Tìm tập xác định của hàm số
Tìm tập xác định của hàm số 
Hàm số xác định
Vậy tập xác định
Mời các bạn học cùng thử sức với Đề thi học kì 1 Toán 11 Chân trời sáng tạo nha!
Tìm tập xác định của hàm số
Tìm tập xác định của hàm số 
Hàm số xác định
Vậy tập xác định
Tìm các giao tuyến của mặt phẳng và hình chóp
Cho hình chóp tứ giác
đáy là hình bình hành,
là trung điểm của
. Giả sử
là mặt phẳng đi qua
đồng thời song song với
và
. Xác định các giao tuyến của mặt phẳng
và các mặt của hình chóp. Hỏi hình tạo bởi các giao tuyến trên là hình gì?
Hình vẽ minh họa
Ta có:
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
Các giao tuyến của mặt phẳng và hình chóp là tứ giác
Lại có nên
là hình thang.
Đếm số vị trí biểu diễn điểm?
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
Ta có

Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.
Tính tổng T
Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

Ta có:
Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m,
Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.
Từ đó tổng quãng đường mà quả bóng đã di chuyển là
Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng .
Tìm điều kiện xác định của hàm số
Điều kiện xác định của hàm số: 
Điều kiện xác định của hàm số:
Giải phương trình lượng giác
Phương trình
có nghiệm là
Giải phương trình:
Tìm giá trị đại diện của nhóm số liệu
Lượng nước tiêu thụ trong một tháng của các hộ gia đình trong một khu chung cư được ghi lại như sau:
|
Lượng nước (m3) |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
[100; 120) |
|
Số hộ gia đỉnh |
6 |
12 |
10 |
7 |
4 |
2 |
Giá trị đại diện của nhóm chứa mốt của mẫu số liệu trên là.
Vì nhóm chứa mốt của mẫu số liệu là nhóm nên giá trị đại diện của nhóm này là
.
Tìm giá trị lớn nhất, giá trị nhỏ nhất của A
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức
.
Ta có:
Ta lại có:
Chọn đáp án đúng
Một công ty xây dựng khảo sát 300 khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát ghi lại ở bảng sau:
|
Mức giá |
[10; 14) |
[14; 18) |
[18; 22) |
[22; 26) |
[26; 30) |
|
Số khách hàng |
55 |
78 |
110 |
45 |
12 |
Mức giá mua nhà trung bình là
Ta có:
|
Mức giá |
[10; 14) |
[14; 18) |
[18; 22) |
[22; 26) |
[26; 30) |
|
Giá trị đại diện |
12 |
16 |
20 |
24 |
28 |
|
Số khách hàng |
55 |
78 |
110 |
45 |
12 |
Mức giá mua nhà trung bình là:
.
Vậy mức giá mua nhà trung bình là: (triệu đồng/
).
Hàm số không liên tục
Hàm số nào sau đây không liên tục tại
?
Hàm số có tập xác định
nên không liên tục tại
.
Tỉ số độ dài cạnh AB và CD
Cho hình chóp
có đáy
là hình thang với đáy nhỏ
. Lấy các điểm
sao cho
,
là trọng tâm tam giác
. Để giao tuyến của mặt phẳng
với các mặt của hình chóp
là hình bình hành thì tỉ số độ dài cạnh
bằng:
Hình biểu diễn
Ta có: với
và đi qua
, song song với
.
=> Giao tuyến của mặt phẳng với các mặt của hình chóp
là hình thang
. Tính
Để hình thang là hình bình hành thì
Kết quả đúng?
Kết quả đúng của
là?
Ta có:
Hoàn thành mệnh đề
Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ:
Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ Song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
Tìm giá trị lớn nhất của hàm số.
Tính giá trị lớn nhất của hàm số ![]()
Ta có:
Áp dụng bất đẳng thức
Do đó
Dấu bằng xảy ra khi
Tính tổng S
Tính tổng sau ![]()
Ta có:
là tổng của 100 số hạng đầu tiên của cấp số cộng có
.
Tìm nhóm chứa trung vị
Chiều cao một số cây được ghi lại trong bảng số liệu dưới đây:
Chiều cao h (cm) | Số cây |
130 < h ≤ 140 | 3 |
140 < h ≤ 150 | 7 |
150 < h ≤ 160 | 5 |
Nhóm chứa trung vị là:
Ta có:
Chiều cao h (cm) | Số cây | Tần số tích lũy |
130 < h ≤ 140 | 3 | 3 |
140 < h ≤ 150 | 7 | 10 |
150 < h ≤ 160 | 5 | 15 |
Tổng | N = 15 |
|
Ta có:
=> Nhóm chứa trung vị là: 140 < h ≤ 150
Ghép nối đáp án
Hoàn thành mẫu dữ liệu ghép nhóm sau.
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | 12 |
(30;40] | 9 |
(40;50] | 7 |
Ghép nối các nội dung thích hợp với nhau:
Chọn đáp án đúng
Cho dãy số
biết
. Chọn đáp án đúng.
Ta có:
Mặt phẳng nào song song với (IJK)
Cho hình lăng trụ ABC.A’B’C’. Gọi I. J. K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)
Hình vẽ minh họa

Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.
=> (tính chất trọng tâm tam giác)
=>
Xét mặt phẳng ta có:
=>
Mà
=>
Từ (1) và (2) => và
là hai mặt phẳng phân biệt. Khi đó ta có:
Tính giá trị của tham số m
Cho hàm số
với
là tham số. Tính giá trị của tham số
để hàm số có giới hạn tại
.
Hàm số có giới hạn tại
Tính giá trị
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn thỏa mãn:
Ta có:
Suy ra .
Tính số tế bào được tạo thành
Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có
tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?
Ban đầu có tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với
và công bội
.
Theo bài ra ta có:
Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.
Ta có: là số tế bào nhận được sau 2 giờ.
Vậy số tế bào nhận được sau 2 giờ là
Xác định giới hạn dưới
Trong một mẫu dữ liệu ghép nhóm có nhóm (0; 10]; (10; 20]; … độ dài một nhóm là 10. Khi đó giới hạn dưới của mẫu thuộc vào nhóm thứ tư là:
Theo cách chia nhóm như đề bài đã cho ta có được các nhóm như sau:
(0; 10]; (10; 20]; (20; 30]; (30; 40]; …
Mẫu nhóm thứ tư là (30; 40]
=> Giới hạn dưới của nhóm thứ tư là 30.
Xác định nghiệm phương trình lượng giác
Phương trình
có nghiệm là:
Ta có , với
.
Ghi đáp án vào ô trống
Cho hình chóp
có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Cho hình chóp
có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Hình vẽ minh họa
Ta có là điểm trên cạnh
,
nên
.
nên
suy ra
.
Trong
chính là giao điểm của
và
.
Trong , có
nên hai tam giác
và
đồng dạng.
Do đó .
Xác định số mặt phẳng thỏa mãn điều kiện
Cho
. Số mặt phẳng chứa tất cả các đỉnh của tam giác
là:
Do ba điểm không thẳng hàng nên chỉ có một và chỉ một mặt phẳng đi qua chúng.
Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC)
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD và BC; G là trọng tâm của tam giác BCD. Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC).
Hình vẽ minh họa
Giao điểm của đường thẳng MG và đường thẳng AN là giao điểm của đường thẳng MG và đường thẳng AN.
Chọn phương án thích hợp
Cho cấp số cộng
với
. Tìm số hạng đầu
và công sai
của cấp số cộng trên.
Ta có:
Tính mốt
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Tính mốt?
Ta có:
Số tiền (nghìn đồng) | Số người |
|
[0; 50) | 5 |
|
[50; 100) | 12 | |
[100; 150) | 23 | |
[150; 200) | 17 | |
[200; 250) | 3 |
|
| N = 60 |
|
Ta có:
=> Mốt của dấu hiệu là:
Chọn đáp án đúng
Tổng giá trị lớn nhất và nhỏ nhất của hàm số
là
Do nên
.
Nên đạt được khi
.
đạt được khi
.
Suy ra .
Tính diện tích hình tạo bởi các giao tuyến
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Chọn đáp án đúng
Cho một cấp số nhân
có
. Hỏi
là số hạng thứ mấy của cấp số nhân?
Ta có:
Vậy số là số hạng thứ 11 của cấp số nhân.
Tính lim
bằng:
Ta có:
Xác định hình tạo bởi các giao tuyến
Cho hình hộp
, gọi
là trung điểm của
. Xác định hình tạo bởi các giao tuyến của mặt phẳng
với hình hộp.
Hình vẽ minh họa
Ta có:
Suy ra giao tuyến của và
là đường thẳng
qua
song song với
;
.
Vì nên hình tạo bởi các giao tuyến của mặt phẳng
với hình hộp
là hình thang
.
Giải PT
Giải phương trình
?
Ta có và .
Do đó phương trình
Xét nghiệm .
Vậy phương trình có nghiệm .
Chọn khẳng định sai
Trong các phát biểu sau, phát biểu nào là sai?
Ta lấy một phản ví dụ:
Dãy số (un) với là cấp số cộng có công sai d = 1 > 0
Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.
Tìm hàm số lượng giác tương ứng với đồ thị hàm số đã cho
Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

Ta có:
=> Loại đáp án và
Tại x = 0 => y = 1 ta thấy thỏa mãn
Mệnh đề đúng?
Cho dãy số (un) biết un = a sin(n)+b cos(n). Mệnh đề nào sau đây đúng?
Xét |un| = |a sin(n)+b cos(n)| ≤ |a| + |b| ⇒ − (|a|+|b|) ≤ un ≤ |a| + |b|
Vậy dãy số (un) bị chặn.
Tìm hàm số liên tục tại x = 1
Hàm số nào trong các hàm số sau liên tục tại
?
Xét hàm số có:
Vậy hàm số liên tục tại .
Xác định khẳng định đúng
Trong không gian cho các đường thẳng a, b và các mặt phẳng (α), (β). Trong các khẳng định sau đây, đâu là khẳng định đúng?
Mệnh đề “a // (β) và (β) // b thì a // b” là sai vì a và b có thể cắt nhau.
Mệnh đề “a // b và b ⊂ (α) thì a // (α)” là sai vì có thể a ⊂ (α).
Mệnh đề “a // b và b // (α) thì a // (α)” là sai vì có thể a ⊂ (α).
Xác định mệnh đề đúng
Cho
và biểu thức
. Mệnh đề nào sau đây đúng?
Ta có: nên
=>
Tính giới hạn hàm số
Kết quả của giới hạn ![]()
Ta có:
. Khi đó:
(vì )
Chọn mệnh đề đúng
Cho hai đường thẳng
và
lần lượt nằm trên hai mặt phẳng song song
và
.
Mệnh đề đúng là: "Nếu và
không song song với nhau, điểm
không nằm trên
và
thì luôn có duy nhất một đường thẳng đi qua
cắt cả
và
."
Tính giới hạn của hàm số
Tính giới hạn
.
Ta có: .
Quy ước chiều dương đường tròn lượng giác
Quy ước chọn chiều dương của một đường tròn định hướng là
Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: