Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Hình thoi

Chuyên đề Toán học lớp 8: Hình thoi được VnDoc sưu tầm và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán học lớp 8 hiệu quả hơn. Mời các bạn tham khảo.

A. Lý thuyết

1. Định nghĩa

Hình thoi là tứ giác có bốn cạnh bằng nhau.

Hình thoi cũng là một hình bình hành.

Lý thuyết: Hình thoi

Tổng quát: ABCD là hình thoi \Leftrightarrow AB = BC = CD = DA

2. Tính chất

Hình thoi có tất cả các tính chất của hình bình hành.

Định lí: Trong hình thoi:

+ Hai đường chéo vuông góc với nhau.

+ Hai đường chéo là các đường phân giác các góc của hình thoi.

3. Dấu hiệu nhận biết hình thoi

+ Tứ giác có bốn cạnh bằng nhau là hình thoi.

+ Hình bình hành có hai cạnh kề bằng nhau là hình thoi

+ Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

+ Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.

Ví dụ: Cho hình chữ nhật ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, AD. Chứng minh tứ giác MNPQ là hình thoi.

Hướng dẫn:

Lý thuyết: Hình thoi

M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, AD

⇒ AM = MB; BN = NC; CP = DP; AQ = DQ

+ Xét Δ ABD có Lý thuyết: Hình thoi

⇒ MQ là đường trung bình của Δ ABD.

⇒ QM = 1/2BD = 1/2AC ( 1 )

+ Xét Δ ABC cóLý thuyết: Hình thoi

⇒ MN là đường trung bình của Δ ABC.

⇒ MN = 1/2BD = 1/2AC ( 2 )

+ Xét Δ BCD cóLý thuyết: Hình thoi

⇒ NP là đường trung bình của Δ BCD.

⇒ NP = 1/2BD = 1/2AC ( 3 )

+ Xét Δ ADC cóLý thuyết: Hình thoi

⇒ QP là đường trung bình của Δ ADC.

⇒ QP = 1/2BD = 1/2AC ( 4 )

Từ ( 1 ),( 2 ),( 3 ),( 4 ) ⇒ MN = NP = PQ = QM.

⇒ MNPQ là hình thoi.

B. Trắc nghiệm & Tự luận

I. Bài tập trắc nghiệm

Bài 1: Khoanh tròn vào phương án đúng trong các phương án sau ?

A. Hình thoi là tứ giác có bốn góc bằng nhau.

B. Hình thoi là tứ giác có hai cạnh đối bằng nhau.

C. Hình thoi là tứ giác có ba góc vuông.

D. Hình thoi là tứ giác có bốn cạnh bằng nhau.

Định nghĩa: Hình thoi là tứ giác có bốn cạnh bằng nhau.

Chọn đáp án D.

Bài 2: Trong các khẳng định sau, khẳng định nào sai về hình thoi?

A. Hai đường chéo bằng nhau.

B. Hai đường chéo vông góc và là các đường phân giác của các góc hình thoi.

C. Hai đường chéo cắt nhau tại trung điểm mỗi đường.

D. Hình thoi có 4 cạnh bằng nhau.

Định lí: Trong hình thoi:

+ Hai đường chéo vuông góc với nhau.

+ Hai đường chéo là các đường phân giác các góc của hình thoi.

+ Hai đường chéo cắt nhau tại trung điểm mỗi đường.

⇒ Đáp án A sai.

Chọn đáp án A.

Bài 3: Hai đường chéo của hình thoi có độ dài lần lượt là 8cm và 10cm. Độ dài cạnh của hình thoi đó là ?

A. 6cm. B. √ 41 cm. C. √ 164 cm. D. 9cm.

Độ dài đường chéo của hình thoi lần lượt là

→ Độ dài đường chéo của hình thoi là:

Bài tập: Hình thoi

Chọn đáp án B.

Bài 4: Hình thoi có độ dài các cạnh là thì chu vi của hình thoi là?

A. 8cm. B. 44cm. C. 16cm. D. Cả A, B, C đều sai.

Chu vi của hình thoi là Pht = 4 + 4 + 4 + 4 = 16cm.

Chọn đáp án C.

Bài 5: Các phương án sau, phương án nào sai?

A. Các trung điểm của bốn cạnh hình chữ nhật là các đỉnh của một hình thoi.

B. Các trung điểm của bốn cạnh hình thoi là bốn đỉnh của hình chữ nhật.

C. Giao điểm của hai đường chéo của hình thoi là tâm đối xứng của hình thoi đó.

D. Hình thoi của bốn trục đối xứng.

Định lí:

+ Hai thoi có hai trực đối xứng là hai đường chéo của hình thoi.

+ Có một tâm đối xứng là giao điểm của hai đường chéo.

Mở rộng:

+ Trong hình chữ nhật, các trung điểm của các cạnh hĩnh chữ nhật là các đỉnh của một hình thoi.

+ Trong hình thoi, các trung điểm của bốn cạnh hình thoi là các hình chữ nhật.

→ Đáp án D sai.

Chọn đáp án D.

II. Bài tập tự luận

Bài 1: Cho hình thoi ABCD có góc A tù. Biết đường cao kẻ từ đỉnh A đến cạnh CD chia đội cạnh đó. Tính các góc của hình thoi.

Hướng dẫn:

Bài tập: Hình thoi

Gọi H là chân đường cao kẻ từ đỉnh A xuống cạnh CD, theo giả thiết ta có:

Bài tập: Hình thoi ⇒ AH là đường trung trực của đoạn CD nên AC = AD (1)

Áp dụng định nghĩa của hình thoi ABCD, ta có

AD = AB = BC = CD (2)

Từ (1) và (2) ta có AD = AC = CD ⇒ Δ ACD là tam giác đều

ADCˆ = 600.

Vì góc A và góc D là hai góc trong cùng phía của AB//CD nên chúng bù nha.

Hay Aˆ + Dˆ = 1800Aˆ = 1800 - Dˆ = 1800 - 600 = 1200.

Áp dụng tính chất về góc của hình thoi ta có:Bài tập: Hình thoi

Bài 2: Chứng minh rằng các đường cao của hình thoi bằng nhau.

Bài tập: Hình thoi

Hướng dẫn:

Xét hình thoi ABCD, kẻ hai đường cao

AH ⊥ BC, AK ⊥ CD.

Ta cần chứng minh: AH = AK.

Áp dụng định nghĩa, tính chất về góc và giả thiết của hình thoi ABCD, ta có:

Bài tập: Hình thoi ⇒ Δ ABH = Δ ADH ( g - c - g )

⇒ AH = AK (cặp cạnh tương ứng bằng nhau)

→ (đpcm)

Trên đây VnDoc đã giới thiệu tới các bạn lý thuyết môn Toán học 8: Hình thoi. Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Chuyên đề Toán học 8, Giải bài tập Toán lớp 8, Giải VBT Toán lớp 8VnDoc tổng hợp và giới thiệu tới các bạn đọc

Chia sẻ, đánh giá bài viết
6
Chỉ thành viên VnDoc PRO tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Lý thuyết Toán 8

    Xem thêm