Tìm tất cả các giá trị của tham số m
Cho hàm số
. Tìm tất cả các giá trị của tham số m để hàm số liên tục tại
?
Ta có:
Hàm số liên tục tại
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 CTST Chương 3: Giới hạn. Hàm số liên tục nha!
Tìm tất cả các giá trị của tham số m
Cho hàm số
. Tìm tất cả các giá trị của tham số m để hàm số liên tục tại
?
Ta có:
Hàm số liên tục tại
Xét tính đúng sai của các khẳng định
Cho hàm số
. Khi đó:
a) Giới hạn
. Sai||Đúng
b) Giới hạn
. Đúng||Sai
c) Giới hạn
. Đúng||Sai
d) Hàm số tồn tại giới hạn khi
. Sai||Đúng
Cho hàm số
. Khi đó:
a) Giới hạn
. Sai||Đúng
b) Giới hạn
. Đúng||Sai
c) Giới hạn
. Đúng||Sai
d) Hàm số tồn tại giới hạn khi
. Sai||Đúng
a) Ta có: Giới hạn
b) Xét dãy số bất kì sao cho
và
, ta có:
.
Khi đó: .
c) Xét dãy số bất kì sao cho
và
, ta có:
.
Khi đó: .
d) Vì (hay
) nên không tồn tại
.
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Tính giá trị của M.n
Cho hàm số
liên tục trên đoạn
và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Giá trị của M.n là:

Hàm số liên tục trên
.
Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1
Vậy M.n = -3
Ghi đáp án vào ô trống
Kết quả giới hạn
, với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Kết quả giới hạn
, với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Ta có
.
Suy ra .
Tìm giá trị của tham số a
Tìm tất cả các giá trị của tham số a để ![]()
Ta có:
Giải bất phương trình ta được kết quả
Tính f(0)
Cho hàm số
xác định và liên tục trên
với
với
. Tính ![]()
Ta có: Hàm số xác định và liên tục trên
=> Hàm số liên tục tại
=>
Ta có:
=>
Tính f(0)
Cho hàm số
xác định và liên tục trên
với
với
. Tính
.
Ta có hàm số xác định và liên tục trên
nên suy ra
Tìm giá trị thực của m
Tìm giá trị thực của tham số m để hàm số
liên tục tại
.
Tập xác định chứa
Theo giả thiết ta có:
Xác định giới hạn
bằng:
Ta có:
Xác định mệnh đề sai
Trong các mệnh đề sau, mệnh đề nào sai?
Ta có:
Tính giới hạn
Tính giới hạn ![]()
Ta có:
Giới hạn cần tìm là?
Giới hạn cần tìm của
bằng:
Tìm giá trị nhỏ nhất của a
Tìm giá trị nhỏ nhất của a để hàm số
liên tục tại
.
Điều kiện bài toán trở thành
Ta có:
Khi đó
Chọn phương án thích hợp
Cho
là hằng số,
là một số nguyên dương. Quy tắc nào sau đây sai?
Ta có với
là một số nguyên dương.
Tính giới hạn
Tính giới hạn ![]()
Ta có:
Tính giới hạn hàm số
Tính giới hạn ![]()
Ta có:
Tìm giá trị của giới hạn?
Giá trị của
bằng:
Ta có:
Giới hạn của hàm số
bằng
Ta có:
Ghi đáp án vào ô trống
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau:
.
Đáp án: 1
Ta có:
Khi thì
.
Tính lim?
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn thỏa mãn
.
Ta có:
Vậy .
Tìm điều kiện của a và b thỏa mãn điều kiện
Cho
là các số thực khác
. Tìm điều kiện của
để giới hạn ![]()
Ta có:
Tìm các giá trị nguyên của tham số a thỏa mãn điều kiện
Có bao nhiêu giá trị nguyên của tham số a thuộc khoảng (-10; 10) để
.
Ta có:
Vì
Vậy có 3 giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.
Xác định khoảng liên tục của hàm số
Xác định khoảng liên tục của hàm số
. Mệnh đề nào dưới đây sai?
Hàm số liên tục trên các khoảng
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Xét sự đúng sai của các phát biểu
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.
b) Xét phương trình
Đặt ta có:
Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng .
c) Ta có:
d) Các hàm số liên tục trên tập số thực là .
Tính giới hạn
Tính giới hạn ![]()
Ta có:
Ghi đáp án vào ô trống
Biết giới hạn
,
là số thực,
là các số nguyên dương và
tối giản.
Tính tổng:
.
Đáp án: 0
Biết giới hạn
,
là số thực,
là các số nguyên dương và
tối giản.
Tính tổng:
.
Đáp án: 0
Vì nên
.
Suy ra .
Với ta được
.
Vậy .
Suy ra .
Tính giới hạn hàm số
Tính
.
Ta có:
Hàm số liên tục
Cho hàm số
hàm số f(x) liên tục tại:
Tập xác định:
Vậy hàm số liên tục tại
Hàm số liên tục khi
hàm số liên tục khi
Tại x = 1 ta có:
Vậy hàm số liên tục tại
Hàm số liên tục trên
Tìm số giao điểm của hàm số với trục hoành
Cho các số thực
thỏa mãn
. Khi đó số giao điểm của hàm số
với trục
là:
Hàm số xác định và liên tục trên
.
Hàm số bậc ba nên đồ thị hàm số cắt Ox tối đa tại 3 điểm (1)
Ta có:
suy ra
sao cho
Lại có: suy ra
sao cho
Mặt khác
Từ đó suy ra
Do đó đồ thị hàm số cắt Ox tại ít nhất ba điểm (2)
Từ (1) và (2) suy ra đồ thị hàm số đã cho cắt trục Ox tại đúng ba điểm.
Hàm số đã cho liên tục trên khoảng nào
Cho hàm số
. Khi đó hàm số đã cho liên tục trên khoảng nào?
Hàm số có nghĩa khi
Vậy hàm số liên tục trên các khoảng
Hàm số liên tục tại một điểm
Hàm số
liên tục tại điểm nào dưới đây?
Hàm số có tập xác định
Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định .
Khi đó suy ra hàm số đã cho liên tục tại điểm
.
Tìm khẳng định đúng
Số thập phân vô hạn tuần hoàn
được biểu diễn bởi phân số tối giản
. Khẳng định nào dưới đây đúng?
Ta có:
Xét tính đúng sai của các khẳng định
Cho giới hạn
. Xét tính đúng sai của các khẳng định sau:
a)
khi
.Đúng||Sai
b)
thì có 2 giá trị nguyên
thỏa mãn.Sai||Đúng
c)
khi
.Đúng||Sai
d) Có 3 giá trị nguyên của
thuộc
sao cho
là một số nguyên.Đúng||Sai
Cho giới hạn
. Xét tính đúng sai của các khẳng định sau:
a)
khi
.Đúng||Sai
b)
thì có 2 giá trị nguyên
thỏa mãn.Sai||Đúng
c)
khi
.Đúng||Sai
d) Có 3 giá trị nguyên của
thuộc
sao cho
là một số nguyên.Đúng||Sai
a) Đúng: Ta có
Khi đó
b) Sai: Khi đó
c) Đúng: Khi đó
d) Đúng: Ta có
Chọn mệnh đề đúng
Cho hàm số
. Mệnh đề nào sau đây là đúng?
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Vậy hàm số liên tục trên các khoảng và
.
Xét tính đúng sai của mỗi kết luận
Cho
. Biết
(với
tối giản). Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c) Bộ ba số
tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số
tạo thành một cấp số nhân có công bội
Đúng||Sai
Cho
. Biết
(với
tối giản). Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c) Bộ ba số
tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số
tạo thành một cấp số nhân có công bội
Đúng||Sai
Ta có
.
Do đó suy ra .
Kết luận:
|
a) Đúng |
b) Sai |
c) Đ |
d) Đúng |
Chọn mệnh đề đúng?
Chọn mệnh đề đúng trong các mệnh đề sau:
Theo nội dung định lý tìm giới hạn, ta có:
Nếu , thì
Ghi đáp án vào ô trống
Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
Chọn giá trị đúng của giới hạn?
Cho dãy số
với
và
. Chọn giá trị đúng của
trong các số sau:
Áp dụng phương pháp quy nạp toán học ta có
Nên ta có :
Suy ra : , mà
Vậy .
Tính giá trị?
Giá trị của
với
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy .
Tính giới hạn hàm số
Tính
.
Ta có :
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: