Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 7 Chân trời sáng tạo

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 CTST Chương 7: Đạo hàm nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính số gia của hàm số

    Tính số gia của hàm số y =\frac{x^{2}}{2} tại điểm x0 = -1 ứng với số gia \Delta x

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f( - 1 + \Deltax) - f( - 1)

    \Rightarrow \Delta y = \frac{( - 1 +\Delta x)^{2}}{2} - \frac{1}{2}

    \Rightarrow \Delta y = \frac{1 - 2\Deltax + (\Delta x)^{2}}{2} - \frac{1}{2}

    \Rightarrow \Delta y =\frac{1}{2}(\Delta x)^{2} - \Delta x

  • Câu 2: Thông hiểu

    Tính đạo hàm của hàm số tại x = 0

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow 0}\dfrac{\dfrac{3 -\sqrt{4 - x}}{4} - \dfrac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -\sqrt{4 - x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +\sqrt{4 - x} ight)}

    = \lim_{x ightarrow0}\frac{x}{4x\left( 2 + \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(2 + \sqrt{4 - x} ight)} = \frac{1}{16}

  • Câu 3: Vận dụng cao

    Xác định công thức đạo hàm bậc n

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 4: Nhận biết

    Tính đạo hàm cấp hai của hàm số

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 5: Thông hiểu

    Ghi đáp án vào ô trống

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Đáp án là:

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Ta có vận tốc tại thời điểm t là:

    v = y'(t) = v_{0} - 2.4,9.t = v_{0} -
9,8t = 196 - 9,8t

    v = 0 \Leftrightarrow 196 - 9,8t = 0\Leftrightarrow t = 20(s)

    Từ thời điểm t = 20\ s, viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:

    y_{(20)} = 196.20 - 4,9.20^{2} =
1960(m)

  • Câu 6: Nhận biết

    Chọn đáp án đúng

    Tính đạo hàm cấp hai của hàm số y = f(x) = x^{3} tạo điểm x = 1?

    Ta có: y = f(x) = x^{3}

    \Rightarrow f'(x) =
3x^{2}

    \Rightarrow f''(x) = 3.2x =
6x

    \Rightarrow f''(1) = 3.2.1 =
6

  • Câu 7: Nhận biết

    Chọn phát biểu đúng

    Phát biểu nào trong các phát biểu sau là đúng?

    Dựa theo định lí:

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.

    => Phát biểu đúng là: “Nếu hàm số y =f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.”

  • Câu 8: Thông hiểu

    Tìm các tiếp tuyến thỏa mãn đề bài

    Cho hàm số xác định bởi công thức y = x^{3} - 3x có đồ thị hàm số (C). Số các tiếp tuyến của đồ thị (C) song song với đường thẳng y = 3x - 10 là?

    Ta có:

    y' = 3x^{2} - 3

    Gọi A\left( x_{0};y_{0} ight) là tiếp điểm

    Vì tiếp tuyến song song với đường thẳng y
= 3x - 10 nên

    f'\left( x_{0} ight) = 3
\Rightarrow 3{x_{0}}^{2} - 3 = 3 \Rightarrow x_{0} = \pm
\sqrt{2}

    Với x_{0} = \sqrt{2} \Rightarrow y_{0} =
- \sqrt{2} có phương trình tiếp tuyến tương ứng là y = 3\left( x - \sqrt{2} ight) - \sqrt{2} = 3x -
4\sqrt{2}

    Với x_{0} = - \sqrt{2} \Rightarrow y_{0}
= \sqrt{2} có phương trình tiếp tuyến tương ứng là y = 3\left( x + \sqrt{2} ight) + \sqrt{2} = 3x +
4\sqrt{2}

    Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu đề bài.

  • Câu 9: Vận dụng

    Tính và điền đáp án vào chỗ trống

    Cho hàm số y =
f(x) được xác định bởi công thức

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Biết hàm số có đạo hàm tại điểm x_{0} =
2 . Khi đó:

    Giá trị của a là: -4|| - 4

    Giá trị của b là: 2

    Đáp án là:

    Cho hàm số y =
f(x) được xác định bởi công thức

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Biết hàm số có đạo hàm tại điểm x_{0} =
2 . Khi đó:

    Giá trị của a là: -4|| - 4

    Giá trị của b là: 2

    Ta có:

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    \Rightarrow f'(x) = \left\{
\begin{matrix}
2x + a\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
3x^{2} - 2x - 8\ \ \ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Hàm số có đạo hàm tại điểm x =
2

    Suy ra 4 + a = 0 \Rightarrow a = -
4

    Mặt khác hàm số có đạo hàm tại điểm x =
2

    Suy ra \lim_{x ightarrow 2^{+}}f(x) =
\lim_{x ightarrow 2^{-}}f(x) = f(2)

    \Rightarrow 4 + 2a + b = - 2 \Rightarrow
b = 2

  • Câu 10: Thông hiểu

    Xác định công thức đạo hàm của hàm số

    Cho hàm số y =f(x) = \sqrt{1 - 4x} + \frac{1 - x}{x - 3}. Tính f'(x).

    Ta có:

    f(x) = \sqrt{1 - 4x} + \frac{1 - x}{x -3}

    \Rightarrow f'(x) = \left( \sqrt{1 -4x} ight)' + \left( \frac{1 - x}{x - 3} ight)'

    \Rightarrow f'(x) = \frac{\left(\sqrt{1 - 4x} ight)'}{2\sqrt{1 - 4x}} + \frac{(1 - x)'(x - 3)- (1 - x)(x - 3)'}{(x - 3)^{2}}

    \Rightarrow f'(x) = \frac{-2}{\sqrt{1 - 4x}} + \frac{2}{(x - 3)^{2}}

  • Câu 11: Thông hiểu

    Tính vận tốc trung bình của chất điểm

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m). Tính vận tốc trung bình của chất điểm trong khoảng thời gian từ t = 0 tới t = 2s?

    Ta có:

    S = 2t^{2} + t - 1(m)

    \Rightarrow v = S' = 4t +
2

    Trong khoảng thời gian từ t = 0 tới t = 2s thì chất điểm di chuyển được quãng đường S = 4.2 + 2 - 1 =
9(m)

    Suy ra vận tốc trung bình của chất điểm trong khoảng thời gian 2s kể từ thời điểm t = 0 là:

    \overline{v} = \frac{\Delta S}{\Delta t}
= 4,5(m/s)

  • Câu 12: Vận dụng

    Điền đáp án vào ô trống

    Cho hàm số f(x) =
\left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight. . Khi hàm số f(x) có đạo hàm tại x_{0} = 0 . Tính giá trị biểu thức T = a - b ?

    Kết quả: 0

    Đáp án là:

    Cho hàm số f(x) =
\left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight. . Khi hàm số f(x) có đạo hàm tại x_{0} = 0 . Tính giá trị biểu thức T = a - b ?

    Kết quả: 0

    Ta có: f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\left( ax^{2} + bx + 1 ight) = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(ax - b - 1) = - b - 1

    Để hàm số có đạo hàm tại x_{0} =
0 thì hàm số phải liên tục tại x_{0} = 0 nên

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =
\lim_{x ightarrow 0^{-}}f(x)

    Suy ra - b - 1 = 1 \Rightarrow b = -
2

    Khi đó f(x) = \left\{ \begin{matrix}
ax^{2} - 2x + 1\ \ \ ;\ x \geq 0 \\
ax + 1\ \ \ \ \ \ \ \ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight.

    Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{+}}\frac{ax^{2} - 2x + 1 -
1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -
2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{-}}\frac{ax + 1 - 1}{x}

    = \lim_{x ightarrow 0^{-}}(a) =
a

    Hàm số có đạo hàm tại x_{0} = 0 khi đó a = - 2

    Vậy giá trị của biểu thức T = a - b =
0

  • Câu 13: Nhận biết

    Tính số gia của hàm số

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 14: Vận dụng

    Giải phương trình f'(x) = f"(x)

    Cho hàm số f(x)=\frac{2x-1}{x+1}. Giải phương trình f'(x) = f"(x)

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{2\left( {x + 1} ight) - \left( {2x + 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow f''\left( x ight) = \dfrac{{ - 2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  f'\left( x ight) = f''\left( x ight),\left( {x e  - 1} ight) \hfill \\   \Leftrightarrow \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Tìm gia tốc tức thời của chất điểm

    Phương trình chuyển động của một chất điểm được biểu diễn S(t) = 3\sin2t + \cos2t,(t >0), t tính bằng giây, S(t) tính bằng mét. Tại thời điểm t = \frac{\pi}{4}(s) thì gia tốc tức thời của chất điểm bằng bao nhiêu?

    Vận tốc tức thời là

    v(t) = s'(t) = 6\cos2t -2\sin2t

    a(t) = S''(t) = v'(t) = -12\sin2t - 4\cos2t

    Gia tốc tức thời tại thời điểm t =
\frac{\pi}{4}(s) là:

    a\left( \frac{\pi}{4} ight) = -12\sin\left( 2.\frac{\pi}{4} ight) - 4\cos\left( 2.\frac{\pi}{4} ight)= - 12\left( m/s^{2} ight)

  • Câu 16: Thông hiểu

    Chọn đáp án đúng

    Xác định công thức đạo hàm của hàm số y = \sin\left( x^{2} - 3x + 2
ight)?

    Ta có:

    y = \sin\left( x^{2} - 3x + 2
ight)

    \Rightarrow y' = \left\lbrack
\sin\left( x^{2} - 3x + 2 ight) ightbrack'

    = \left( x^{2} - 3x + 2ight)'.\cos\left( x^{2} - 3x + 2 ight)

    = (2x - 3)\cos\left( x^{2} - 3x + 2
ight)

  • Câu 17: Thông hiểu

    Tính đạo hàm của hàm số tại một điểm

    Cho hàm số f(x)
= \left\{ \begin{matrix}
(x - 1)^{2}\ \ khi\ x \geq 0 \\
- x\ \ \ \ \ \ \ \ \ \ khi\ x < 0 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x_{0} = 0?

    Ta có:

    f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}(x - 1)^{2} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\left( - x^{2} ight) = 0

    Suy ra f(0) = \lim_{x ightarrow
0^{+}}f(x) eq \lim_{x ightarrow 0^{-}}f(x)

    Nên hàm số không liên tục tại x_{0} =
0

    Vậy không tồn tại đạo hàm của hàm số y =
f(x) tại điểm x_{0} =
0.

  • Câu 18: Vận dụng cao

    Chọn kết quả chính xác

    Cho hàm số y = \left( \sin x
\right)^{\sqrt{\cos x}}. Kết quả nào dưới đây đúng?

    Logarit Nepe hai vế của hàm số y = \left(
\sin x \right)^{\sqrt{\cos x}}, ta có:

    \ln y = \ln\left( \left( \sin x
\right)^{\sqrt{\cos x}} \right) = \sqrt{\cos x}.ln\left( \sin x
\right).

    Tiếp tục đạo hàm hai vế, ta được:

    \left( \ln y \right)' = \left(
\sqrt{\cos x}.ln\left( \sin x \right) \right)'

    \Leftrightarrow \frac{y'}{y} =
\frac{- \sin x}{2\sqrt{\cos x}}.ln\left( \sin x \right) + \sqrt{\cos
x}.\frac{\cos x}{\sin x}.

    Suy ra y' = \left( \sin x
\right)^{\sqrt{\cos x}}\left( \frac{\cos x\sqrt{\cos x}}{\sin x} -
\frac{\sin x.ln\left( \sin x \right)}{2\sqrt{\cos x}}
\right).

    Khi đó: 

    y^{'\left( \frac{\pi}{4} \right)}
= \left\lbrack \sin\left( \frac{\pi}{4} \right)
\right\rbrack^{\sqrt{\cos\frac{\pi}{4}}}.\left( \frac{\cos\left(
\frac{\pi}{4} \right).\sqrt{\cos\left( \frac{\pi}{4}
\right)}}{\sin\left( \frac{\pi}{4} \right)} - \frac{\sin\left(
\frac{\pi}{4} \right).ln\left( \sin\left( \frac{\pi}{4} \right)
\right)}{2\sqrt{\cos\left( \frac{\pi}{4} \right)}} \right)

    = \left( \frac{\sqrt{2}}{2}
\right)^{\frac{1}{\sqrt[4]{2}}}.\left( \frac{1}{\sqrt[4]{2}} -
\frac{\frac{\sqrt{2}}{2}.ln\left( \frac{\sqrt{2}}{2}
\right)}{2.\frac{1}{\sqrt[4]{2}}} \right)= e^{- \frac{1}{2\sqrt[4]{2}}ln2}\left(
\frac{1}{\sqrt[4]{2}} + \frac{ln2}{4\sqrt[4]{2}} \right).

  • Câu 19: Nhận biết

    Tìm đáp án đúng

    Cho hàm số y =\log_{2}(3x). Khẳng định nào sau đây đúng?

    Ta có:

    y = \log_{2}(3x)

    \Rightarrow y' = \left( \log_{2}(3x)ight)' = \frac{(3x)'}{3x.\ln2} = \frac{1}{x\ln2}

  • Câu 20: Nhận biết

    Tìm khẳng định đúng

    Cho hàm số y =
\log x. Khẳng định nào sau đây đúng?

    Ta có: \left( \log_{a}x ight)' =\frac{1}{x\ln a}

    \Rightarrow y' =\frac{1}{x\ln10}

  • Câu 21: Nhận biết

    Tính vận tốc của chất điểm

    Một chất điểm chuyển động theo phương trình s(t) = t^{2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.

    Ta tính được s'(t) = 2t

    Vận tốc của chất điểm v(t) = s'(t) =2t

    => v(2) = 2.2 = 4(m/s)

  • Câu 22: Nhận biết

    Xác định đạo hàm của hàm số

    Tính đạo hàm của hàm số y = f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}} tại x_{0} = 0

    Tập xác định D\mathbb{= R}

    Ta có:

    f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}}

    f'(x) = \dfrac{3\sqrt{x^{2} + 4} -(3x + 1).\dfrac{x}{\sqrt{x^{2} + 4}}}{\left( \sqrt{x^{2} + 4}ight)^{2}}

    f'(x) = \frac{12 - x}{\left(
\sqrt{x^{2} + 4} ight)^{3}}

    f'(0) = \frac{12 - 0}{\left(
\sqrt{0^{2} + 4} ight)^{3}} = \frac{3}{2}

  • Câu 23: Vận dụng

    Xác định số lượng cặp điểm A, B

    Cho đồ thị hàm số (C):y = \frac{x + 1}{x - 1}. Gọi A;B là các điểm thuộc đồ thị (C) mà tiếp tuyến tại đó song song với nhau. Có bao nhiêu cặp điểm A;B thỏa mãn điều kiện trên?

    Ta có: y' = \frac{- 2}{(x -
1)^{2}}

    Giả sử A\left( x_{1};y_{1}
ight);B\left( x_{2};y_{2} ight) với x_{1} eq x_{2}

    Tiếp tuyến tại A và B song song với nhau nên y'\left( x_{1} ight) = y'\left( x_{2}
ight)

    \Leftrightarrow \frac{1}{\left( x_{1} -
1 ight)^{2}} = \frac{1}{\left( x_{2} - 1 ight)^{2}}

    \Leftrightarrow \left( x_{1} - 1
ight)^{2} = \left( x_{2} - 1 ight)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} - 1 = x_{2} - 1 \\
x_{1} - 1 = - x_{2} + 1 \\
\end{matrix} ight.\  \Leftrightarrow x_{1} + x_{2} = 2

    Vậy trên đồ thị hàm số tồn tại vô số cặp điểm A và B thỏa mãn x_{1} + x_{2} = 2 thì các tiếp tuyến tại A và B song song với nhau.

  • Câu 24: Vận dụng cao

    Tính đạo hàm của hàm số tại x = 0

    Cho hàm số f(x) = x(x + 1)(x + 2)(x +3)...(x + n) với n \in\mathbb{N}^{*}. Tính f'(0).

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}(x + 1)(x +2)...(x + n) = n!

  • Câu 25: Thông hiểu

    Tìm m thỏa mãn biểu thức

    Cho hàm số yy=-\frac{1}{3}mx^{3}+(m-1)x^{2}-mx+3, có đạo hàm là y'. Tìm tất cả các giá trị của m để phương trình y' = 0 có hai nghiệm phân biệt là x_{1},x_{2} thỏa mãn x_{1}^{2}+x_{2}^{2}=6.

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{3}m{x^3} + (m - 1){x^2} - mx + 3 \hfill \\   \Rightarrow y' = m{x^2} - 2\left( {m - 1} ight)x - m \hfill \\  y' = 0 \hfill \\   \Leftrightarrow m{x^2} - 2\left( {m - 1} ight)x - m = 0 \hfill \\ \end{matrix}

    Để phương trình y'=0 có hai nghiệm phân biệt thì

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\Delta ' > 0} \\   {m e 0} \end{array} \Leftrightarrow } ight.\left\{ {\begin{array}{*{20}{c}}  {{{\left( {m - 1} ight)}^2} + {m^2} > 0} \\   {m e 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2{m^2} - 2m + 1 > 0} \\   {m e 0} \end{array}} ight. \hfill \\ \end{matrix}

    Áp dụng hệ thức Vi - et ta có

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{2\left( {m - 1} ight)}}{m}} \\   {{x_1}.{x_2} = \dfrac{{ - 1}}{m}} \end{array}} ight. \hfill \\  x_1^2 + x_2^2 = 6 \hfill \\   \Leftrightarrow {\left( {{x_1} + {x_2}} ight)^2} - 2{x_1}{x_2} = 6 \hfill \\   \Leftrightarrow {\left[ {\dfrac{{2\left( {m - 1} ight)}}{m}} ight]^2} + \dfrac{2}{m} = 6 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 1 + \sqrt 2 } \\   {m =  - 1 - \sqrt 2 } \end{array}} ight.\left( {tm} ight) \hfill \\ \end{matrix}

  • Câu 26: Vận dụng

    Tính đạo hàm của hàm số tại x = 0

    Cho hàm số f(x) = \frac{x}{(x - 1)(x -2)....(x - 2019)}. Tính giá trị của f’(0)

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{1}{(x -1)(x - 2)....(x - 2019)}

    = \lim_{x ightarrow 0}\frac{1}{( -1).( - 2)....( - 2019)} = \frac{- 1}{2019!}

  • Câu 27: Thông hiểu

    Chọn đáp án đúng

    Đạo hàm cấp hai của hàm số y = \tan x là:

    Tập xác định D = R\backslash\left\{
\frac{\pi}{2} + k\pi;k\mathbb{\in Z} ight\}

    Ta có: y = \tan x

    \Rightarrow y' =\frac{1}{\cos^{2}x}

    \Rightarrow y'' = \frac{-1.\left( \cos^{2}x ight)'}{\left( \cos^{2}x ight)^{2}} = -\frac{2\cos x.\left( \cos x ight)'}{\cos^{4}x} =\frac{2\sin x}{\cos^{3}x}

  • Câu 28: Thông hiểu

    Tính đạo hàm

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{3 - \sqrt {4 - x} }}{4}}&{{\text{ khi }}x e 0} \\   {\dfrac{1}{4}}&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{3 - \sqrt {4 - x} }}{4} - \dfrac{1}{4}}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{2 - \sqrt {4 - x} }}{{4x}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {2 - \sqrt {4 - x} } ight)\left( {2 + \sqrt {4 - x} } ight)}}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{4\left( {2 + \sqrt {4 - x} } ight)}} = \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Tính giá trị biểu thức H

    Cho hàm số y =
f(x) có đạo hàm tại điểm x_{0} =
2. Tìm giá trị biểu thức H =
\lim_{x ightarrow 2}\frac{2f(x) - xf(2)}{x - 2}?

    Do hàm số y = f(x) có đạo hàm tại điểm x_{0} = 2 nên suy ra

    \lim_{x ightarrow 2}\frac{f(x) -
f(2)}{x - 2} = f'(2)

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2f(x) -
xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2f(x) - 2f(2) + 2f(2) - xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2\left\lbrack f(x) - f(2) ightbrack}{x - 2} - \lim_{x
ightarrow 2}\frac{f(2)(x - 2)}{x - 2}

    \Leftrightarrow H = 2f'(2) -
f(2)

  • Câu 30: Thông hiểu

    Tính gia tốc của chất điểm

    Một chất điểm chuyển động biến đổi đều được biểu thị bởi phương trình S(t) = 2t^{3} +
4t^{2} - 2t + 4,(t > 0) với t được tính bằng giây và S(t) tính bằng mét. Tính gia tốc của chất điểm tại thời điểm t = 4s?

    Vận tốc của chất điểm là:

    v(t) = S'(t) = - 2 + 8t +
6t^{2}

    Gia tốc của chất điểm là:

    a(t) = v'(t) = 8 + 12t

    Tại thời điểm t = 4s gia tốc của chất điểm là:

    a(4) = 8 + 12.4 = 56\left( m/s^{2}
ight)

  • Câu 31: Nhận biết

    Điền kết quả vào ô trống

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 32: Nhận biết

    Chọn đáp án thích hợp

    Một vật chuyển động có phương trình s(t)
= 3cost. Khi đó, vận tốc tức thời tại thời điểm t của vật là:

    Ta có v(t) = s'(t) = (3cost)^{'}
= - 3sint.

  • Câu 33: Thông hiểu

    Tính đạo hàm cấp hai của hàm số

    Cho hàm số y =
\tan x. Tính y''\left(
\frac{\pi}{4} ight) thu được kết quả là:

    Ta có:

    y = \tan x

    \Rightarrow y' = \frac{1}{\cos^{2}x}= 1 + \tan^{2}x

    \Rightarrow y' = \left( 1 + \tan^{2}xight)' = 2\tan x.\left( \tan x ight)'

    = 2\tan x.\left( 1 + \tan^{2}xight)

    \Rightarrow y''\left(\frac{\pi}{4} ight) = 2\tan\left( \frac{\pi}{4} ight).\left\lbrack 1+ \tan^{2}\left( \dfrac{\pi}{4} ight) ightbrack = 2.1.(1 + 1) =4

  • Câu 34: Vận dụng

    Tính tổng các phần tử trong tập hợp S

    Cho đường cong (C):y = x^{4} - 2x^{2} + m - 2 với m là tham số. Gọi S là tập các giá trị của tham số m sao cho đồ thị hàm số (C) có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập S là:

    Ta có: y' = 4x^{3} - 4x

    Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0

    Gọi tiếp điểm là M\left( x_{0};y_{0}
ight) \in (C) khi đó y'\left(
x_{0} ight) = 4{x_{0}}^{3} - 4x_{0} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 0 \Rightarrow y_{0} = m - 2 \\
x_{0} = \pm 1 \Rightarrow y_{0} = m - 3 \\
\end{matrix} ight.

    Để có đúng 1 tiếp tuyến song song với trục hoàn thì

    \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m - 3 eq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m - 2 eq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m eq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m eq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow m = 2;m = 3

    Vậy tổng các giá trị m là 5.

  • Câu 35: Thông hiểu

    Viết phương trình tiếp tuyến

    Cho hàm số y =
x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn f''\left( x_{0} ight) =
0 là:

    Ta có:

    y = x^{3} - 3x^{2} + 1

    \Rightarrow f'(x) = 3x^{2} - 6x
\Rightarrow f''(x) = 6x - 6

    \Rightarrow f''(x) = 0
\Leftrightarrow x = 1

    Khi đó f'(1) = 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1; - 1) là: y = f'(1)(x - 1) + f(1)

    \Rightarrow y = - 3(x - 1) - 1
\Rightarrow 3x + y - 2 = 0

  • Câu 36: Nhận biết

    Tính giá trị của f''(2)

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 37: Thông hiểu

    Tính đạo hàm cấp 3 của hàm số

    Cho hàm số y=-3x^{3}+3x^{2}-x+5. Tính giá trị của y^{(3)}(2017)

    Ta có:

    \begin{matrix}  y =  - 3{x^3} + 3{x^2} - x + 5 \hfill \\   \Rightarrow y' =  - 9{x^2} + 6x - 1 \hfill \\   \Rightarrow y'' =  - 18x + 6 \hfill \\   \Rightarrow {y^{\left( 3 ight)}} =  - 18 \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( {2017} ight) =  - 18 \hfill \\ \end{matrix}

  • Câu 38: Vận dụng cao

    Tìm m để phương trình có hai nghiệm phân biệt

    Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và thỏa mãn f(x) > 0;\forall x\mathbb{\inR}. Biết f(0) = 1(2 - x).f(x) - f'(x) = 0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt:

    Xét phương trình:

    \begin{matrix}(2 - x).f(x) - f'(x) = 0 \hfill \\\Leftrightarrow (2 - x).e^{\frac{x^{2}}{2} - 2x}.f(x) -e^{\frac{x^{2}}{2} - 2x}.f'(x) = 0 \hfill\\\Leftrightarrow \left\lbrack f(x).e^{\frac{x^{2}}{2} - 2x}ightbrack' = 0 \hfill\\\Leftrightarrow f(x).e^{\frac{x^{2}}{2} - 2x} = C\hfill\ \ \ \ \ (*)\hfill \\\end{matrix}

    Do f(0) = 1 thay vào (*) ta được C = 1

    => f(x) = e^{- \frac{x^{2}}{2} +2x}

    \Rightarrow f'(x) = ( - x + 2).e^{-\frac{x^{2}}{2} + 2x}

    Dễ thấy hàm số f(x) đồng biến trên ( -\infty;2brack.

    Ta có bảng biến thiên của hàm số f(x) như sau:

    Do - \frac{x^{2}}{2} + 2x \leq 2\Rightarrow 0 < f(x) \leq e^{2}. Phương trình f(x) = m có hai nghiệm thực phân biệt khi và chỉ khi - \frac{x^{2}}{2} + 2x = \lnm có hai nghiệm thực phân biệt. khi đó \ln m \in ( - \infty;2)

    Đồ thị của hàm số y = f(x)y = m luôn cắt nhau tại một điểm với mọi m \in \left( 0;e^{2}ightbrack.

    Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt thì 0 < m < e^{2}.

  • Câu 39: Nhận biết

    Tính đạo hàm của hàm số

    Đạo hàm của hàm số y = 5^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 5^{x} \Rightarrow y' =5^{x}.\ln5

  • Câu 40: Vận dụng

    Chọn đáp án chính xác

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo