Thu gọn biểu thức lũy thừa
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 12 nha!
Thu gọn biểu thức lũy thừa
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Đếm số hình đa diện
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Tính đường kính của mặt cầu
Cho các điểm
và
và đường thẳng
. Gọi
là mặt cầu đi qua A, B và có tâm thuộc đường thẳng d. Đường kính mặt cầu
bằng:
Gọi trên d vì
đường kính là
Chọn đáp án đúng
Cho hàm số
có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên và
.
Tìm cực đại của hàm số
Cho hàm số
có đạo hàm
. Tìm số điểm cực đại của hàm số đã cho.
Ta có:
Ta có bảng xét dấu:
Suy ra hàm số có một điểm cực đại.
Tính thể tích đa diện
Cho khối lăng trụ
có thể tích bằng
, các điểm
lần lượt thuộc các cạnh
sao cho
. Thể tích của khối đa diện
là bao nhiêu? (Đơn vị:
)
31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối
Cho khối lăng trụ
có thể tích bằng
, các điểm
lần lượt thuộc các cạnh
sao cho
. Thể tích của khối đa diện
là bao nhiêu? (Đơn vị:
)
31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối
Ta có
Nên
Mà
.
Vậy .
Tìm tham số m thỏa mãn yêu cầu
Gọi
là giá trị nhỏ nhất của hàm số
trên khoảng
. Tìm
.
Cách 1:
Hàm số liên tục và xác định trên
.
Ta có
.
Bảng biến thiên
Vậy giá trị nhỏ nhất là khi
Cách 2:
Với
Áp dụng bất đẳng thức Cô si ta có:
Dấu bằng xảy ra khi và chỉ khi Vậy
khi
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề nào sau đây là mệnh đề sai?
Ta thấy:
Do vậy đồ thị của hàm số không có tiệm cận đứng
Mệnh đề nào sau đây đúng
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Tìm m để BPT mũ có nghiệm thỏa mãn
Cho bất phương trình:
. Tìm tất cả các giá trị của tham số để bất phương trình (1) nghiệm đúng
.
Đặt .
Vì . Bất phương trình đã cho thành:
nghiệm đúng
nghiệm đúng
.
Xét hàm số: .
Hàm số đồng biến trên và
. Yêu cầu bài toán tương đương
.
Chọn đáp án thích hợp
Tập hợp tất cả các giá trị của tham số
để hàm số
nghịch biến trên
là:
Đặt
Điều kiện xác định
Xét hàm ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy hàm số nghịch biến trên khoảng
và
Khi đó yêu cầu bài toán đồng biến trên
Điều kiện xác định
Ta có:
Để hàm số đồng biến trên thì
Vậy đáp án cần tìm là
Tính giá trị của biểu thức M = a – b
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Tính V
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Xác định hàm số đồng biến trên D
Tìm hàm số luôn đồng biến trên từng khoảng xác định?
Xét hàm số
Tập xác định . Ta có:
Vậy hàm số đồng biến trên các khoảng .
Tính V lăng trụ biết V chóp
Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Ghi đáp án vào ô trống
Cho hàm số
và đồ thị của hàm số
như hình vẽ sau:

Hàm số
có bao nhiêu điểm cực trị?
Cho hàm số
và đồ thị của hàm số
như hình vẽ sau:

Hàm số
có bao nhiêu điểm cực trị?
Tìm các số thực dương m theo yêu cầu bài toán
Cho hàm số
. Tìm số thực dương
để đường thẳng
cắt đồ thị hàm số tại
điểm phân biệt
,
sao cho tam giác
vuông tại
, trong đó
là gốc tọa độ.
Hoành độ giao điểm của hai đồ thị hàm số là nghiệm của phương trình:
.
Vì hay phương trình
luôn có hai nghiệm phân biệt thỏa mãn:
và
.
Khi đó: ,
.
Ta có tam giác vuông tại
, trong đó
là gốc tọa độ
.
.
Vậy là giá trị cần tìm.
Hàm số nào nghịch biến trên tập số thực?
Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?
Ta có:
là các hàm số không xác định trên
Vì nghịch biến trên
Tính V biết tổng diện tích
Cho hình chóp
có đáy
là hình vuông cạnh
,
và
. Tổng diện tích hai tam giác
và
bằng
. Tính thể tích
của khối chóp
?

Gọi lần lượt là trung điểm của
và
.
Tam giác cân tại
suy ra
với
.
Vì suy ra
và
Kẻ
Ta có
Tam giác vuông tại
nên
Giải hệ:
hoặc
Vậy thể tích khối chóp
Ghi đáp án vào ô trống
Cho phương trình
, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?
Đáp án: 5
Cho phương trình
, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?
Đáp án: 5
ĐKXĐ:
Ta có:
Để phương trình có nghiệm thì .
Kết hợp điều kiện m là số nguyên dương ta có m ∈ {1;2;3;4;5}.
Vậy có 5 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Tìm số cực trị của hàm số lũy thừa
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có ba điểm cực trị
Ghi đáp án vào ô trống
Cho hàm số
. Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho hàm số
. Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
V lăng trụ đứng
Cho khối lăng trụ đứng
có
, đáy
là tam giác vuông cân tại
và
. Tính thể tích của khối lăng trụ đã cho.

Tam giác vuông cân tại
,
suy ra
Vậy thể tích khối lăng trụ
Xác định tập hợp tham số m thỏa mãn yêu cầu
Tập hợp tất cả các giá trị của tham số
để hàm số
đạt cực tiểu tại
là:
Ta có:
Trường hợp 1: . Khi đó ta có bảng xét dấu như sau:
Dựa vào bảng biến thiên ta thấy là điểm cực đại nên trường hợp này không thỏa mãn.
Trường hợp 2: ta có bảng xét dấu như sau:
Dựa vào bảng biến thiên ta thấy là điểm cực tiểu. Vậy
thỏa mãn yêu cầu bài toán.
Tìm tập nghiệm của BPT logarit
Bất phương trình
có tập nghiệm là:
Điều kiện:
Ta có:
Vậy BPT đã cho có tập nghiệm là .
Tính
Gọi
là 2 nghiệm của phương trình
.
Khi đó
bằng:
Ta có:
Suy ra .
Điều kiện xác định
Điều kiện xác định của phương trình
là:
Biểu thức và xác định
Khẳng định nào sau đây đúng?
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Chọn câu đúng
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Giải BPT
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Ghi đáp án vào ô trống
Bác H cần xây dựng một bể nước mưa có thể tích
dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Bác H cần xây dựng một bể nước mưa có thể tích
dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Chọn phương án thích hợp
Viết phương trình mặt cầu (S) qua ba điểm
có tâm nằm trong mặt phẳng (xOy)
Ta có:
vì tâm
Mênh đề đúng?
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Tập xác định của hàm số f(x)
Tập xác định của hàm số
là:
Hàm số xác định khi
Vậy tập xác định của hàm số là
Xác định tiệm cận ngang của đồ thị hàm số
Tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình?
Ta có: nên tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Tính giá trị của biểu thức P
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Xác định tọa độ điểm thuộc mặt cầu
Mặt cầu
đi qua điểm có tọa độ nào sau đây?
Lần lượt thay tọa độ các điểm vào phương trình mặt cầu. Tọa độ điểm nào thỏa mãn phương trình thì điểm đó thuộc mặt cầu.
Kiểm tra đáp án thu được kết quả là: điểm thuộc mặt cầu đã cho.
Giá trị của biểu thức
Giá trị của biểu thức ![]()
Ta có:
Diện tích xung quanh
Cho hình nón đỉnh S có bán kính đáy
, góc ở đỉnh bằng
. Diện tích xung quanh của hình nón bằng:

Theo giả thiết, ta có và
.
Suy ra độ dài đường sinh:
Vậy diện tích xung quanh bằng: (đvdt).
Tìm hàm số tương ứng với đồ thị
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
nên chọn
.
Tính bán kính đáy
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Chọn phương án thích hợp
Dân số thế giới được tính theo công thức
. e
trong đó
là dân số của năm lấy làm mốc tính,
là dân số sau
năm,
là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là
một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?
Ta có:
Với người;
người;
năm.
Suy ra .
Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.
Khẳng định nào sau đây sai?
Cho hàm số
. Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Chọn đáp án đúng
Số dân số của một thị trấn sau
năm kể từ năm 1970 được ước tính bởi công thức
(
được tính bằng nghìn người). Biết rằng đạo hàm của hàm số
biểu thị tốc độ gia tăng dân số của thị trấn ( đơn vị là nghìn người/ năm). Vào năm nào thì tốc độ gia tăng dân số là
nghìn người/ năm?
Ta có
Lại có
Vậy dự báo vào năm 1995 thì tốc độ gia tăng dân số là nghìn người/ năm.
Viết biểu thức P dưới dạng lũy thừa với số mũ hữu tỉ
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Tính giá trị của biểu thức M
Cho hàm số
. Tính giá trị của biểu thức ![]()
Với ta có:
Ta có: do đó:
Tìm số giá trị nguyên của tham số m
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ. Số giá trị nguyên của tham số
để phương trình
có đúng 6 nghiệm phân biệt thuộc đoạn
là

Ta có
(1)
* Với
Dựa vào đồ thị ta có
Vì
* Với
Đặt
Với thì phương trình
có hai nghiệm phân biệt thuộc
.
Với thì phương trình
có một nghiệm thuộc
Phương trình trở thành
Để phương trình (1) có tất cả 6 nghiệm phân biệt thì phương trình có 4 nghiệm phân biệt, hay phương trình
có hai nghiệm
Dựa vào đồ thị ta có để phương trình có hai nghiệm
thì
Vì nguyên nên
Vậy có 2 giá trị nguyên của thỏa mãn.
Ghi đáp án vào ô trống
Cho hàm số
với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Cho hàm số
với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Tính giá trị của biểu thức
Biết bất phương trình
có tập nghiệm là đoạn [a; b]. Giá trị biểu thức
bằng:
Điều kiện .
Đặt
Ta có:
Suy ra tập nghiệm là .
Chọn khẳng định đúng
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: