Tính điểm kiểm tra trung bình của cả tổ
Một tổ học sinh gồm 4 nam và 3 nữ. Điểm kiểm tra trung bình của nam và nữ lần lượt là 7 và 8. Tính điểm kiểm tra trung bình của cả tổ.
Ta có:
Khi đó điểm số trung bình của cả tổ là:
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 5: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm nha!
Tính điểm kiểm tra trung bình của cả tổ
Một tổ học sinh gồm 4 nam và 3 nữ. Điểm kiểm tra trung bình của nam và nữ lần lượt là 7 và 8. Tính điểm kiểm tra trung bình của cả tổ.
Ta có:
Khi đó điểm số trung bình của cả tổ là:
Tính giá trị đại diện của nhóm
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Xác định giá trị đại diện của nhóm dữ liệu thứ ba?
Trong mẫu dữ liệu ghép nhóm, giá trị đại diện là giá trị trung bình cộng của giá trị hai đầu mút.
Nhóm dữ liệu thứ ba là [4; 6)
=> Giá trị đại diện của nhóm dữ liệu thứ ba là:
Chọn đáp án khác biệt
Chọn đáp án có độ dài nhóm khác với các đáp án còn lại.
Ta có độ dài nhóm bằng giới hạn trên - giới hạn dưới khi đó:
Các đáp án có độ dài bằng 5 ngoại trừ nhóm có độ dài nhóm là 6.
Độ lớn chênh lệch giữa các tứ phân vị
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba bằng bao nhiêu?
Ta có:
Chiều cao (h) | Số học sinh | Tần số tích lũy |
130 < h ≤ 140 | 2 | 2 |
140 < h ≤ 150 | 4 | 6 |
150 < h ≤ 160 | 9 | 15 |
160 < h ≤ 170 | 13 | 28 |
170 < h ≤ 180 | 8 | 36 |
180 < h ≤ 190 | 3 | 39 |
190 < h ≤ 200 | 1 | 40 |
Tổng | N = 40 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (150; 160]
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (170; 180]
Khi đó:
Tứ phân vị thứ ba là:
=> Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba là:
Tính chiều cao trung bình
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Chiều cao trung bình của học sinh trong bảng trên:
Ta có:
Chiều cao đại diện (h) | Số học sinh | Tích các giá trị |
135 | 2 | 270 |
145 | 4 | 580 |
155 | 9 | 1395 |
165 | 13 | 2145 |
175 | 8 | 1400 |
185 | 3 | 555 |
195 | 1 | 195 |
Tổng | N = 40 | 6540 |
Chiều cao trung bình là:
Sắp xếp cho đúng thứ tự
Các bước để chuyển mẫu số liệu không ghép nhóm sang mẫu số liệu ghép nhóm là:
Tính giá trị đại diện của nhóm
Khảo sát thời gian tập thể dục của một nhóm học sinh lớp 11 thu được kết quả ghi trong bảng thống kê sau:
|
Thời gian (phút) |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Giá trị đại diện của nhóm
là:
Giá trị đại diện của nhóm là:
Tìm trung vị của dữ liệu
Một cuộc khảo sát về chiều cao (tính bằng cm) của 50 nữ sinh lớp X được tiến hành tại một trường học và thu được số liệu sau:
Chiều cao (cm) | [120; 130) | [130; 140) | [140; 150) | [150; 160) | [160; 170) |
Số nữ sinh | 2 | 8 | 12 | 20 | 8 |
Tìm trung vị của dữ liệu ghép nhóm ở trên.
Ta có:
Chiều cao (cm) | [120; 130) | [130; 140) | [140; 150) | [150; 160) | [160; 170) | |
Số nữ sinh | 2 | 8 | 12 | 20 | 8 | N = 50 |
Tần số tích lũy | 2 | 10 | 22 | 42 | 50 |
|
Ta có:
=> Nhóm chứa trung vị là: [150; 160) (vì 25 nằm giữa hai tần số tích lũy là 22 và 42)
Tìm tứ phân vị thứ ba của mẫu số liệu
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị
của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ ba là [9; 11)
(Vì 15 nằm giữa hai tần số tích lũy 9 và 16)
Do đó:
Khi đó tứ phân vị thứ ba là:
Tính tứ phân vị thứ nhất
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tứ phân vị thứ nhất thuộc nhóm chiều cao nào?
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Phân tích sự đúng sai của các kết luận
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng
b) Nhóm chứa trung vị của mẫu số liệu là:
Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là
(đúng)
d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng
b) Nhóm chứa trung vị của mẫu số liệu là:
Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là
(đúng)
d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng
Ta có:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
|
Giá trị đại diện |
6 |
8 |
10 |
12 |
14 |
|
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
N = 20 |
Do đó doanh thu trung bình của cửa hàng là:
(triệu đồng)
Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.
Ta có:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
N = 20 |
|
Tần số tích lũy |
2 |
9 |
16 |
19 |
20 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [9; 11)
(Vì 10 nằm giữa hai tần số tích lũy 9 và 16)
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [7; 9)
(Vì 5 nằm giữa hai tần số tích lũy 2 và 9)
Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:
Xét nhóm [7; 9) ta có:
Xét nhóm [9; 11) ta có:
Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.
Tính cỡ mẫu
Cho mẫu dữ liệu ghép nhóm sau đây:
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | x |
(30;40] | 9 |
(40;50] | 7 |
Biết
. Tìm cỡ mẫu?
Ta có:
Đại diện | Tần số | Tích các giá trị |
5 | 8 | 40 |
15 | 14 | 210 |
25 | x | 25x |
35 | 9 | 315 |
45 | 7 | 315 |
Tổng | N = 38 + x | 880 + 25x |
Theo bài ra ta có giá trị trung bình là:
Vậy số phần tử của mẫu dữ liệu là N = 38 + 12 = 50
Tính tổng tần số
Tính tổng tần số của bảng số liệu:
Khoảng thời gian (giờ) | Tần số |
|
|
|
|
|
|
|
|
Tổng tần số của mẫu số liệu là:
Ghi kết quả vào ô trống
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Ghi các kết quả vào ô trống:
+ Số nhóm của mẫu dữ liệu: 8
+ Độ dài nhóm số liệu: 10
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Ghi các kết quả vào ô trống:
+ Số nhóm của mẫu dữ liệu: 8
+ Độ dài nhóm số liệu: 10
+ Mẫu số liệu trên được chia thành 8 nhóm.
+ Độ dài nhóm số liệu là 10
Tính tứ phân vị thứ nhất
Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:
Nhóm dữ liệu | Tần số |
(0; 2] | 5 |
(2; 4] | 16 |
(4; 6] | 13 |
(6; 8] | 7 |
(8; 10] | 5 |
(10; 12] | 4 |
Tính tứ phân vị thứ nhất của mẫu dữ liệu trên. (Làm tròn đến chữ số thập phân thứ hai).
Ta có:
Nhóm dữ liệu | Tần số | Tần số tích lũy |
(0; 2] | 5 | 5 |
(2; 4] | 16 | 21 |
(4; 6] | 13 | 34 |
(6; 8] | 7 | 41 |
(8; 10] | 5 | 46 |
(10; 12] | 4 | 50 |
Tổng | N = 50 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (2; 4]
Khi đó:
Vậy tứ phân vị thứ nhất là:
Chọn đáp án đúng
Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:
7,3 | 7,8 | 7,5 | 6,6 | 8,5 | 8,3 | 8,3 |
7,5 | 8,4 | 8,6 | 7,4 | 8,2 | 8,0 | 8,1 |
8,7 | 8,2 | 8,8 | 8,1 | 7,7 | 7,8 | 8,5 |
7,0 | 7,9 | 6,9 | 9,4 | 9,0 | 8,0 | 8,7 |
8,9 | 7,6 | 8,0 | 8,2 | 7,9 | 7,7 | 7,2 |
Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:
Khoảng biến thiên:
Ta chia thành các nhóm sau:
Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:
Chiều cao (m) | Số cây |
[6,5; 7) | 2 |
[7; 7,5) | 4 |
[7,5; 8) | 9 |
[8; 8,5) | 11 |
[8,5; 9) | 7 |
[9; 9,5) | 2 |
Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).
Tìm a
Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng
?
| Đối tượng | Tần số |
[4; 8) | 11 |
[8; 12) | 13 |
[12; 16) | 16 |
[16; 20) | 14 |
[20; 24) | a |
[24; 28) | 9 |
[28; 32) | 17 |
[32; 36) | 6 |
[36; 40) | 4 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
6 | 11 | 66 |
10 | 13 | 130 |
14 | 16 | 224 |
18 | 14 | 252 |
22 | a | 22a |
26 | 9 | 234 |
30 | 17 | 510 |
34 | 6 | 204 |
38 | 4 | 152 |
Tổng |
Biết số trung bình bằng nên ta có:
Chọn đáp án đúng
Số lượng người đi xem một bộ phim mới theo độ tuổi trong một rạp chiếu phim (sau
đầu công chiếu) được ghi lại theo bảng phân phối ghép nhóm sau:
|
Độ tuổi |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Số người |
30 |
48 |
11 |
9 |
2 |
Độ tuổi được dự báo là thích xem phim đó nhiều nhất là
Ta có mốt là:
.
Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 23 tuổi.
Tính giá trị đại diện của nhóm số liệu
Cho bảng thống kê kết quả đo chiều cao một số cây trong vườn như sau:
Chiều cao | [120; 150) | [150; 180) | [180; 210) | [210; 240) |
Số cây | 15 | 20 | 31 | 18 |
Giá trị đại diện của nhóm [150; 180) là bao nhiêu?
Giá trị đại diện của nhóm [150; 180) là:
Tìm cỡ mẫu
Số lượng từ trong mỗi câu trong N câu đầu tiên của một cuốn sách được đếm và kết quả được ghi trong bảng sau:
Khoảng số từ | Số câu |
[1; 5) | 2 |
[5; 9) | 5 |
[9; 13) |
|
[13; 17) | 23 |
[17; 21) | 21 |
[21; 25) | 13 |
[25; 29) | 4 |
[29; 33) | 1 |
Biết mốt của mẫu dữ liệu có giá trị là 16. Giá trị của N là:
Ta có: Mốt của mẫu dữ liệu nằm trong nhóm [13; 17)
Khoảng số từ | Số câu |
|
[1; 5) | 2 |
|
[5; 9) | 5 |
|
[9; 13) | ||
[13; 17) | 23 | |
[17; 21) | 21 | |
[21; 25) | 13 |
|
[25; 29) | 4 |
|
[29; 33) | 1 |
|
Do đó:
Khi đó ta có:
Vậy cỡ mẫu N = 86.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: