Toán 7 Bài 3 Lũy thừa của một số hữu tỉ
Giải Toán 7 Bài 3: Lũy thừa của một số hữu tỉ hướng dẫn giải bài tập trong SGK Toán 7 Chân trời sáng tạo tập 1 trang 18, 19, 20, giúp các em học sinh ôn tập, củng cố kiến thức, luyện tập Giải Toán 7 sách Chân trời sáng tạo một cách hiệu quả.
Giải bài tập Toán 7 Chân trời sáng tạo trang 20, 21
- Khởi động trang 18 Toán 7 Tập 1:
- 1. Luỹ thừa với số mũ tự nhiên
- 2. Tích và thương của hai luỹ thừa cùng cơ số
- 3. Luỹ thừa của luỹ thừa
- Giải bài tập trang 20 SGK Toán 7 tập 1
- Bài 1 trang 20 SGK Toán 7 tập 1
- Bài 2 trang 20 SGK Toán 7 tập 1
- Bài 3 trang 20 SGK Toán 7 tập 1
- Bài 4 trang 20 SGK Toán 7 tập 1
- Bài 5 trang 21 SGK Toán 7 tập 1
- Bài 6 trang 21 SGK Toán 7 tập 1
- Bài 7 trang 21 SGK Toán 7 tập 1
- Bài 8 trang 21 SGK Toán 7 tập 1
- Bài 9 trang 21 SGK Toán 7 tập 1
- Bài 10 trang 21 SGK Toán 7 tập 1
Khởi động trang 18 Toán 7 Tập 1:
Tính thể tích V của khối rubik hình lập phương có cạnh dài 5,5 cm.
Hướng dẫn giải:
Thể tích V của khối rubik hình lập phương có cạnh dài 5,5 cm là:
V = 5,5 . 5,5 . 5,5 = 30,25 . 5,5 = 166,375 (cm3).
Vậy thể tích của khối rubik đó là 166,375 cm3.
1. Luỹ thừa với số mũ tự nhiên
Thực hành 1 trang 18 Toán 7 Tập 1:
Tính: \({\left( {\frac{{ - 2}}{3}} \right)^3};{\left( {\frac{{ - 3}}{5}} \right)^2};{\left( { - 0,5} \right)^3};{\left( { - 0,5} \right)^2};{\left( {37,57} \right)^0};{\left( {3,57} \right)^1}\)
Hướng dẫn giải:
Thực hiện phép tính như sau:
\({\left( {\frac{{ - 2}}{3}} \right)^3} = \left( {\frac{{ - 2}}{3}} \right).\left( {\frac{{ - 2}}{3}} \right).\left( {\frac{{ - 2}}{3}} \right) = \frac{{ - 8}}{{27}}\)
\({\left( {\frac{{ - 3}}{5}} \right)^2} = \left( {\frac{{ - 3}}{5}} \right).\left( {\frac{{ - 3}}{5}} \right) = \frac{9}{{25}}\)
\({\left( { - 0,5} \right)^3} = \left( { - 0,5} \right).\left( { - 0,5} \right).\left( { - 0,5} \right) = \frac{{ - 1}}{8}\)
\({\left( { - 0,5} \right)^2} = \left( { - 0,5} \right).\left( { - 0,5} \right) = \frac{1}{4}\)
\(\begin{matrix} {\left( {37,57} \right)^0} = 1 \hfill \\ {\left( {3,57} \right)^1} = 3,57 \hfill \\ \end{matrix}\)
2. Tích và thương của hai luỹ thừa cùng cơ số
Khám phá 1 trang 19 Toán 7 Tập 1:
Tìm số thích hợp thay vào dấu “?” trong các cấu dưới đây?
a) \({\left( {\frac{1}{3}} \right)^2}.{\left( {\frac{1}{3}} \right)^2} = {\left( {\frac{1}{3}} \right)^?}\)
b) (0,2)2 . (0,2)3 = (0,2)?
Hướng dẫn giải:
Thực hiện phép tính như sau:
a) Ta có: \({\left( {\frac{1}{3}} \right)^2}.{\left( {\frac{1}{3}} \right)^2} = {\left( {\frac{1}{3}} \right)^{2 + 2}} = {\left( {\frac{1}{3}} \right)^4}\)
Vậy điền vào dấu “?” là 4
b) Ta có: (0,2)2 . (0,2)3 = (0,2)2 + 3 = (0,2)5
Vậy điền vào dấu “?” là 5
Thực hành 2 trang 19 Toán 7 Tập 1:
Tính:
a) (-2)2.(-2)3;
b) (-0,25)7.(-0,25)5;
c) \({\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{3}{4}} \right)^3}\)
Hướng dẫn giải:
Thực hiện phép tính như sau:
a) (-2)2.(-2)3= (-2)2 + 3 = (-2)5
b) (-0,25)7.(-0,25)5= (-0,25)7 + 5= (-0,25)12
c) \({\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{3}{4}} \right)^3} = {\left( {\frac{3}{4}} \right)^{4 + 3}} = {\left( {\frac{3}{4}} \right)^7}\)
3. Luỹ thừa của luỹ thừa
Khám phá 2 trang 19 Toán 7 Tập 1:
Tính và so sánh:
a) \({\left[ {{{\left( { - 2} \right)}^2}} \right]^3}\) và \({\left( { - 2} \right)^6}\)
b) \({\left[ {{{\left( {\frac{1}{2}} \right)}^2}} \right]^2}\) và \({\left( {\frac{1}{2}} \right)^4}\)
Hướng dẫn giải:
Thực hiện phép tính như sau:
a) \({\left[ {{{\left( { - 2} \right)}^2}} \right]^3}\) và \({\left( { - 2} \right)^6}\)
Ta có: \({\left[ {{{\left( { - 2} \right)}^2}} \right]^3} = {\left( { - 2} \right)^{2.3}} = {\left( { - 2} \right)^6}\)
Vậy \({\left[ {{{\left( { - 2} \right)}^2}} \right]^3} = {\left( { - 2} \right)^6}\)
b) \({\left[ {{{\left( {\frac{1}{2}} \right)}^2}} \right]^2}\) và \({\left( {\frac{1}{2}} \right)^4}\)
Ta có: \({\left[ {{{\left( {\frac{1}{2}} \right)}^2}} \right]^2} = {\left( {\frac{1}{2}} \right)^{2.2}} = {\left( {\frac{1}{2}} \right)^4}\)
Vậy \({\left[ {{{\left( {\frac{1}{2}} \right)}^2}} \right]^2} = {\left( {\frac{1}{2}} \right)^4}\)
Thực hành 3 trang 20 Toán 7 Tập 1:
Thay số thích hợp vào dấu “?” trong các câu sau:
a) \({\left[ {{{\left( {\frac{{ - 2}}{3}} \right)}^2}} \right]^5} = {\left( {\frac{{ - 2}}{3}} \right)^?}\)
b) \({\left[ {{{\left( {0,4} \right)}^3}} \right]^3} = {\left( {0,4} \right)^?}\)
c) \({\left[ {{{\left( {7,31} \right)}^3}} \right]^0} = ?\)
Hướng dẫn giải:
Thực hiện phép tính như sau:
a) Ta có: \({\left[ {{{\left( {\frac{{ - 2}}{3}} \right)}^2}} \right]^5} = {\left( {\frac{{ - 2}}{3}} \right)^{2.5}} = {\left( {\frac{{ - 2}}{3}} \right)^{10}}\)
Vậy điền vào dấu “?” là 10
b) Ta có: \({\left[ {{{\left( {0,4} \right)}^3}} \right]^3} = {\left( {0,4} \right)^{3.3}} = {\left( {0,4} \right)^9}\)
Vậy điền vào dấu “?” là 9
c) Ta có: \({\left[ {{{\left( {7,31} \right)}^3}} \right]^0} = {\left( {7,31} \right)^{3.0}} = {\left( {7,31} \right)^0} = 1\)
Vậy điền vào dấu “?” là 0
Vận dụng trang 20 Toán 7 Tập 1
Để viết những số có giá trị lớn, người ta thường viết các số ấy dưới dạng tích của lũy thừa cơ số 10 với một số lớn hơn hoặc bằng 1 nhưng nhỏ hơn 10. Chẳng hạn khoảng cách trung bình giữa Mặt Trời và Trái Đất là 149 600 000 km được viết là 1,496 . 108 km.
Hãy dùng cách viết trên để viết các đại lượng sau:
a) Khoảng cách từ Mặt Trời đến Sao Thủy dài khoảng 58 000 000km.
b) Một năm ánh sáng có độ dài khoảng 9 460 000 000 000km.
Hướng dẫn giải:
a) Khoảng cách từ Mặt Trời đến Sao Thủy dài khoảng 58 000 000km được viết là:
5,8 . 107km
b) Một năm ánh sáng có độ dài khoảng 9 460 000 000 000km được viết là
9,46 . 1012km
Giải bài tập trang 20 SGK Toán 7 tập 1
Bài 1 trang 20 SGK Toán 7 tập 1
Viết các số sau dưới dạng lũy thừa với số mũ lớn hơn 1:
\(0,49;\frac{1}{{32}};\frac{{ - 8}}{{125}};\frac{{16}}{{81}};\frac{{121}}{{169}}\)
Hướng dẫn giải:
\(0,49 = 0,7.0,7 = {\left( {0,7} \right)^2}\)
\(\frac{1}{{32}} = \frac{1}{{2.2.2.2.2}} = \frac{1}{{{2^5}}} = \frac{{{1^5}}}{{{2^5}}} = {\left( {\frac{1}{2}} \right)^5}\)
\(\frac{{ - 8}}{{125}} = \frac{{\left( { - 2} \right).\left( { - 2} \right).\left( { - 2} \right)}}{{5.5.5}} = \frac{{{{\left( { - 2} \right)}^3}}}{{{5^3}}} = {\left( {\frac{{ - 2}}{5}} \right)^3}\)
\(\frac{{16}}{{81}} = \frac{{4.4}}{{9.9}} = \frac{{{4^2}}}{{{9^2}}} = {\left( {\frac{4}{9}} \right)^2}\)
\(\frac{{121}}{{169}} = \frac{{11.11}}{{13.13}} = \frac{{{{11}^2}}}{{{{13}^2}}} = {\left( {\frac{{11}}{{13}}} \right)^2}\)
Bài 2 trang 20 SGK Toán 7 tập 1
a) Tính: \({\left( {\frac{{ - 1}}{2}} \right)^5};{\left( {\frac{{ - 2}}{3}} \right)^4};{\left( { - 2\frac{1}{4}} \right)^3};{\left( {0,3} \right)^5};{\left( { - 25,7} \right)^0}\)
b) Tính \({\left( { - \frac{1}{3}} \right)^2};{\left( { - \frac{1}{3}} \right)^3};{\left( { - \frac{1}{3}} \right)^4};{\left( { - \frac{1}{3}} \right)^5}\)
Hãy rút ra nhận xét về dấu của lũy thừa với số mũ chẵn và lũy thừa với số mũ lẻ của một số hữu tỉ âm.
Hướng dẫn giải:
a)
\(\begin{matrix} {\left( {\dfrac{{ - 1}}{2}} \right)^5} = \left( {\dfrac{{ - 1}}{2}} \right).\left( {\dfrac{{ - 1}}{2}} \right).\left( {\dfrac{{ - 1}}{2}} \right).\left( {\dfrac{{ - 1}}{2}} \right).\left( {\dfrac{{ - 1}}{2}} \right) = \dfrac{{ - 1}}{{32}} \hfill \\ {\left( { - 2\dfrac{1}{4}} \right)^3} = {\left( { - \dfrac{9}{4}} \right)^3} = \left( { - \dfrac{9}{4}} \right).\left( { - \dfrac{9}{4}} \right).\left( { - \dfrac{9}{4}} \right) = \dfrac{{ - 729}}{{64}} \hfill \\ {\left( { - 0,3} \right)^5} = \left( { - 0,3} \right).\left( { - 0,3} \right).\left( { - 0,3} \right).\left( { - 0,3} \right).\left( { - 0,3} \right) = - 0,00243 \hfill \\ {\left( { - 25,7} \right)^0} = 1 \hfill \\ \end{matrix}\)
b)
\(\begin{matrix} {\left( { - \dfrac{1}{3}} \right)^2} = \left( { - \dfrac{1}{3}} \right).\left( { - \dfrac{1}{3}} \right) = \dfrac{1}{9} \hfill \\ {\left( { - \dfrac{1}{3}} \right)^3} = \left( { - \dfrac{1}{3}} \right).\left( { - \dfrac{1}{3}} \right).\left( { - \dfrac{1}{3}} \right) = \dfrac{{ - 1}}{{27}} \hfill \\ {\left( { - \dfrac{1}{3}} \right)^4} = \left( { - \dfrac{1}{3}} \right).\left( { - \dfrac{1}{3}} \right).\left( { - \dfrac{1}{3}} \right).\left( { - \dfrac{1}{3}} \right) = \dfrac{1}{{81}} \hfill \\ {\left( { - \dfrac{1}{3}} \right)^5} = \left( { - \dfrac{1}{3}} \right).\left( { - \dfrac{1}{3}} \right).\left( { - \dfrac{1}{3}} \right).\left( { - \dfrac{1}{3}} \right).\left( { - \frac{1}{3}} \right) = \dfrac{{ - 1}}{{243}} \hfill \\ \end{matrix}\)
Nhận xét:
+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.
+ Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.
Bài 3 trang 20 SGK Toán 7 tập 1
Viết các biểu thức sau dưới dạng lũy thừa của một số hữu tỉ:
a) \({25^4}{.2^8}\)
c) \({27^2}:{25^3}\)
b) \(4.32:\left( {{2^3}.\frac{1}{{16}}} \right)\)
d) \({8^2}:{9^3}\)
Hướng dẫn giải:
a) \({25^4}{.2^8} = {\left( {{5^2}} \right)^4}{.2^8} = {5^{2.4}}{.2^8} = {5^8}{.2^8} = {\left( {5.2} \right)^8} = {10^8}\)
b) \(4.32:\left( {{2^3}.\frac{1}{{16}}} \right) = {2^2}{.2^5}:\left( {{2^3}.\frac{1}{{{2^4}}}} \right)\)
\(= {2^{2 + 5}}:\frac{1}{2} = {2^7}:\frac{1}{2} = {2^7}.2 = {2^{7 + 1}} = {2^8}\)
c) \({27^2}:{25^3} = {\left( {{3^3}} \right)^2}:{\left( {{5^2}} \right)^3} = {3^6}:{5^6} = {\left( {\frac{3}{5}} \right)^6}\)
d) \({8^2}:{9^3} = {\left( {{2^3}} \right)^2}:{\left( {{3^2}} \right)^3} = {2^6}:{3^6} = {\left( {\frac{2}{3}} \right)^6}\)
Bài 4 trang 20 SGK Toán 7 tập 1
Tìm x biết:
a) \(x:{\left( {\frac{{ - 1}}{2}} \right)^3} = - \frac{1}{2}\)
c) \({\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9}\)
b) \(x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9}\)
d) \(x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\)
Hướng dẫn giải:
a) \(x:{\left( {\frac{{ - 1}}{2}} \right)^3} = - \frac{1}{2}\)
\(\begin{matrix} x = \left( { - \dfrac{1}{2}} \right).{\left( {\dfrac{{ - 1}}{2}} \right)^3} \hfill \\ x = {\left( {\dfrac{{ - 1}}{2}} \right)^1}.{\left( {\dfrac{{ - 1}}{2}} \right)^3} \hfill \\ x = {\left( {\dfrac{{ - 1}}{2}} \right)^{1 + 3}} = {\left( {\dfrac{{ - 1}}{2}} \right)^4} \hfill \\ x = \dfrac{1}{{16}} \hfill \\ \end{matrix}\)
b) \(x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9}\)
\(\begin{matrix} x = {\left( {\dfrac{3}{5}} \right)^9}:{\left( {\dfrac{3}{5}} \right)^7} \hfill \\ x = {\left( {\dfrac{3}{5}} \right)^{9 - 7}} \hfill \\ x = {\left( {\dfrac{3}{5}} \right)^2} \hfill \\ x = \dfrac{9}{{25}} \hfill \\ \end{matrix}\)
c) \({\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9}\)
\(\begin{matrix} x = {\left( {\dfrac{{ - 2}}{3}} \right)^{11}}:{\left( {\dfrac{{ - 2}}{3}} \right)^9} \hfill \\ x = {\left( {\dfrac{{ - 2}}{3}} \right)^{11 - 9}} \hfill \\ x = {\left( {\dfrac{{ - 2}}{3}} \right)^2} \hfill \\ x = \dfrac{4}{9} \hfill \\ \end{matrix}\)
d) \(x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\)
\(\begin{matrix} x = {\left( {\dfrac{1}{4}} \right)^8}:{\left( {0,25} \right)^6} \hfill \\ x = {\left( {\dfrac{1}{4}} \right)^8}:{\left( {\dfrac{1}{4}} \right)^6} \hfill \\ x = {\left( {\dfrac{1}{4}} \right)^{8 - 6}} = {\left( {\dfrac{1}{4}} \right)^2} \hfill \\ x = \dfrac{1}{{16}} \hfill \\ \end{matrix}\)
Bài 5 trang 21 SGK Toán 7 tập 1
Viết các số \({\left( {0,25} \right)^8};\,\,{\left( {0,125} \right)^4};{\left( {0,0625} \right)^2}\) dưới dạng lũy thừa cơ số 0,5.
Hướng dẫn giải:
\(\begin{array}{l}{\left( {0,25} \right)^8} = {\left[ {{{\left( {0,5} \right)}^2}} \right]^8} = {\left( {0,5} \right)^{16}};\\\,\,{\left( {0,125} \right)^4} = {\left[ {{{\left( {0,5} \right)}^3}} \right]^4} = {\left( {0,5} \right)^{12}};\\{\left( {0,0625} \right)^2} = {\left[ {{{\left( {0,5} \right)}^4}} \right]^2} = {\left( {0,5} \right)^8}\end{array}\)
Bài 6 trang 21 SGK Toán 7 tập 1
Tính nhanh.
\(M = \left( {100 - 1} \right).\left( {100 - {2^2}} \right).\left( {100 - {3^2}} \right).\,\,...\,\,.\left( {100 - {{50}^2}} \right)\)
Hướng dẫn giải:
Ta có:
\(\begin{array}{l}M = \left( {{{10}^2} - 1} \right).\left( {{{10}^2} - {2^2}} \right).\left( {{{10}^2} - {3^2}} \right).\,\,...\left( {{{10}^2} - {{10}^2}} \right)..\,\,.\left( {100 - {{50}^2}} \right)\\ = \left( {{{10}^2} - 1} \right).\left( {{{10}^2} - {2^2}} \right).\left( {{{10}^2} - {3^2}} \right).\,\,...0..\,\,.\left( {100 - {{50}^2}} \right)\\ = 0\end{array}\)
Bài 7 trang 21 SGK Toán 7 tập 1
Tính:
a) \(\left[ {{{\left( {\frac{3}{7}} \right)}^4}.{{\left( {\frac{3}{7}} \right)}^5}} \right]:{\left( {\frac{3}{7}} \right)^7}\)
c) \(\left[ {{{\left( {0,6} \right)}^3}.{{\left( {0,6} \right)}^8}} \right]:\left[ {{{\left( {0,6} \right)}^7}.{{\left( {0,6} \right)}^2}} \right]\)
b) \(\left[ {{{\left( {\frac{7}{8}} \right)}^5}:{{\left( {\frac{7}{8}} \right)}^4}} \right].\frac{7}{8}\)
Hướng dẫn giải:
Thực hiện các phép tính như sau:
a) \(\left[ {{{\left( {\frac{3}{7}} \right)}^4}.{{\left( {\frac{3}{7}} \right)}^5}} \right]:{\left( {\frac{3}{7}} \right)^7} = {\left( {\frac{3}{7}} \right)^{4 + 5 - 7}} = {\left( {\frac{3}{7}} \right)^2} = \frac{9}{{49}}\)
b) \(\left[ {{{\left( {\frac{7}{8}} \right)}^5}:{{\left( {\frac{7}{8}} \right)}^4}} \right].\frac{7}{8} = \left[ {{{\left( {\frac{7}{8}} \right)}^5}:{{\left( {\frac{7}{8}} \right)}^4}} \right].{\left( {\frac{7}{8}} \right)^1} = {\left( {\frac{7}{8}} \right)^{5 - 4 + 1}} = {\left( {\frac{7}{8}} \right)^2} = \frac{{49}}{{64}}\)
c) \(\left[ {{{\left( {0,6} \right)}^3}.{{\left( {0,6} \right)}^8}} \right]:\left[ {{{\left( {0,6} \right)}^7}.{{\left( {0,6} \right)}^2}} \right]\)
\(\begin{matrix} = {\left( {0,6} \right)^{3 + 8}}:{\left( {0,6} \right)^{7 + 2}} \hfill \\ = {\left( {0,6} \right)^{11}}:{\left( {0,6} \right)^9} \hfill \\ = {\left( {0,6} \right)^{11 - 9}} = {\left( {0,6} \right)^2} = 0,36 \hfill \\ \end{matrix}\)
Bài 8 trang 21 SGK Toán 7 tập 1
Tính:
a) \({\left( {\frac{2}{5} + \frac{1}{2}} \right)^2}\)
c) \({\left( {\frac{3}{5}} \right)^{15}}:{\left( {0,36} \right)^5}\)
b) \({\left( {0,75 - 1\frac{1}{2}} \right)^3}\)
d) \({\left( {1 - \frac{1}{3}} \right)^8}:{\left( {\frac{4}{9}} \right)^3}\)
Hướng dẫn giải:
a) \({\left( {\frac{2}{5} + \frac{1}{2}} \right)^2} = {\left( {\frac{4}{{10}} + \frac{5}{{10}}} \right)^2} = {\left( {\frac{9}{{10}}} \right)^2} = \frac{{{9^2}}}{{{{10}^2}}} = \frac{{81}}{{100}}\)
b) \({\left( {0,75 - 1\frac{1}{2}} \right)^3} = {\left( {\frac{3}{4} - \frac{3}{2}} \right)^3} = {\left( {\frac{3}{4} - \frac{6}{4}} \right)^3}\)
\(= {\left( { - \frac{3}{4}} \right)^3} = \left( { - \frac{3}{4}} \right).\left( { - \frac{3}{4}} \right).\left( { - \frac{3}{4}} \right) = - \frac{{27}}{{64}}\)
c) \({\left( {\frac{3}{5}} \right)^{15}}:{\left( {0,36} \right)^5} = {\left( {\frac{3}{5}} \right)^{15}}:{\left( {\frac{9}{{25}}} \right)^5} = {\left( {\frac{3}{5}} \right)^{15}}:{\left( {\frac{{{3^2}}}{{{5^2}}}} \right)^5}\)
\(= {\left( {\frac{3}{5}} \right)^{15}}:{\left[ {{{\left( {\frac{3}{5}} \right)}^2}} \right]^5} = {\left( {\frac{3}{5}} \right)^{15}}:{\left( {\frac{3}{5}} \right)^{2.5}} = {\left( {\frac{3}{5}} \right)^{15}}:{\left( {\frac{3}{5}} \right)^{10}}\)
\(= {\left( {\frac{3}{5}} \right)^{15 - 10}} = {\left( {\frac{3}{5}} \right)^5} = \frac{{243}}{{3125}}\)
d) \({\left( {1 - \frac{1}{3}} \right)^8}:{\left( {\frac{4}{9}} \right)^3} = {\left( {\frac{2}{3}} \right)^8}:{\left( {\frac{4}{9}} \right)^3} = {\left( {\frac{2}{3}} \right)^8}:{\left( {\frac{{{2^2}}}{{{3^2}}}} \right)^3}\)
\(= {\left( {\frac{2}{3}} \right)^8}:{\left[ {{{\left( {\frac{2}{3}} \right)}^2}} \right]^3} = {\left( {\frac{2}{3}} \right)^8}:{\left( {\frac{2}{3}} \right)^6} = {\left( {\frac{2}{3}} \right)^{8 - 6}} = {\left( {\frac{2}{3}} \right)^2} = \frac{4}{9}\)
Bài 9 trang 21 SGK Toán 7 tập 1
Tính giá trị các biểu thức:
a) \(\frac{{{4^3}{{.9}^7}}}{{{{27}^5}{{.8}^2}}}\)
c) \(\frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,09} \right)}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}}\)
b) \(\frac{{{{\left( { - 2} \right)}^3}.{{\left( { - 2} \right)}^7}}}{{{{3.4}^6}}}\)
d) \(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}}\)
Hướng dẫn giải:
a) \(\frac{{{4^3}{{.9}^7}}}{{{{27}^5}{{.8}^2}}} = \frac{{{{\left( {{2^2}} \right)}^3}.{{\left( {{3^2}} \right)}^7}}}{{{{\left( {{3^3}} \right)}^5}.{{\left( {{2^3}} \right)}^2}}} = \frac{{{2^{2.3}}{{.3}^{2.7}}}}{{{3^{3.5}}{{.2}^{3.2}}}} = \frac{{{2^6}{{.3}^{14}}}}{{{3^{15}}{{.2}^6}}} = \frac{{{3^{14}}}}{{{3^{15}}}} = \frac{1}{3}\)
b) \(\frac{{{{\left( { - 2} \right)}^3}.{{\left( { - 2} \right)}^7}}}{{{{3.4}^6}}} = \frac{{{{\left( { - 2} \right)}^{3 + 7}}}}{{3.{{\left( {{2^2}} \right)}^6}}} = \frac{{{{\left( { - 2} \right)}^{10}}}}{{{{3.2}^{2.6}}}} = \frac{{{2^{10}}}}{{{{3.2}^{12}}}} = \frac{1}{{{{3.2}^2}}} = \frac{1}{{12}}\)
c) \(\frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,09} \right)}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}} = \frac{{{{\left( {0,2} \right)}^5}.{{\left[ {{{\left( {0,3} \right)}^2}} \right]}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}} = \frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,3} \right)}^{2.3}}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}}\)
\(= \frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,3} \right)}^6}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}} = \frac{{{{\left( {0,3} \right)}^2}}}{{{{\left( {0,2} \right)}^2}}} = {\left( {\frac{{0,3}}{{0,2}}} \right)^2} = {\left( {\frac{3}{2}} \right)^2} = \frac{9}{4}\)
d) \(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}} = \frac{{8 + 16 + 32}}{{49}} = \frac{{56}}{{49}} = \frac{8}{7}\)
Bài 10 trang 21 SGK Toán 7 tập 1
a) Khối lượng của Trái Đất khoảng 5,97 . 1024 kg, khối lượng của Mặt Trăng khoảng 7,35 . 1022 kg. Tính tổng khối lượng của Trái Đất và Mặt Trăng.
b) Sao Mộc cách Trái Đất khoảng 8,27 . 108 km, Sao Thiên Vương cách Trái Đất khoảng 3,09 . 109 Sao nào ở gần Trái Đất hơn?
Hướng dẫn giải:
a) Ta có: 5,97.1024kg = 597.1022kg
Tổng khối lượng của Trái Đất và Mặt Trăng là:
597.1022 + 7,35.1022 = (597 + 7,35).1022 = 604,35.1022 (kg)
Vậy tổng khối lượng của Trái Đất và Mặt Trăng là 604,35.1022kg.
b) Ta có: 3,09.109km = 30,9.108km.
Vì 30,9 > 8,27 nên 30,9.108 > 8,27.108 do đó 8,27.108km < 3,09.109km nên sao Mộc gần Trái Đất hơn.
Bài tiếp theo: Bài 4: Quy tắc dấu ngoặc và quy tắc chuyển vế