Tính đạo hàm cấp 3 của hàm số tại x = 2
Cho hàm số
. Tính giá trị của ![]()
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 CTST Chương 7: Đạo hàm nha!
Tính đạo hàm cấp 3 của hàm số tại x = 2
Cho hàm số
. Tính giá trị của ![]()
Tính giá trị biểu thức H
Cho hàm số
có đạo hàm tại điểm
. Tìm giá trị biểu thức
?
Do hàm số có đạo hàm tại điểm
nên suy ra
Ta có:
Tính tỉ số
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Chọn mệnh đề sai
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Hàm số f(x) liên tục trên khoảng
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Tính số gia của hàm số
Tính số gia của hàm số
tại điểm x0 = -1 ứng với số gia ![]()
Ta có:
Giải phương trình
Cho hàm số
. Giải phương trình
.
Tập xác định
Ta có:
Lại có:
Xác định số nghiệm của phương trình
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.
Tính giá trị biểu thức
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Viết phương trình tiếp tuyến của hàm số
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với đường thẳng y = 9x + 7
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng y = 9x + 7 nên có k = 9
=>
Với x0 = −1, ta có:
=> Phương trình tiếp tuyến cần tìm là y = 9x + 7 (loại)
với x0 = 3 thì
Phương trình tiếp tuyến cần tìm là y = 9x – 25 (thỏa mãn)
Số giá trị của k thỏa mãn yêu cầu bài toán
Cho hàm số
có đồ thị (C). Tồn tại hai tiếp tuyến phân biệt của (C) có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho
. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?
Đồ thị (C) có hai tiếp tuyến phân biệt có cùng hệ số góc k.
=> Hệ phương trình có hai nghiệm phân biệt
Từ hệ
Như vậy (*) là phương trình của đường thẳng đi qua tiếp điểm của hai tiếp tuyến cần tìm.
Khi đó
Theo bài ra ta có:
Vậy có hai giá trị của k thỏa mãn yêu cầu bài toán.
Điền đáp án vào ô trống
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Ta có:
Để hàm số có đạo hàm tại thì hàm số phải liên tục tại
nên
Suy ra
Khi đó
Xét
Hàm số có đạo hàm tại khi đó
Vậy giá trị của biểu thức
Tính số gia
Số gia của hàm số
tại
ứng với số gia
bằng:
Ta có:
Tính các giá trị của m
Cho hàm số
. Biết
. Tính giá trị tham số
?
Ta có:
Mà
Chọn khẳng định đúng
Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức
, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.
Ta có:
Ta có:
Gia tốc của chất điểm là:
Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là
Tính đạo hàm của hàm số
Xác định công thức đạo hàm của hàm số
?
Ta có:
Tính thời điểm khi vận tốc đạt min
Một chất điểm chuyển động có phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?
Ta có
Vận tốc của chất điểm
Đẳng thức xảy ra khi và chỉ khi t = 1
Tính đạo hàm của hàm số
Cho hàm số
. Tính
?
Ta có:
Ghi đáp án đúng vào ô trống
Một vật chuyển động theo quy luật
(với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Một vật chuyển động theo quy luật
(với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Ta có: .
Khi vận tốc của vật đạt ta có:
.
Vì nên nhận
.
Lúc đó quảng đường vật đi được là:
Chọn mệnh đề đúng
Cho hàm số
. Gọi m là giá trị thực để
. Mệnh đề nào dưới đây đúng?
Ta có:
Tính vận tốc trung bình của chuyển động
Một vật rơi tự do theo phương trình
, trong đó
là gia tốc trọng trường. Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t + ∆t với ∆t = 0,001s.
Ta có:
Vậy vận tốc trung bình của chuyển động là 49,0049m/s.
Chọn khẳng định đúng
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm
có dạng
. Chọn khẳng định đúng?
Điều kiện xác định
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Chọn khẳng định đúng
Cho chuyển động thẳng xác định bởi phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?
Ta có:
v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6
Tại t = 3, ta có: v(3) = 9 m/s
Tại t = 4, ta có: a(4) = 18 m/s2
Xác định f''(x)
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Chọn đáp án đúng
Tính đạo hàm cấp hai của hàm số
tạo điểm
?
Ta có:
Tính đạo hàm cấp hai của hàm số
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Tìm biểu thức đạo hàm tương ứng của hàm số
Đạo hàm của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Xác định tính đúng sai của mệnh đề
Cho hai mệnh đề sau:
i)
có đạo hàm tại
thì
liên tục tại
.
ii)
liên tục tại
thì
có đạo hàm tại
.
Khẳng định nào dưới đây đúng?
Khẳng định đúng là: đúng,
sai.
Tính giá trị biểu thức M
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Chọn hệ thức đúng
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Xác định đạo hàm của hàm số
Tính đạo hàm của hàm số
tại ![]()
Tập xác định
Ta có:
Tính số gia của hàm số
Tính số gia của hàm số
tại điểm x0 = 2 ứng với số gia ![]()
Ta có:
Chọn khẳng định sai
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
Vậy hàm số không liên tục tại x = 0
=> Hàm số không có đạo hàm tại x = 0
Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"
Tính tổng tất cả các giá trị của tham số
Biết đồ thị hàm số
tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số
thỏa mãn điều kiện trên?
Ta không xét vì giá trị này không ảnh hưởng đến tổng S.
Với đồ thị hàm số
tiếp xúc với trục hoành khi và chỉ khi
có nghiệm
Với thay vào (**) ta được x = 1 thỏa mãn
Với thay vào (**) ta được
Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là
Giải bất phương trình y" < 0
Cho hàm số
. Giải bất phương trình y" < 0
Ta có:
Xét bất phương trình ta có:
Định m thỏa mãn yêu cầu
Tìm
để các hàm số
có
?
Ta có:
Do đó:
thì
nên
thì đúng với
Vậy là những giá trị cần tìm.
Chọn đáp án đúng
Tìm đạo hàm cấp hai của hàm số
?
Ta có:
Giải phương trình f'(x) = 0
Cho hàm số
. Giải bất phương trình
có tập nghiệm S là:
Ta có:
Xét phương trình ta có:
Điều kiện xác định
Vậy phương trình có tập nghiệm
Tính đạo hàm của hàm số
Đạo hàm của hàm số
là:
Ta có:
Tính đạo hàm của hàm số
Tính đạo hàm của hàm số ![]()
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: