Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Mặt trụ - Mặt nón - Mặt cầu Toán 12 các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tìm m

    Với giá trị nào của m thì mặt phẳng \left( Q ight):x + y + z + 3 = 0 cắt mặt cầu

    \left( S ight):{x^2} + {y^2} + {z^2} - 2\left( {m + 1} ight)x + 2my - 2mz + 2{m^2} + 9 = 0?

    Theo đề bài, ta xác định các hệ số của (S):

    a = m + 1;b =  - m;c = m;d = 2{m^2} + 9.

    Suy ra tâm I có tọa độ là I\left( {m + 1, - m,m} ight)

    \Rightarrow {R^2} = {\left( {m + 1} ight)^2} + {m^2} + {m^2} - 2{m^2} - 9 = {m^2} + 2m - 8 > 0

    \Rightarrow m <  - 4 \vee m > 2

    (P) cắt (S) khi:

    d\left( {I,P} ight) < R \Leftrightarrow \frac{{\left| {m + 4} ight|}}{{\sqrt 3 }} < \sqrt {{m^2} + 2m - 8}  \Leftrightarrow m <  - 4 \vee m > 5

  • Câu 2: Nhận biết

    Diện tích toàn phần

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 3: Thông hiểu

    Tìm tham số m thỏa mãn điều kiện

    Với giá trị nào của m thì mặt cầu (S):x^{2} + y^{2} + z^{2} + 4x - 2my +
4mz + 4m^{2} + 3m + 2 = 0 tiếp xúc trục z'Oz.

    (S) có tâm I( - 2,m, - 2m), bán kính R = \sqrt{m^{2} - 3m + 2},m < 1 hoặc m > 2

    Hình chiếu A của I trên z’Oz là tiếp điểm của (S) và z’Oz \Rightarrow A(0,0, - 2m)

    Ta có: d(I,z'Oz) = AI = \sqrt{4 +
m^{2}} = R = \sqrt{m^{2} - 3m + 2}

    \Leftrightarrow 4 + m^{2} = m^{2} - 3m +
2 \Leftrightarrow m = - \frac{2}{3}

  • Câu 4: Nhận biết

    Thể tích khối trụ

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 5: Nhận biết

    Tìm tọa độ tâm mặt cầu (S)

    Mặt cầu (S):(x + y)^{2} = 2xy - z^{2} + 1
- 4x có tâm là:

    Biến đổi (x + y)^{2} = 2xy - z^{2} + 1 -
4x \Leftrightarrow x^{2} + y^{2} + z^{2} + 4x - 1 = 0.

    Vậy mặt cầu có tâm I( -
2;0;0).

  • Câu 6: Nhận biết

    Tính đường kính mặt cầu

    Cho các điểm A(1;3;1)B(3;2;2). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oz có đường kính là:

    Gọi I(0;0;t) trên OzIA = IB \Rightarrow t = 3 \Rightarrow
I(0;0;3)

    \Rightarrow R = IA = \sqrt{14}
\Rightarrow đường kính là: 2\sqrt{14}.

  • Câu 7: Thông hiểu

    Tính đường cao

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 8: Vận dụng cao

    Tìm giá trị lớn nhất của V

    Trong không gian Oxyz, cho mặt cầu (S): x^2 +y^2 +z^2 −2x+ 2z −2 = 0 và các điểm A(0; 1; 1), B(−1; −2; −3), C(1; 0; −3). Điểm D thuộc mặt cầu (S). Thể tích lớn nhất của tứ diện ABCD bằng:

    Mặt cầu (S) có tâm là I(1; 0; −1) và bán kính R = 2.

    Khi V_{DABC} lớn nhất thì \frac{V_{DABC}}{V_{IABC}} = \frac{d\left( D;(ABC)
ight)}{d\left( I;(ABC) ight)} = \frac{R + d\left( I;(ABC)
ight)}{d\left( I;(ABC) ight)}

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1; - 3; - 4) \\
\overrightarrow{AC} = (1; - 1; - 4) \\
\overrightarrow{AI} = (1; - 1; - 2) \\
\end{matrix} ight. suy ra:

    V_{IABC} = \frac{1}{6}\left|
\left\lbrack \left\lbrack \overrightarrow{AB};\overrightarrow{AC}
ightbrack.\overrightarrow{AI} ightbrack ight| =
\frac{4}{3}

    \Rightarrow d\left( I;(ABC) ight) =
\frac{6.V_{IABC}}{\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack ight|} =
\frac{2}{3}

    \Rightarrow V_{DABC} =\dfrac{4}{3}.\dfrac{2 + \dfrac{2}{3}}{\dfrac{2}{3}} =\dfrac{16}{3}.

  • Câu 9: Thông hiểu

    Chọn phương án đúng

    Tính bán kính của đường tròn giao tuyến của mặt phẳng (P):x - 2y + 2z - 3 = 0 và mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x - 2y + 6z - 2 =
0

    (S) có tâm I(2,1, - 3), bán kính R = 4

    \Rightarrow d(I,P) = 3 =
IH,IH\bot(P)

    \Rightarrow r^{2} = R^{2} - IH^{2} = 16 -
9 = 7 \Rightarrow r = \sqrt{7}.

  • Câu 10: Thông hiểu

    Tính tang của góc

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 11: Thông hiểu

    Chọn đáp án đúng

    Cho điểm I(1;0;0)và đường thẳng d:\frac{x - 1}{1} = \frac{y - 1}{2} =
\frac{z + 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:

    Đường thẳng d đi qua M(1;\ 1; - 2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên d

    Ta có : IH = d(I;AB) = \frac{\left|\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{5}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 10.

    Vậy phương trình mặt cầu là : (x - 1)^{2}
+ y^{2} + z^{2} = 10.

  • Câu 12: Nhận biết

    Diện tích và Thể tích

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 13: Thông hiểu

    Diện tích toàn phần

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 14: Thông hiểu

    Tìm các giá trị tham số m thỏa mãn yêu cầu

    Trong không gian Oxyz, cho mặt cầu (S):(x + 3)^{2} + (y - 1)^{2} + (z +
1)^{2} = 3 và mặt phẳng (\alpha):(m
- 4)x + 3y - 3mz + 2m - 8 = 0. Với giá trị nào của tham số m thì mặt phẳng tiếp xúc với mặt cầu?

    Mặt cầu (S) có tâm I(−3; 1; −1) và bán kính R = \sqrt{3}

    Mặt phẳng (α) tiếp xúc với (S) khi và chỉ khi

    d\left( I;(P) ight) = R

    \Leftrightarrow \frac{\left| (m - 4).( -
3) + 3.1 - 3m.( - 1) + 2m - 8 ight|}{\sqrt{(m - 4)^{2} + 3^{2} + ( -
3m)^{2}}} = \sqrt{3}

    \Leftrightarrow \frac{|2m +
7|}{\sqrt{10m^{2} - 8m + 25}} = \sqrt{3}

    \Leftrightarrow 26m^{2} - 52m + 26 = 0
\Leftrightarrow m = 1

    Vậy đáp án cần tìm là: m =
1.

  • Câu 15: Thông hiểu

    Thể tích của khối trụ

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 16: Thông hiểu

    Xác định phương trình mặt cầu

    Phương trình mặt cầu có tâm I\left(
\sqrt{5};3;9 \right) và tiếp xúc trục hoành là:

    Gọi H là hình chiếu của I\left(
\sqrt{5};3;9 \right) trên Ox

    \Rightarrow H\left( \sqrt{5};0;0 \right)
\Rightarrow R = IH = \sqrt{90}

    Vậy phương trình mặt cầu là: \left( x -
\sqrt{5} \right)^{2} + (y - 3)^{2} + (z - 9)^{2} = 90.

  • Câu 17: Vận dụng

    Tính thể tích khối trụ

    Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng:

     Tính thể tích khối trụ

    Kẻ đường sinh AA’, gọi D là điểm đối xứng với A’ qua tâm O’ và H là hình chiếu của B trên A’D.

    Ta có BH \bot \left( {AOO'A'} ight) nên {V_{OO'AB}} = \frac{1}{3}{S_{\Delta AOO'}}.BH.

    Trong tam giác vuông A'AB có A'B = \sqrt {A{B^2} - AA{'^2}}  = \sqrt 3 a.

    Trong tam giác vuông A'BD có BD = \sqrt {A'{D^2} - A'{B^2}}  = a.

    Do đó suy ra tam giác BO'D nên BH = \frac{{\sqrt 3 a}}{2}.

    Vậy  {V_{OO'AB}} = \frac{1}{3}.\left( {\frac{1}{2}{a^2}} ight).\frac{{a\sqrt 3 }}{2} = \frac{{\sqrt 3 {a^3}}}{{12}} (đvtt).

  • Câu 18: Vận dụng

    Tìm tọa độ giao điểm theo yêu cầu

    Cho mặt cầu (S): x^{2} + y^{2} + z^{2} -
4x + 6y + 2z - 2 = 0 và điểm A( -
6, - 1,3). Gọi M là tiếp điểm của (S) và tiếp tuyến di động (d) qua A. Tính tọa độ giao điểm của AI và mặt cầu (S).

    Ta có:

    \overrightarrow{AI} = 2(4, - 1, - 2)\Rightarrow AI:x = 2 + 4t;y = - 3 - t;z = - 1 - 2t,\ \ t\mathbb{\in
R}

    AI cắt (S) \Rightarrow(2 + 4t)^{2} + (3 + t)^{2} + (1 +
2t)^{2}- 4(2 + 4t) + 6( - 3 - t) + 2( - 1 - 2t) - 2 = 0

    \Leftrightarrow 21t^{2} - 16 = 0
\Leftrightarrow t = \pm \frac{4\sqrt{21}}{21}

    \Rightarrow Hai giao điểm \left( 2 \pm \frac{16\sqrt{21}}{21}; - 3 \mp
\frac{4\sqrt{21}}{21}; - 1 \mp \frac{8\sqrt{21}}{21}
\right)

  • Câu 19: Vận dụng cao

    Chọn đáp án đúng

    Trong không gian Oxyz, cho 3 điểm A(0;0;1),B(0;2;2)C(3; - 1; - 1). Gọi \left( S_{1} \right) là mặt cầu tâm A bán kính bằng 1 và \left( S_{2} \right) là mặt cầu tâm B bán kính bằng 3. Hỏi có tất cả bao nhiêu mặt phẳng đi qua C và tiếp xúc đồng thời với cả hai mặt cầu \left( S_{1} \right),\left( S_{2}
\right)?

    Phương trình mặt phẳng qua C có dạng (P):m(x - 3) + n(y + 1) + p(z + 1) = 0,m^{2} +
n^{2} + p^{2} > 0.

    Mặt phẳng (P) tiếp xúc \left( S_{1} \right) ta có | - 3m + n + 2p| = \sqrt{m^{2} + n^{2} +
p^{2}} (1)

    Mặt phẳng (P) tiếp xúc \left( S_{2} \right) ta có | - 3m + 3n + 3p| = 3\sqrt{m^{2} + n^{2} +
p^{2}} (2)

    Từ đây ta có phương trình

    | - 3m + 3n + 3p| = 3| - 3m + n +
2p|

    \Leftrightarrow \left\lbrack
\begin{matrix}
p = 2m\ \ \ (3) \\
3p = 4m - 2n\ \ \ (4)
\end{matrix} \right.

    Từ (1), (3) ta có:

    |m + n| = \sqrt{5m^{2} + n^{2}}
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
n = 2m
\end{matrix} \right.

    Trường hợp này ta tìm được hai mặt phẳng:

    \left( P_{1} \right):y + 1 =
0

    \left( P_{2} \right):x + 2y + 2z + 1 =
0

    Từ (1); (4) ta có:

    4m^{2} - 3mn + 2n^{2} = 0 \Leftrightarrow m - n = 0

    Trường hợp này không có mặt phẳng nào.

  • Câu 20: Vận dụng

    Chọn phương án thích hợp

    Viết phương trình mặt cầu (S) qua ba điểm A(2,0,1);\ \ \ B(1,3,2);\ \ \ C(3,2,0) có tâm nằm trong mặt phẳng (xOy)

    Ta có:

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by + d
= 0 vì tâm I \in (xOy) \Rightarrow c = 0

    A,\ B,\ C \in (S)\Rightarrow \left\{
\begin{matrix}
4a - d = 5 \\
2a + 6b - d = 14 \\
6a + 4b - d = 13 \\
\end{matrix} \right.\Rightarrow \left\{ \begin{matrix}
2a - 6b = - 9 \\
2a + 4b = 8 \\
\end{matrix} \right.

    \Rightarrow a = \frac{3}{5};\ \ b =
\frac{17}{10};\ \ c = 0;\ \ d = - \frac{13}{5}

    \Rightarrow (S):x^{2} + y^{2} + z^{2} -
\frac{6x}{5} - \frac{17y}{5} - \frac{13}{5} = 0

  • Câu 21: Nhận biết

    Diện tích toàn phần

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 22: Vận dụng

    Thể tích của khối nón

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \frac{a}{2}. Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:

     Thể tích khối nón

    Gọi E là trung điểm của BC, dựng OH \bot SE tại H.

    Chứng minh được OH \bot \left( {SBC} ight) nên suy ra OH = d\left[ {O,\left( {SBC} ight)} ight] = \frac{a}{2}.

    Trong tam giác đều ABC, ta có OE = \frac{1}{3}AE = \frac{1}{3}.\frac{{2a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}

    và  OA = \frac{2}{3}AE = \frac{{2a\sqrt 3 }}{3}

    Trong tam giác vuông SOE, ta có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{S{O^2}}} \Rightarrow \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{1}{{{a^2}}} \Rightarrow SO = a.

    Vậy thể tích khối nón V = \frac{1}{3}\pi O{A^2}.SO = \frac{1}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} ight)^2}.a = \frac{{4\pi {a^3}}}{9}  (đvtt).

  • Câu 23: Thông hiểu

    Tính độ dài cạnh

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 24: Thông hiểu

    Tính khoảng cách

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 25: Nhận biết

    Xác định đường kính của mặt cầu

    Cho các điểm A(2;1; - 1)B(1;0;1). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oy có đường kính là:

     

    Gọi I(0;t;0) trên OyIA = IB \Rightarrow t = 2 \Rightarrow
I(0;2;0)

    \Rightarrow R = IA = \sqrt{6}
\Rightarrow đường kính bằng 2\sqrt{6}.

  • Câu 26: Vận dụng cao

    Tính khoảng cách lớn nhất

    Trong không gian Oxyz, , cho hai mặt cầu (S_1), (S_2) có phương trình lần lượt là (x − 2)^2 + (y − 1)^2 + (z − 1)^2 = 16(x − 2)^2 + (y − 1)^2 + (z − 5)^2 = 4. Gọi (P) là mặt phẳng thay đổi tiếp xúc với cả hai mặt cầu (S_1), (S_2). Tính khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P).

    Hình vẽ minh họa

    Mặt cầu (S1) có tâm I(2; 1; 1) và bán kính R_1 = 4.

    Mặt cầu (S2) có tâm J(2; 1; 5) và bán kính R_2 = 2.

    Gọi A, B lần lượt là hai tiếp điểm của (S1), (S2) với mặt phẳng (P).

    Gọi M là giao điểm của IJ với mặt phẳng (P). Ta có:

    \frac{MI}{MJ} = \frac{IA}{IB} =
2

    Suy ra J là trung điểm của IM, do đó M(2; 1; 9).

    Gọi véc-tơ pháp tuyến của mặt phẳng (P) là \overrightarrow{n} = (a;b;c),\left( a^{2} + b^{2}
+ c^{2} > 0 ight) khi đó phương trình của mặt phẳng (P) là

    a(x − 2) + b(y − 1) + c(z − 9) = 0

    Ta có:

    d\left( I;(P) ight) = 4
\Leftrightarrow \frac{|8c|}{\sqrt{a^{2} + b^{2} + c}} = 4

    \Leftrightarrow \frac{|c|}{\sqrt{a^{2} +
b^{2} + c}} = \frac{1}{2} \Leftrightarrow a^{2} + b^{2} =
3c^{2}

    \Leftrightarrow \left( \frac{a}{c}
ight)^{2} + \left( \frac{b}{c} ight)^{2} = 3\ \ \ (1)

    Mặt khác d\left( O;(P) ight) =
\frac{|2a + b + 9c|}{\sqrt{a^{2} + b^{2} + c^{2}}} = \frac{|2a + b +
9c|}{2c} = \frac{1}{2}\left| \frac{2a}{c} + \frac{b}{c} + 9 ight|\ \ \
(2)

    Áp dụng bất đẳng thức Bunhiacopxki ta có

    \left( \frac{2a}{c} + \frac{b}{c}
ight)^{2} \leq \left( 2^{2} + 1^{2} ight)\left\lbrack \left(
\frac{a}{c} ight)^{2} + \left( \frac{b}{c} ight)^{2} ightbrack\
\ \ (3)

    Từ (1) và (3) ta có: \left( \frac{2a}{c}
+ \frac{b}{c} ight)^{2} \leq 15 \Leftrightarrow - \sqrt{15} \leq
\frac{2a}{c} + \frac{b}{c} \leq \sqrt{15}\ \ (4)

    Từ (2) và (4) suy ra:

    \frac{9 - \sqrt{15}}{2} \leq d\left(
O;(P) ight) \leq \frac{9 + \sqrt{15}}{2}

    Vậy khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P) bằng \frac{9 + \sqrt{15}}{2}.

  • Câu 27: Thông hiểu

    Viết phương trình mặt cầu

    Cho các điểm I(1;1; - 2) và đường thẳng d:\left\{ \begin{matrix}
x = - 1 + t \\
y = 3 + 2t \\
z = 2 + t \\
\end{matrix} \right.. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:

    Đường thẳng d đi qua M( - 1;\ 3;2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên d.

    Ta có : IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{18}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 36.

    Vậy phương trình mặt cầu là: (x - 1)^{2}
+ (y - 1)^{2} + (z + 2)^{2} = 36.

  • Câu 28: Nhận biết

    Viết phương trình mặt cầu

    Mặt cầu (S) tâm I(3; - 3;1) và đi qua A(5; - 2;1)có phương trình:

    Bán kính mặt cầu là: R = IA = \sqrt{2^{2}
+ 1^{2} + 0^{2}} = \sqrt{5}

    Vậy ph­ương trình của mặt cầu là: (S):(x -
3)^{2} + (y + 3)^{2} + (z - 1)^{2} = 5.

  • Câu 29: Thông hiểu

    Tỉ số diện tích

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 30: Thông hiểu

    Độ dài đường chéo

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 31: Vận dụng

    Tính bán kính r của đường tròn (C)

    Trong không gian cho đường tròn (C):\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 4x + 6y + 6z + 17 = 0 \\
x - 2y + 2z + 1 = 0 \\
\end{matrix} \right.

    Bán kính r của đường tròn (C) bằng:

    Cùng đề trên nên có bán kính mặt cầu là R
= \sqrt{5} .

    Khoảng cách từ I đến thiết diện là h =
\frac{\left| 2 - 2( - 3) + 2( - 3) + 1 \right|}{\sqrt{1^{2} + ( - 2)^{2}
+ 2^{2}}} = 1 .

    \Rightarrow Bán kính của (C) là: r =
\sqrt{R^{2} - r^{2}} = 2.

  • Câu 32: Nhận biết

    Tìm tọa độ tâm và bán kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    Ta có:

    x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    \Leftrightarrow (x - 4)^{2} + (y +
1)^{2} + z^{2} = 16

    Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là: I(4; - 1;0),R = 4

  • Câu 33: Vận dụng

    Diện tích của thiết diện

    Một hình nón có bán kính đáy R, góc ở đỉnh là 60^0. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo 90^0 . Diện tích của thiết diện là:

     Diện tích của thiết diện

    Vì góc ở đỉnh là 60^0nên thiết diện qua trục SAC là tam giác đều cạnh 2R.

    Suy ra đường cao của hình nón là SI = R\sqrt 3.

    Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng 90^0 nên IAB là tam giác vuông cân tại I, suy ra AB = R\sqrt 2.

    Gọi M là trung điểm của AB thì \left\{ \begin{array}{l}IM \bot AB\\SM \bot AB\end{array} ight.IM = \frac{{R\sqrt 2 }}{2}.

    Trong tam giác vuông SIM, ta có SM = \sqrt {S{I^2} + I{M^2}}  = \frac{{R\sqrt {14} }}{2}

    Vậy {S_{\Delta SAB}} = \frac{1}{2}AB.SM = \frac{{{R^2}\sqrt 7 }}{2} (đvdt).

  • Câu 34: Vận dụng

    Diện tích của thiết diện

    Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng \frac{3a}{2}. Diện tích của thiết diện đó bằng?

    Xét hình nón đỉnh S có chiều cao SO=2a, bán kính đáy OA=3a .

    Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.

    Diện tích thiết diện

    Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ OH\bot SI,H\in SI

    Ta có: 

     +\left\{\begin{matrix}AB\bot O I\\AB\bot S O\\\end{matrix}\Rightarrow A B\bot(SOI)\Rightarrow A B\bot O Hight.

    +\left\{\begin{matrix}OH\bot S I\\OH\bot A B\\\end{matrix}\Rightarrow O H\bot(SAB)\Rightarrow d(O,(SAB))=OH=\frac{3a}{2}ight.

    Xét tam giác SOI vuông tại O, ta có

    \frac{1}{OI^2}=\frac{1}{OH^2}-\frac{1}{SO^2}=\frac{4}{9a^2}-\frac{1}{4a^2}=\frac{7}{36a^2}\Rightarrow OI=\frac{6a}{\sqrt7}.

    SI=\sqrt{SO^2+OI^2}=\sqrt{4a^2+\frac{36a^2}{7}}=\frac{8a}{\sqrt7}.

    Xét tam giác AOI vuông tại I, có: 

    AI=\sqrt{AO^2-OI^2}=\sqrt{9a^2-\frac{36a^2}{7}}=\frac{3\sqrt3a}{\sqrt7}

    \Rightarrow AB=2AI=\frac{6\sqrt3a}{\sqrt7}

    Vậy diện tích của thiết diện là:

    S_{\triangle S A B}=\frac{1}{2}\cdot SI\cdot AB=\frac{1}{2}\cdot\frac{8a}{\sqrt7}\cdot\frac{6\sqrt3a}{\sqrt7}=\frac{24a^2\sqrt3}{7}.

  • Câu 35: Thông hiểu

    Tính bán kính đáy

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 36: Nhận biết

    Độ dài đường sinh

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 37: Vận dụng

    Viết phương trình mặt cầu

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG}trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Viết phương trình mặt cầu \left( S_{2} \right) nội tiếp hình lập phương.

    \left( S_{2} \right) có tâm I\left( \frac{1}{2},\frac{1}{2},\frac{1}{2}
\right) là trung điểm của 3 đoạn nối trung điểm các mặt đối diện đôi một có độ dài cạnh bằng 1. Bán kính R_{1} = \frac{1}{2}

    \Rightarrow \left( S_{2} \right):\left(
x - \frac{1}{2} \right)^{2} + \left( y - \frac{1}{2} \right)^{2} +
\left( z - \frac{1}{2} \right)^{2} = \frac{1}{4}

    \Rightarrow \left( S_{2} \right):x^{2} +
y^{2} + z^{2} - x - y - z + \frac{1}{2} = 0

  • Câu 38: Vận dụng cao

    Thể tích khối cầu nội tiếp hình nón

    Cho hình nón có bán kính đáy là 5a , độ dài đường sinh là 13a. Thể tích khối cầu nội tiếp hình nón bằng:

    Thể tích khối cầu nội tiếp hình nón

    Xét mặt phẳng qua trục SO của hình nón ta được thiết diện là tam giác cân SAB.

    Mặt phẳng đó cắt mặt cầu theo đường tròn có bán kính r (bán kính mặt cầu) và nội tiếp trong tam giác cân SAB.

    Trong tam giác vuông SOB, gọi I là giao điểm của đường phân giác trong góc B với đường thẳng SO.

    Chứng minh được I là tâm đường tròn nội tiếp tam giác và bán kínhr =IO=IE  (E là hình chiếu vuông góc của I trên SB).

    Theo tính chất phân giác, ta có \frac{{IS}}{{IO}} = \frac{{BS}}{{BO}} = \frac{{13}}{5}.

    Lại có IS + IO = SO = \sqrt {S{B^2} - O{B^2}}  = 12.

    Từ đó suy ra IS = \frac{{26}}{3},{m{ }}IO = \frac{{10}}{3}.

    Ta có \Delta SEI \backsim\Delta SOB  nên \frac{{IE}}{{IS}} = \frac{{BO}}{{BS}} = \frac{5}{{13}} \Rightarrow IE = \frac{5}{{13}}IS = \frac{{10}}{3}

    Thể tích khối cầu: V = \frac{4}{3}\pi {r^3} = \frac{4}{3}\pi {\left( {\frac{{10a}}{3}} ight)^3} = \frac{{4000\pi {a^3}}}{{81}} (đvtt).

  • Câu 39: Vận dụng cao

    Thể tích khối trụ

    Cho khối trụ có hai đáy là (O)\left(O^\primeight). AB,CD lần lượt là hai đường kính của (O)\left(O^\primeight), góc giữa ABCD bằng {30}^\circ,AB=6. Thể tích khối tứ diện ABCD bằng 30 . Thể tích khối trụ đã cho bằng?

     Thể tích trụ

    Ta chứng minh: V_{ABCD}=\frac{1}{6}AB\cdot CD\cdot d(AB,CD)\cdot\sin(AB,CD)..

    Lấy điểm E sao cho tứ giác BCDE là hình bình hành.

    Khi đó  (AB,CD)=(AB,BE)\Rightarrow\sin(AB,CD)=\sin(AB,BE)..

    Mà góc giữa ABCD bằng {30}^\circ,AB=6 nên ta có:

    \sin(AB,CD)=\sin(AB,BE)=\sin 30^0 =\frac 1 2

    Ta có d(D,(ABE))=d(AB, CD)

    V_{ABCD}=V_{ABDE}

    =\frac{1}{3}.d(D,(ABE)).S_{ABE}=\frac {1}{6} AB.CD.d(AB,CD).sin (AB,CD)

    Suy ra V_{ABCD}=\frac {1}{6} AB.CD.d(AB,CD).sin (AB,CD)

    Vậy d(AB,CD)=\dfrac{6V_{ABCD}}{AB.CD.\sin30^0}=\dfrac{180}{6.6.\dfrac{1}{2}}=10

    Chiều cao của lăng trụ bằng h = d(AB, CD)=10

    Áp dụng CT thể tích lăng trụ là: V=Sh=\pi .3^2.10=90 \pi

     

  • Câu 40: Thông hiểu

    Tính thể tích khối trụ

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo