Tính giá trị của hàm số tại một điểm
Cho hàm số
và
. Tính giá trị
?
Ta có:
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 CTST Chương 7: Đạo hàm nha!
Tính giá trị của hàm số tại một điểm
Cho hàm số
và
. Tính giá trị
?
Ta có:
Tìm giá trị m, n thỏa mãn điều kiện
Cho hàm số
. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0
Ta có:
=> Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0
=> Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.
Chọn đáp án đúng
Viết phương trình tiếp tuyến của đồ thị hàm số
tại điểm
?
TXĐ:
Ta có:
Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Viết phương trình tiếp tuyến
Viết phương trình tiếp tuyến của đường cong
tại điểm (-1; -1)
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Tính tỉ số
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Định nghĩa đạo hàm
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Viết phương trình tiếp tuyến
Cho hàm số
. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ
thỏa mãn phương trình
?
Ta có:
Ta có:
Khi đó
Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là
Chọn đáp án thích hợp
Cho hàm số
. Tập nghiệm của bất phương trình
là:
Ta có:
Điền đáp án vào ô trống
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Tính vận tốc lớn nhất của chuyển động
Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình
, trong đó
tính bằng mét và
tính bằng giây. Trong thời gian
kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?
Kết quả: 28(m/s)
Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình
, trong đó
tính bằng mét và
tính bằng giây. Trong thời gian
kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?
Kết quả: 28(m/s)
Ta có:
Suy ra vận tốc của chuyển động là
Dễ thấy hàm số là hàm số bậc hai có đồ thị dạng Parabol với hệ số
Ta có hoành độ đỉnh của Parabol là
Do đó
Vậy giá trị lớn nhất của vận tốc ô tô chuyển động trong 5 giây đầu là
Tìm hệ số góc k
Xác định hệ số góc tiếp tuyến của đồ thị hàm số
tại điểm
?
Ta có:
Hệ số góc tiếp tuyến của đồ thị hàm số tại điểm là:
Tính f''(x)
Tính đạo hàm cấp hai tại điểm
của hàm số
?
Tập xác định
Ta có:
Chọn công thức đúng
Tìm khẳng định đúng dưới đây?
Ta có
Phân tích sự đúng sai của các khẳng định
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
ứng với
bằng
. Đúng||Sai
b) Cho hàm số
. Giá trị
Đúng||Sai
c) Đạo hàm của hàm số
trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số
vuông góc với
là
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
ứng với
bằng
. Đúng||Sai
b) Cho hàm số
. Giá trị
Đúng||Sai
c) Đạo hàm của hàm số
trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số
vuông góc với
là
. Sai||Đúng
a) Ta có:
Thay vào (*) ta được:
b) Ta có
c) Ta có:
d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng nên ta có:
Gọi là tiếp điểm khi đó ta có:
Mặt khác
Phương trình tiếp tuyến cần tìm là:
Tính tổng S
Tính tổng
![]()
Xét
Tính đạo hàm tại một điểm
Cho
. Khi đó
bằng:
Ta có:
Tính đạo hàm cấp hai
Đạo hàm cấp hai của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Tìm đạo hàm của hàm số
Tính đạo hàm của hàm số
?
Ta có:
Tính đạo hàm cấp bốn của hàm số
Cho hàm số
. Xác định giá trị
?
Ta có:
Tìm kết luận đúng
Đạo hàm cấp hai của hàm số
là:
Ta có:
Hàm số f(x) liên tục trên khoảng
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Tính đạo hàm của hàm số
Cho hàm số
xác định bởi công thức
. Tính đạo hàm của hàm số đã cho?
Ta có:
Giải bất phương trình y'' < 0
Cho hàm số
. Giải bất phương trình y'' < 0.
Ta có:
Tìm biểu thức đúng
Cho hàm số
. Khi đó mệnh đề nào dưới đây đúng?
Ta có:
Khi đó khẳng định đúng là:
Xác định tính đúng sai của mệnh đề
Cho hai mệnh đề sau:
i)
có đạo hàm tại
thì
liên tục tại
.
ii)
liên tục tại
thì
có đạo hàm tại
.
Khẳng định nào dưới đây đúng?
Khẳng định đúng là: đúng,
sai.
Điền kết quả vào ô trống
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Ta có:
Ghi lời giải bài toán vào ô trống
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Tính đạo hàm cấp hai của hàm số
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Tính đạo hàm của hàm số tại một điểm
Cho hàm số
. Tính đạo hàm của hàm số tại điểm
?
Ta có:
Suy ra
Nên hàm số không liên tục tại
Vậy không tồn tại đạo hàm của hàm số tại điểm
.
Tính đạo hàm của hàm số
Cho hàm số
. Khi đó ![]()
Với xét:
Tính đạo hàm của hàm số tại x = 0
Cho hàm số
với
. Tính
.
Ta có:
Xác định đạo hàm của hàm số
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Tính đạo hàm tại x = 0
Cho hàm số
xác định bởi
. Giá trị của
là:
Tập xác định
Ta có:
Vậy
Tính gần đúng giá trị vận tốc của chuyểnđộng
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

Giả sử vận tốc của vật chuyển động có phương trình
Ta có:
Ta lại có:
Do đó:
Vậy
Tìm các giá trị tham số m
Cho hàm số
. Biết
. Xác định giá trị của tham số
?
Ta có:
Lại có:
Tính góc giữa hai tiếp tuyến
Cho hai hàm số
. Gọi
lần lượt là tiếp tuyến của mỗi đồ thị hàm số
đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?
Xét phương trình hoành độ giao điểm:
Ta có: có hệ số góc
có hệ số góc
=>
Điền biểu thức còn thiếu vào chỗ trống
Cho hàm số
xác định bởi công thức
. Thực hiện tính đạo hàm của hàm số ta được
. Biểu thức cần điền vào chỗ trống.
Ta có:
Tính gia tốc tức thời của chuyển động
Một chất điểm chuyển động thẳng quãng đường được xác định bởi phương trình
trong đó quãng đường s tính bằng mét (m), thời gian t tính bằng giây (s). Khi đó gia tốc tức thời của chuyển động tại giây thứ 10 là bao nhiêu?
Ta có:
Vậy gia tốc tức thời của chuyển động tại giây thứ 10 là
Tính đạo hàm cấp ba của hàm số tại x = 1
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Kiểm tra sự đúng sai của các kết luận
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
tương ứng với
và
là
Đúng||Sai
b) Qua điểm
có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số
. Khi đó
Đúng||Sai
d) Cho hàm số
khi đó ta có
Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
tương ứng với
và
là
Đúng||Sai
b) Qua điểm
có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số
. Khi đó
Đúng||Sai
d) Cho hàm số
khi đó ta có
Sai||Đúng
a) Ta có:
b) Ta có
Gọi d là tiếp tuyến của đồ thị hàm số đã cho
Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng
Vì d tiếp xúc với đồ thị (C) nên hệ phương trình có nghiệm
Thay (**) vào (*) ta suy ra
Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).
c) Ta có:
d) Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: