Tìm số trung bình của mẫu dữ liệu
Tìm số trung bình của mẫu dữ liệu ghép nhóm dưới đây:
Nhóm | Tần số |
(2; 4] | 3 |
(4; 6] | 4 |
(6; 8] | 2 |
(8; 10] | 1 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
3 | 3 | 9 |
5 | 4 | 20 |
7 | 2 | 14 |
9 | 1 | 9 |
Tổng | N = 10 | 52 |
Số trung bình là:
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 CTST Chương 5: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm nha!
Tìm số trung bình của mẫu dữ liệu
Tìm số trung bình của mẫu dữ liệu ghép nhóm dưới đây:
Nhóm | Tần số |
(2; 4] | 3 |
(4; 6] | 4 |
(6; 8] | 2 |
(8; 10] | 1 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
3 | 3 | 9 |
5 | 4 | 20 |
7 | 2 | 14 |
9 | 1 | 9 |
Tổng | N = 10 | 52 |
Số trung bình là:
Tính tổng tần số
Tính tổng tần số của bảng số liệu:
Khoảng thời gian (giờ) | Tần số |
|
|
|
|
|
|
|
|
Tổng tần số của mẫu số liệu là:
Chọn đáp án đúng
Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:
160 | 161 | 161 | 162 | 162 | 162 |
163 | 163 | 163 | 164 | 164 | 164 |
164 | 165 | 165 | 165 | 165 | 165 |
166 | 166 | 166 | 166 | 167 | 167 |
168 | 168 | 168 | 168 | 169 | 169 |
170 | 171 | 171 | 172 | 172 | 174 |
Chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 4 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau. Khi đó mốt của dấu hiệu thuộc nhóm số liệu nào?
Ta có:
Khoảng biến thiên là
Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.
Khi đó ta có các nhóm là:
Vậy bảng dữ liệu ghép nhóm đúng là:
Quan sát bảng dữ liệu ghép nhóm ta thấy mốt của dấu hiệu thuộc nhóm số liệu .
Tìm a
Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng
?
| Đối tượng | Tần số |
[4; 8) | 11 |
[8; 12) | 13 |
[12; 16) | 16 |
[16; 20) | 14 |
[20; 24) | a |
[24; 28) | 9 |
[28; 32) | 17 |
[32; 36) | 6 |
[36; 40) | 4 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
6 | 11 | 66 |
10 | 13 | 130 |
14 | 16 | 224 |
18 | 14 | 252 |
22 | a | 22a |
26 | 9 | 234 |
30 | 17 | 510 |
34 | 6 | 204 |
38 | 4 | 152 |
Tổng |
Biết số trung bình bằng nên ta có:
Tìm mốt của mẫu số liệu ghép nhóm
Một công ty xây dựng khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát được ghi lại ở bảng sau:
|
Mức giá (triệu đồng/m2) |
[10; 14) |
[14; 18) |
[18; 22) |
[22; 26) |
[26; 30) |
|
Số khách hàng |
54 |
78 |
120 |
45 |
12 |
Mốt của mẫu số liệu ghép nhóm trên gần bằng giá trị nào sau đây?
Nhóm chứa mốt của mẫu số liệu là nhóm [18;22).
Do đó: .
Vậy mốt của mẫu số liệu là:
Tính mức lương trung bình
Bảng số liệu dưới đây cho biết lương của 113 nhân viên trong một nhà máy trong một tháng (đơn vị: triệu đồng):
Lương | [0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) |
Số nhân viên | 18 | 23 | 30 | 20 | 12 | 10 |
Tính mức lương trung bình của các nhân viên trên đây. (Làm tròn đến chữ số thập phân thứ hai)
Ta có:
Lương | |||
[0; 10) | 18 | 5 | 90 |
[10; 20) | 23 | 15 | 345 |
[20; 30) | 30 | 25 | 750 |
[30; 40) | 20 | 35 | 700 |
[40; 50) | 12 | 45 | 540 |
[50; 60) | 10 | 55 | 550 |
| N = 113 |
| T = 2975 |
Mức lương trung bình của nhân viên là:
(triệu đồng)
Chọn đáp án đúng
Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:
7,3 | 7,8 | 7,5 | 6,6 | 8,5 | 8,3 | 8,3 |
7,5 | 8,4 | 8,6 | 7,4 | 8,2 | 8,0 | 8,1 |
8,7 | 8,2 | 8,8 | 8,1 | 7,7 | 7,8 | 8,5 |
7,0 | 7,9 | 6,9 | 9,4 | 9,0 | 8,0 | 8,7 |
8,9 | 7,6 | 8,0 | 8,2 | 7,9 | 7,7 | 7,2 |
Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:
Khoảng biến thiên:
Ta chia thành các nhóm sau:
Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:
Chiều cao (m) | Số cây |
[6,5; 7) | 2 |
[7; 7,5) | 4 |
[7,5; 8) | 9 |
[8; 8,5) | 11 |
[8,5; 9) | 7 |
[9; 9,5) | 2 |
Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).
Tính số học sinh tham gia khảo sát
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Số học sinh tham gia khảo sát là:
Số học sinh tham gia khảo sát là:
(học sinh)
Tính giá trị đại diện của nhóm
Giá trị đại diện của nhóm
là
Ta có giá trị đại diện là .
Ghép nối đáp án
Hoàn thành mẫu dữ liệu ghép nhóm sau.
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | 12 |
(30;40] | 9 |
(40;50] | 7 |
Ghép nối các nội dung thích hợp với nhau:
Hoàn thành bảng số liệu
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
45 | 65 | 72 | 48 | 74 | 67 | 68 | 46 | 56 | 53 |
58 | 68 | 72 | 64 | 62 | 49 | 72 | 55 | 67 | 51 |
Điền số thích hợp vào bảng sau:
Tốc độ | Đại diện tốc độ | Tần số |
| 45 | 4 |
50 | 55 | 5 |
60 | 65 | 7 |
| 75 | 4 |
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
45 | 65 | 72 | 48 | 74 | 67 | 68 | 46 | 56 | 53 |
58 | 68 | 72 | 64 | 62 | 49 | 72 | 55 | 67 | 51 |
Điền số thích hợp vào bảng sau:
Tốc độ | Đại diện tốc độ | Tần số |
| 45 | 4 |
50 | 55 | 5 |
60 | 65 | 7 |
| 75 | 4 |
Ta có:
Tốc độ | Đại diện tốc độ | Tần số |
40 ≤ x < 50 | 45 | 4 |
50 ≤ x < 60 | 55 | 5 |
60 ≤ x < 70 | 65 | 7 |
70 ≤ x < 80 | 75 | 4 |
Chọn đáp án đúng
Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:
Cân nặng | Số học sinh |
[40,5; 45,5) | 7 |
[45,5; 50,5) | 16 |
[50,5; 55,5) | 10 |
[55,5; 60,5) | 5 |
[60,5; 65,5) | 4 |
[65,5; 70,5) | 2 |
Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48
Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:
Cân nặng | Số học sinh |
[40,5; 45,5) | 7 |
[45,5; 50,5) | 16 |
[50,5; 55,5) | 10 |
[55,5; 60,5) | 5 |
[60,5; 65,5) | 4 |
[65,5; 70,5) | 2 |
Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48
Số học sinh lớp 11A kiểm tra cân nặng là
7 + 16 + 10 + 5 + 4 + 2 = 44 (học sinh)
Chọn đáp án đúng
Điểm kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:
Lớp 11A | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 8 | 12 | 10 | 6 | |
Lớp 11B | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 5 | 12 | 10 | 8 | 4 | |
Lớp 11C | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 10 | 15 | 9 | 3 | |
Lớp 11D | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 9 | 16 | 11 | 3 |
Lớp nào có tỉ lệ học sinh giỏi thấp nhất?
Số học sinh lớp 11A là:
4 + 8 + 12 + 10 + 6 = 40 (học sinh)
Số học sinh giỏi lớp 11A là 6 học sinh
=> Tỉ lệ học sinh giỏi lớp 11A là:
Số học sinh lớp 11B là:
5 + 12 + 10 + 8 + 4 = 39 (học sinh)
Số học sinh giỏi lớp 11B là 4 học sinh
=> Tỉ lệ học sinh giỏi lớp 11B là:
Số học sinh lớp 11C là:
4 + 10 + 15 + 9 + 3 = 41 (học sinh)
Số học sinh giỏi lớp 11C là 3 học sinh
=> Tỉ lệ học sinh giỏi lớp 11C là:
Số học sinh lớp 11D là:
4 + 9 + 16 + 11 + 3 = 43 (học sinh)
Số học sinh giỏi lớp 11D là 3 học sinh
=> Tỉ lệ học sinh giỏi lớp 11D là:
Vậy lớp 11D có tỉ lệ học sinh giỏi thấp nhất.
Tìm trung vị của mẫu dữ liệu
Dữ liệu sau đây liên quan đến các điểm đạt được của học sinh trong một trường:
| Điểm | >10 | >20 | >30 | >40 | >50 | >60 | >70 | >80 | >90 |
| Số học sinh | 70 | 62 | 50 | 38 | 30 | 24 | 17 | 9 | 4 |
Tìm trung vị của mẫu dữ liệu.
Ta có:
| Điểm | (10; 20] | (20; 30] | (30; 40] | (40; 50] | (50; 60] | (60; 70] | (70; 80] | (80; 90] | (90; 100] |
| Số học sinh | 70 | 62 | 50 | 38 | 30 | 24 | 17 | 9 | 4 |
| Tần số tích lũy | 70 | 132 | 182 | 220 | 250 | 274 | 291 | 300 | 304 |
Ta có:
Nên khoảng chứa trung vị là: (30; 40]
Tìm tứ phân vị thứ ba của mẫu số liệu
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị
của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ ba là [9; 11)
(Vì 15 nằm giữa hai tần số tích lũy 9 và 16)
Do đó:
Khi đó tứ phân vị thứ ba là:
Tìm nhóm chứa tứ phân vị thứ ba
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Nhóm chứa tứ phân vị thứ ba của mẫu số liệu trên là:
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa là [60; 80)
(Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)
Độ lớn chênh lệch giữa các tứ phân vị
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba bằng bao nhiêu?
Ta có:
Chiều cao (h) | Số học sinh | Tần số tích lũy |
130 < h ≤ 140 | 2 | 2 |
140 < h ≤ 150 | 4 | 6 |
150 < h ≤ 160 | 9 | 15 |
160 < h ≤ 170 | 13 | 28 |
170 < h ≤ 180 | 8 | 36 |
180 < h ≤ 190 | 3 | 39 |
190 < h ≤ 200 | 1 | 40 |
Tổng | N = 40 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (150; 160]
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (170; 180]
Khi đó:
Tứ phân vị thứ ba là:
=> Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba là:
Chọn đáp án đúng
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Có bao nhiêu học sinh có thời gian vui chơi từ 2 đến 8 tiếng?
Số học sinh có thời gian vui chơi từ 2 đến 8 tiếng là:
16 + 4 + 2 = 22 (học sinh)
Tính tứ phân vị thứ ba
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây.
Chiều cao (cm) | Số học sinh |
(120; 125] | 3 |
(125; 130] | 5 |
(130; 135] | 11 |
(135; 140] | 6 |
(140; 145] | 5 |
| Tổng | N = 30 |
Tính tứ phân vị thứ ba. (Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
| Tổng | N = 30 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là (135; 140]
Khi đó:
Vậy tứ phân vị thứ ba là:
Tính giá trị đại diện của nhóm số liệu
Cho bảng thống kê kết quả đo chiều cao một số cây trong vườn như sau:
Chiều cao | [120; 150) | [150; 180) | [180; 210) | [210; 240) |
Số cây | 15 | 20 | 31 | 18 |
Giá trị đại diện của nhóm [150; 180) là bao nhiêu?
Giá trị đại diện của nhóm [150; 180) là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: