Chọn khẳng định đúng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 CTST Chương 8: Quan hệ vuông góc trong không gian nha!
Chọn khẳng định đúng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Xác định thiết diện
Cho hình chóp đều SABC. Mặt phẳng (α) qua A, song song với BC và vuông góc với mặt phẳng (SBC). Thiết diện tạo bởi (α) với hình chóp đã cho là:
Hình vẽ minh họa:
Gọi I là trung điểm BC.
Trong tam giác SAI kẻ AH ⊥ SI (H ∈ SI).
Trong tam giác SBC, qua H kẻ đường song song với BC, cắt SC ở M, cắt SB ở N.
Qua cách dựng ta có BC // (AMN). (1)
Ta có: SI ⊥ AH, SI ⊥ MN (do SI ⊥ BC) => SI ⊥ (AMN) => (SBC) ⊥ (AMN). (2)
Từ (1) và (2), suy ra thiết diện cần tìm là tam giác AMN.
Dễ thấy H là trung điểm của MN mà AH ⊥ (SBC) suy ra AH ⊥ MN.
Tam giác AMN có đường cao AH vừa là trung tuyến nên nó là tam giác cân đỉnh A.
Chọn khẳng định đúng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). Gọi I là tâm đường tròn ngoại tiếp tam giác SBC, H là hình chiếu của I trên mặt phẳng đáy. Chọn khẳng định đúng trong các khẳng định dưới đây?
Hình vẽ minh họa:

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mà AB ⊥ BC => BC ⊥ (SAB) => BC ⊥ SB
=> Tam giác SBC vuông tại B => I là trung điểm của SC
Theo bài ra ta có: IH ⊥ (ABC) => IH // SA
=> H là trung điểm của cạnh AC,
Mà tam giác ABC vuông tại B => H là tâm đường tròn ngoại tiếp tam giác ABC.
Tìm cosin góc nhị diện
Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh
, cạnh
,
. Tính cosin của góc nhị diện [A, BC, D].
Hình vẽ minh họa
Gọi M, H lần lượt là trung điểm của BC, CD.
Do vuông tại
nên
hay
là tâm đường tròn ngoại tiếp
.
Mà nên AH là đường cao kẻ từ
xuống
hay
.
(1)
M, H là trung điểm của BC, CD nên MH là đường trung bình của
Mà nên
. (2)
Từ (1), (2) suy ra: .
Suy ra: .
Lại có: .
Tính cosin góc giữa hai đường thẳng
Cho hình chóp tam giác
có
và
. Tính cosin góc giữa hai đường thẳng
và
.
Hình vẽ minh họa
Giả sử M, N, Q lần lượt là trung điểm các cạnh SA, SB, AC
Mặt khác ta có:
Ta có:
Xét tam giác NAC có:
Xét tam giác MNQ ta có:
Chọn khẳng định đúng
Cho tứ diện ABCD. Gọi H là trực tâm của tam giác BCD và AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là đúng?
Hình vẽ minh họa

Vì AH vuông góc với (BCD) suy ra (1)
Mà H là trực tâm của tam giác BCD (2)
Từ (1), (2) suy ra:
Tính thể tích khối lăng trụ đứng
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết
và góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích khối lăng trụ đứng
.
Hình vẽ minh họa
Ta có:
Suy ra
Ta có:
Vậy
Tính chiều cao của hình chóp
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:
Hình vẽ minh họa:
Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.
Gọi O là hình chiếu của S trên mặt phẳng (ABCD).
Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.
Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:
Tính khoảng cách
Cho hình lập phương
có các cạnh bằng
. Tính khoảng cách giữa hai mặt phẳng
và
.
Hình vẽ minh họa
Vì là hình lập phương nên
và
.
Khoảng cách giữa hai mặt phẳng và
Tính thể tích tứ diện
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Mệnh đề nào sau đây là đúng?
Mệnh đề nào sau đây là đúng?
Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau sai vì chúng có thể chéo nhau hoặc cắt nhau.
Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại sai vì nó và đường thẳng còn lại có thể chéo nhau hoặc cắt nhau.
Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau sai vì chúng có thể song song với nhau
Xác định vị trí điểm I
Cho hình tứ diện OABC có OA, OB, OC đôi một vuông góc. Gọi I là hình chiếu của điểm O trên mặt phẳng (ABC). Điểm I là:
Ta có:
Chứng minh tương tự ta được:
Vậy I là trực tâm của tam giác ABC.
Tính góc giữa đường thẳng và mặt phẳng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SO ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của SA và BC. Tính góc giữa đường thẳng MN và mặt phẳng đáy. Biết
.
Hình vẽ minh họa:
Kẻ Mk // SO
Theo bài ra ta có: SO ⊥ (ABCD) => MK ⊥ (ABCD)
=>
Ta có:
Xét tam giác CNK có:
Xét tam giác MNK vuông ta có:
Xác định thiết diện tạo bởi (α) và hình chóp
Cho hình chóp
có đáy
là tam giác đều và
là trung điểm cạnh
. Gọi
là trung điểm
của tam giác
,
. Gọi
là trung điểm cạnh
. Gọi mặt phẳng
qua
và vuông góc với
. Thiết diện của
với hình chóp
là:
Hình vẽ minh họa
Ta có:
=> Qua I kẻ đường thẳng . Gọi
Ta có: => Qua I kẻ đường thẳng
=> Qua K kẻ đường thẳng
. Gọi
=> thiết diện và hình chóp là tứ giác
có IK là đường trung trực của MN và PQ.
=> là hình thang cân.
Tính tỉ số độ dài hai cạnh MS và MC
Cho hình chóp S.ABC có tam giác ABC vuông tại B và
. Tam giác SAC là tam giác đều và thuộc mặt phẳng vuông góc với (ABC). Xét điểm M thuộc cạnh SC sao cho mặt phẳng (MAB) tạo với hai mặt phẳng (SAB); (ABC) góc bằng nhau. Tỉ số
có giá trị bằng:
Gọi H là trung điểm của AC, suy ra SH ⊥ (ABC).
Gọi N là trung điểm của AB, suy ra AB ⊥ (SHN).
Lấy K là giao điểm của AM, SH. Do đó
Theo giả thiết, NK là phân giác của góc
Giả sử:
Mặt khác:
(tính chất phân giác).
Gọi E là trung điểm của CM, theo định lí Ta-lét thì:
Vậy
Xác định thể tích khối hộp chữ nhật
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 4a nên
Ta có:
Xét tam giác AOA’ có
Ghi đáp án vào ô trống
Cho hình hộp chữ nhật
có các kích thước
. Khoảng cách giữa hai đường thẳng
và
bằng:
Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).
Cho hình hộp chữ nhật
có các kích thước
. Khoảng cách giữa hai đường thẳng
và
bằng:
Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Trong kẻ
.
Kẻ .
Do
Mà .
Ta có: là hình bình hành nên
.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
Tính giá trị biểu thức lượng giác
Cho lăng trụ đứng ABC.A’C’B’ có đáy ABC cân đỉnh A,
, BC’ tạo đáy góc
. Gọi I là trung điểm của AA’, biết
. Tính ![]()
Ta có: vuông tại H (H là trung điểm của BC)
Mà tam giác AIH vuông tại A nên
Tam giác BIC vuông tại I
Thay vào (*) ta được:
Tìm bước giải sai của bài toán
Cho tứ diện ABCD có AB = AC = AD,
. Hãy chứng mình
.
Một bạn chứng mình qua các bước sau:
Bước 1. ![]()
Bước 2. ![]()
Bước 3. ![]()
Bước 4. Suy ra ![]()
Theo em. Lời giải trên sai từ:
Bài toán sai từ bước 1 vì
Theo quy tắc trừ hai vectơ ta có:
Số mặt phẳng vuông góc với (P) và (Q)
Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
Gọi d là đường thẳng qua M và vuông góc với (P). Do
Giả sử (R) là mặt phẳng chứa d. Mà
Có vô số mặt phẳng (R) chứa d. Do đó có vô số mặt phẳng qua M, vuông góc với (P) và (Q).
Điền đáp án vào ô trống
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là
và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là
và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Ta có:
Thể tích khối chóp là:
Thể tích hình lăng trụ là:
Khi đó:
Tìm giao tuyến hai mặt phẳng
Cho tứ diện
. Gọi trung điểm các cạnh
và
lần lượt là các điểm
. Giao tuyến của hai mặt phẳng
và mặt phẳng
là
Hình vẽ minh họa
Hai mặt phẳng và mặt phẳng
có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).
Tìm mệnh đề đúng
Cho hình chóp tứ giác đều
, cạnh đáy bằng
, đường cao bằng
. Giả sử
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Gọi , M là trung điểm của CD.
Ta có:
Trong tam giác SMO có
Chọn kết luận đúng
Cho hình chóp tứ giác
có đáy
là hình thoi tâm
và
vuông góc với mặt đáy. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
là hình thoi
Chọn khẳng định đúng?
Cho tam giác ABC vuông tại A và có hai đỉnh B và C nằm trên mặt phẳng (P). Gọi A’ là hình chiếu vuông góc của đỉnh A lên mặt phẳng (P). Trong các mệnh đề sau mệnh đề nào đúng?
=> Góc BA’C là góc tù.
Tỉ lệ khoảng cách
Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:

Tìm khoảng cách từ A đến mặt phẳng (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3a. Cạnh bên SA vuông góc với (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 30◦ . Tìm khoảng cách từ A đến mặt phẳng (SBC).
Ta có:
Gọi H là chân đường cao lên cạnh SB. Khi đó, ta có
d(A, (SBC)) = AH. sin 30◦ => AH = AB . sin 30◦ =
Góc giữa hai đường thẳng AM bằng BD
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy SA = a. Gọi M là trung điểm của SB. Góc giữa AM bằng BD bằng?

Xét vuông cân tại A, ta có:
Góc giữa 2 đường thẳng BA và BD bằng , suy ra
Xét vuông cân tại A, ta có:
Vì là trung điểm của SB nên:
Ta có:
(Do , nên
)
Do đó:
Vậy góc giữa AM bằng BD bằng
Tính giá trị nhỏ nhất của độ dài đoạn MN
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Một đường thẳng d đi qua đỉnh D’ và tâm I của mặt bên BCC’B’. Hai điểm M, N thay đổi lần lượt thuộc các mặt phẳng (BCC’B’) và (ABCD) sao cho trung điểm K của MN thuộc đường thẳng d (tham khảo hình vẽ). Giá trị bé nhất của độ dài đoạn thẳng MN là:

Hình vẽ minh họa:
Kẻ ME vuông góc với CB, tam giác MEN vuông tại E nên MN = 2EK.
Vậy MN bé nhất khi và chỉ khi EK bé nhất.
Lúc này EK là đoạn vuông góc chung của hai đường thẳng d và đường thẳng CB.
Qua I kẻ P Q song song với BC (như hình vẽ).
Vậy d(BC, d) = d(BC,(D’PQ)) = d(C, (D’PQ)) = d(C’, (D’P Q)) = C’H (trong đó C’H vuông góc với D’P).
Ta có:
Tính khoảng cách giữa hai đường thẳng
Cho hình chóp
có đáy
là hình vuông cạnh
;
. Tính khoảng cách giữa hai đường chéo nhau
và
bằng:
Hình vẽ minh họa
Kẻ đường thẳng d qua B và song song AC
Gọi M là hình chiếu vuông góc của A lên d
Gọi H là hình chiếu của A lên SM.
Ta có:
Xét tam giác SAM có đường cao AH nên
Tính góc giữa hai đường thẳng
Cho hình lăng trụ tam giác đều
có
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
là góc giữa
và
và bằng góc
Với ta có:
Tính thể tích khối lập phương
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Tính thể tích hình hộp chữ nhật
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 2a nên
Ta có:
Xét tam giác AOA’ có
Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Tìm tan α
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

Hình chiếu của SA lên mặt phẳng (ABC) là AH
=> Góc giữa SA và mặt phẳng (ABC) là
Tam giác ABC và SBC là các tam giác đều cùng cạnh a
Vậy tan α = 1
Tìm góc giữa hai đường thẳng SA và CD
Cho hình chóp
có đáy
là hình bình hành và mặt bên
là tam giác vuông tại
. Tính số đo góc giữa hai đường thẳng
và
.
Hình vẽ minh họa
Vì là hình bình hành nên
Xác định đường vuông góc chung của AB và CD
Cho tứ diện ABCD có:
,
. Gọi M và N lần lượt là trung điểm của AB và CD. Đường vuông góc chung của AB và CD là:
Hình vẽ minh họa:

Ta có:
=> MN là đường vuông góc chung của AB và CD
Tìm t để MN ngắn nhất.
Cho tứ diện ABCD có SC = AC = AB =
, SC ⊥ (ABC), tam giác ABC vuông tạo A, các điểm M thuộc SA, N thuộc BCc sao cho AM = CN = t (0 < t < 2a). Tìm t để MN ngắn nhất.
Hình vẽ minh họa:
Theo giả thiết, ta có: SA = 2a, BC = 2a
Vì 0 < t < 2a
Đặt . Ta có:
Vậy
Từ đó suy ra MN nhỏ nhất khi và chỉ khi
Xác định góc giữa SB và mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.
Phân tích sự đúng sai của các kết luận
Cho hình chóp
có đáy
là hình chữ nhật ![]()
. Kẻ đường cao
của tam giác
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d) Diện tích tam giác
bằng
Sai||Đúng
Cho hình chóp
có đáy
là hình chữ nhật ![]()
. Kẻ đường cao
của tam giác
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d) Diện tích tam giác
bằng
Sai||Đúng
đúng
đúng
đúng
Diện tích tam giác bằng
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: