{2}(a + 1) = \log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}(4a) - \log_{2}(a + 1)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}\left( \frac{4a}{a + 1} ight)

    \Leftrightarrow |a - 3| = \dfrac{4a}{a +1} \Leftrightarrow \left\lbrack \begin{matrix}a - 3 = \dfrac{4a}{a + 1} \\a - 3 = - \dfrac{4a}{a + 1} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
a^{2} - 6a - 3 = 0 \\
a^{2} + 2a - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
a = 3 + 2\sqrt{3}(tm) \\
a = 3 - 2\sqrt{3}(ktm) \\
a = 1(tm) \\
a = - 3(ktm) \\
\end{matrix} ight.

    \Rightarrow S = 3 + 2\sqrt{3} + 1 = 4 +
2\sqrt{3}

  • Câu 39: Thông hiểu

    Phân tích sự đúng sai của các mệnh đề

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 40: Nhận biết

    Tìm hàm số nghịch biến trên tập số thực

    Hàm số nào trong các hàm số sau đây là hàm nghịch biến trên tập số thực?

    Hàm số y = (0,25)^{x} nghịch biến trên \mathbb{R}0 < 0,25 < 1

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo