Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề Ôn tập chương 3: Phương pháp tọa độ trong không gian (Khó)

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bộ đề Trắc nghiệm Ôn tập chương 3: Phương pháp tọa độ trong không gian Hình học 12 các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 30 câu
  • Điểm số bài kiểm tra: 30 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Vecto trung tuyến

    Trong không gian Oxyz cho tam giác ABC, biết: A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight). Tìm tọa độ vectơ trung tuyến \overrightarrow {AM}

    Hướng dẫn:

     Ta có A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight) nên suy ra được tọa độ 2 điểm tương ứng là:

    \overrightarrow {AB} \left\{ \begin{array}{l}x - {x_A} =  - 3\\y - {y_A} =  - 1\\z - {z_A} = 1\end{array} ight. \Rightarrow B\left( { - 1;3; - 2} ight);\,\,\,\,\,\,\,\,\,

    \overrightarrow {AC} \left\{ \begin{array}{l}x - {x_A} = 2\\y - {y_A} =  - 6\\z - {z_A} = 6\end{array} ight. \Rightarrow C\left( {4; - 2;3} ight)

    Vậy ta được: B\left( { - 1,3, - 2} ight);\,C(4, - 2,3).

    \overrightarrow {AM} là vecto trung tuyến của tam giác ABC nên M là trung điểm của BC. Suy ra M có tọa độ là: M\left( {\frac{3}{2},\frac{1}{2},\frac{1}{2}} ight).

    Suy ra ta có \overrightarrow {AM}  = \left( {\frac{3}{2} - 2,\frac{1}{2} - 4,\frac{1}{2} + 3} ight) = \left( { - \frac{1}{2},\frac{{ - 7}}{2},\frac{7}{2}} ight)

    Vậy \overrightarrow {AM}  = \left( { - \frac{1}{2}, - \frac{7}{2},\frac{7}{2}} ight).

  • Câu 2: Vận dụng
    Vị trí tương đối của đường thẳng và mặt phẳng

    Mặt phẳng \left( P ight):2x - 2y + 4z + 5 = 0  và đường thẳng (d):\left\{ \begin{array}{l}x - y + 2z + 1 = 0\\y + 2z - 3 = 0\end{array} ight. :   

    Hướng dẫn:

    Theo đề bài, ta có vecto pháp tuyến của \left( P ight):\overrightarrow n  = \left( {2, - 2,4} ight)

    Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: x - y + 2z + 1 = 02x + y - z - 3 = 0 cũng có 2 VTPT lần lượt \overrightarrow {{n_1}}  = \left( {1, - 1,2} ight);\overrightarrow {{n_2}}  = \left( {2,1, - 1} ight)

    Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT: \left( d ight):\overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 1,5,3} ight)

    \Rightarrow \overrightarrow n .\overrightarrow a  =  - 2 - 10 + 12 = 0

    Cho\,\,\,\,\,z = 0 \Rightarrow \left\{ \begin{array}{l}x - y =  - 1\\2x + y = 3\end{array} ight. \Rightarrow \left\{ \begin{array}{l}x = \dfrac{2}{3}\\y = \dfrac{5}{3}\end{array} ight.

    \Rightarrow A\left( {\frac{2}{3},\frac{5}{3},0} ight) \in \left( d ight) và tọa độ của A không thỏa mãn phương trình của (P).

    Vậy (d) // (P) .

  • Câu 3: Vận dụng
    Tìm m ?

    Với giá trị nào của thì hai mặt phẳng sau song song:

    \left( P ight):(m - 2)x - 3my + 6z - 6 = 0;\,\,\,\,\,\left( Q ight):(m - 1)x + 2y + (3 - m)z + 5 = 0

    Hướng dẫn:

    Áp dụng điều kiện để 2 mp song song, ta xét:

    {A_1}{B_2} - {A_2}{B_1} = \left( {m - 2} ight)2 + \left( {m - 1} ight)3m = 3{m^2} - m - 4 = 0

    \Leftrightarrow m =  - 1,m = \frac{4}{3}

    {B_1}{C_2} - {B_2}{C_1} =  - 3m\left( {3 - m} ight) - 2.6 = 3{m^2} - 9m - 12 = 0

    \Leftrightarrow m =  - 1,m = 4

    {C_1}{A_2} - {C_1}{A_1} = 6\left( {m - 1} ight) - \left( {3 - m} ight)\left( {m - 2} ight) = {m^2} + m = 0

    \Leftrightarrow m =  - 1,m = 0

    Với m=-1 thoả mãn cả 3 điều kiện trên \Rightarrow \left( P ight)//\left( Q ight)

  • Câu 4: Thông hiểu
    Chọn mênh đề đúng

    Cho ba điểm A\left( {10,9,12} ight);\,\,B\left( { - 20,3,4} ight);\,\,\,C\left( { - 50, - 3, - 4} ight). Cho 3 mệnh đề sau:

    MĐ 1:  A, B, C thẳng hàng

    MĐ 2: AB song song với (xOy)

    MĐ 3: AB cắt (xOy)

    Mệnh đề đúng là?

    Hướng dẫn:

    Ta có: \overrightarrow {AB}  = \left( { - 30, - 6, - 8} ight);\,\,\overrightarrow {AC}  = \left( { - 60, - 12, - 16} ight) \Rightarrow \overrightarrow {AC}  = 2\overrightarrow {AB}

    \Rightarrow A,B,C thẳng hàng 

    Vậy MĐ 1 Đúng!

    Giả sử AB và (xOy) có điểm chung M\left( {x,y,0} ight) \Rightarrow \overrightarrow {AM}\overrightarrow {AB} cùng phương

    \Rightarrow \frac{{x - 10}}{{ - 30}} = \frac{{y - 9}}{{ - 6}} = \frac{{ - 12}}{{ - 8}} = \frac{3}{2} \Rightarrow M\left( {x =  - 35,y = 0,z = 0} ight)

    Vậy MĐ 2 sai, MĐ 3 đúng!

  • Câu 5: Thông hiểu
    PT mp chứa giao tuyến

    Cho hai mặt phẳng (\alpha)(\beta) . Với  (\alpha) cho biết A\left( { - 1,2,1} ight) \in \left( \alpha  ight) và cặp vectơ chỉ phương \overrightarrow a  = \left( {2, - 1,3} ight);\overrightarrow b  = \left( { - 3,1, - 2} ight). Với (\beta) cho PTTQ \left( \beta  ight):2x + y - z + 1 = 0. Phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của (\alpha)(\beta) , qua điểm M\left( {3, - 2,1} ight) là:

    Hướng dẫn:

     Trước tiên, ta cần đưa phương trình (\alpha) về dạng tổng quát.

    Theo đề bài, ta có A\left( { - 1,2,1} ight) \in \left( \alpha  ight) và cặp vectơ chỉ phương \overrightarrow a  = \left( {2, - 1,3} ight);\overrightarrow b  = \left( { - 3,1, - 2} ight) nên vecto pháp tuyến của mp (\alpha) là tích có hướng của 2 vecto chỉ phương.

    Ta có \left[ {\overrightarrow a ,\overrightarrow b } ight] = \left( { - 1, - 5, - 1} ight).

    Chọn \overrightarrow n  = \left( {1,5,1} ight) làm vectơ pháp tuyến cho (\alpha) thì phương trình tổng quát của (\alpha) có dạng x + 5y + z + D = 0

    A \in \left( \alpha  ight) \Leftrightarrow  - 1 + 5.2 + 1 + D = 0 \Leftrightarrow D =  - 10.

    Vậy phương trình (\alpha): x + 5y + z - 10 = 0

    Để tìm phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của (\alpha)(\beta) ta xét chùm mặt phẳng :

    \begin{array}{l}m\left( {x + 5y + z - 10} ight) + \left( {2x + y - z + 1} ight) = 0\\ \Leftrightarrow \left( {m + 2} ight)x + \left( {5m + 1} ight)y + \left( {m - 1} ight)z - 10m + 1 = 0\left( * ight)\end{array}

    Mặt khác, ta có  M \in \left( P ight)

    \Leftrightarrow \left( {m + 2} ight).3 + \left( {5m + 1} ight).\left( { - 2} ight) + m - 1 - 10m + 1 = 0

    \Leftrightarrow m = \frac{1}{4}

    Thế vào (*) ta được: 

    \begin{array}{l}\left( * ight):\left( {\frac{1}{4} + 2} ight)x + \left( {\frac{5}{4} + 1} ight)y + \left( {\frac{1}{4} - 1} ight)z - \frac{{10}}{4} + 1 = 0\\ \Leftrightarrow 9x + 9y - 3z - 6 = 0\\ \Leftrightarrow 3x + 3y - z - 2 = 0\end{array}

  • Câu 6: Nhận biết
    Tọa độ trọng tâm tam giác

    Trong không gian Oxyz cho tam giác ABC có G là trọng tâm của tam giác, biết A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight).

    Tìm tọa độ trọng tâm G của tam giác ABC đã cho?

    Hướng dẫn:

     Ta có A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight) nên suy ra được tọa độ điểm B và C tương ứng theo hệ sau là:

    \overrightarrow {AB} \left\{ \begin{array}{l}x - {x_A} =  - 3\\y - {y_A} =  - 1\\z - {z_A} = 1\end{array} ight. \Rightarrow B\left( { - 1;3; - 2} ight);\,\,\,\,\,\,\,\,\,

    \overrightarrow {AC} \left\{ \begin{array}{l}x - {x_A} = 2\\y - {y_A} =  - 6\\z - {z_A} = 6\end{array} ight. \Rightarrow C\left( {4; - 2;3} ight)

    Vì G là trọng tâm của tam giác ABC nên ta có tọa độ điểm G là nghiệm của hệ:

    \Rightarrow G\left\{ \begin{array}{l}x = \frac{1}{3}\left( {2 - 1 + 4} ight) = \dfrac{5}{3}\\y = \frac{1}{3}\left( {4 + 3 - 2} ight) = \dfrac{5}{3}\\z = \frac{1}{3}\left( { - 3 - 2 + 3} ight) = \dfrac{{ - 2}}{3}\end{array} ight.

  • Câu 7: Vận dụng
    PTTQ của (d) khi là giao tuyến

    Cho hình hộp chữ nhật ABCD.EFGHAB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz  sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với  Ox,Oy,Oz . Gọi  M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của giao tuyến (d) của mặt phẳng (MNP) và (xOy)

    Hướng dẫn:

    Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:

    M\left( {a,\frac{b}{2},0} ight);\,\,\,N\left( {\frac{a}{2},0,c} ight);\,\,\,P\left( {0,b,\frac{c}{2}} ight)

    Như vậy ta tính được vecto \overrightarrow {MN}\overrightarrow {MP} theo a, b, c.

    \overrightarrow {MN}  =  - \frac{1}{2}\left( {a,b, - 2c} ight);\,\,\,\overrightarrow {MP}  =  - \frac{1}{2}\left( {2a, - b, - c} ight)

    (MNP) có vecto pháp tuyến là tích có hướng của 2 vecto  \overrightarrow {MN}\overrightarrow {MP}

    =  > \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } ight] =  - 3\left( {bc,ca,ab} ight) = \overrightarrow {{n_P}}

    (MNP) có đi qua M và nhận \overrightarrow {{n_P}} làm 1 VTCP có phương trình là:

    \begin{array}{l}\left( {MNP} ight):bc\left( {x - a} ight) + ca\left( {y - \frac{b}{2}} ight) + ab.z = 0\\ =  > \left( {MNP} ight):2bcx + 2cay + 2abz - 3abc = 0\\ =  > (d):2bcx + 2cay + 2abz - 3abc = 0;\,\,\,z = 0\end{array}

  • Câu 8: Vận dụng cao
    Tọa độ điểm M

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;-1;5), B(3;4;4), C(4;6;1). Điểm M thuộc mặt phẳng (Oxy) và cách đều các điểm A, B, C có tọa độ là:

    Hướng dẫn:

    Gọi M(x;y;0) \,\,(x, y \in \mathbb R ; x^2+y^2 eq 0) là điểm cần tìm.

    M cách đều A, B, C nên ta có: MA=MB=MC

    \Leftrightarrow \sqrt{(x-1)^2+(y+1)^2+(0-5)^2}

    =\sqrt{(x-3)^2+(y-4)^2+(0-4)^2}

    =\sqrt{(x-4)^2+(y-6)^2+(0-1)^2}

    \Leftrightarrow -2x+2y+27=-6x-8y+41=-8x-12y+53

    \Leftrightarrow \left\{\begin{matrix} 4x+10y-14=0 \\ 2x+4y-12=0 \end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} 2x+5y-7=0 \\ x+2y-6=0 \end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} x=16 \\ y=-5 \end{matrix}ight.

    Vậy M(16; -5;0).

  • Câu 9: Vận dụng cao
    Tìm vecto pháp tuyến

    Cho đường thẳng d:\left\{\begin{matrix} x=-t \\ y=2t-1 \\ z=t+2\end{matrix}ight. và mặt phẳng (\alpha): 2x-y-2z-2=0. Mặt phẳng (P) qua d  và tạo với (\alpha ) một góc nhỏ nhất. Một véc tơ pháp tuyến của (P)  là:

    Hướng dẫn:

    Tìm vecto pháp tuyến

    Gọi \triangle = (\alpha)\cap (P), A =d \cap(\alpha), B \in d(Beq A);

    H là hình chiếu vuông góc của B lên (\alpha ); K là hình chiếu của H lên \triangle.

    Suy ra: (\widehat{(d),(\alpha)})=\widehat{BAH} cố định; (\widehat{(\alpha),(P)})=\widehat{BKH}.

    \widehat{BKH} \geqslant \widehat{BAH} (vì HK \leq HA)  \Rightarrow (\widehat{d, (\alpha)}) \leq (\widehat{(P),(\alpha)} )

    Suy ra (\widehat{(P),(\alpha)}) nhỏ nhất bằng (\widehat{d, (\alpha)}) khi K\equiv A .

    Khi đó \triangle \perp dvà có một VTCP \vec{u_\triangle} = [\vec{u_d}, \vec{u_\alpha}]=-3(1;0;1) .

    Vậy (P) có một VTPT là \vec{n_p} = [\vec{u_\triangle}, \vec{u_d}]=2(-1;1;1).

  • Câu 10: Nhận biết
    Viết PT mp đi qua 3 điểm

    Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm A\left( {\,2,\,\,0,\,\,3\,} ight);\,\,\,B\left( {\,4,\,\, - 3,\,\,2\,} ight);\,\,\,C\left( {\,0,\,\,2,\,\,5\,} ight)

    Hướng dẫn:

    Theo đề bài, ta có cặp vecto chỉ phương của \left( P ight):\overrightarrow {AB}  = \left( {2, - 3, - 1} ight);\overrightarrow {AC}  = \left( { - 2,2,2} ight)

    Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của

    \left( P ight):\overrightarrow n  = \left( { - 4, - 2, - 2} ight) =  - 2\left( {2,1,1} ight)

    Mp (P) đi qua A (2,0,3) và nhận vecto có tọa độ (2,1,1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 2} ight)2 + y.1 + \left( {z - 3} ight).1 = 0

    \Leftrightarrow 2x + y + z - 7 = 0

  • Câu 11: Vận dụng cao
    Max khoảng cách từ điểm đến mp

    Trong không gian với hệ tọa độ Oxyz cho điểm A(2;1;3) và mặt phẳng (P): x+my+(2m+1)z-m-2=0,  m là tham số. Gọi là hình chiếu vuông góc của điểm trên . Tính khi khoảng cách từ điểm đến lớn nhất ?

    Hướng dẫn:

     Ta có d(A,(P))=\dfrac{\left | 6m+3 ight |}{\sqrt{5m^2+4m+2}}

    d^2(A,(P))=\dfrac{\left | 36m^2+36m+9 ight |}{5m^2+4m+2}

    Xét hàm số f(m)=\dfrac{ 36m^2+36m+9}{5m^2+4m+2}

    \Rightarrow f'(m)=\dfrac{ -36m^2+54m+36}{(5m^2+4m+2)^2}

    \Rightarrow f'(m)=0 \Leftrightarrow m=\frac{-1}{2}; m=2

    Ta lập bảng biến thiên cho hàm số trên, được:

    Max của kc

    Qua bảng biến thiên, ta thấy hàm số đạt GTLN khim=2 \Rightarrow (P): x+2y+5z-4=0

    Đường thẳng \triangle qua A và vuông góc với (P) có phương trình là \left\{\begin{matrix} x=2+t \\ y=1+2t \\ z=3+5t \end{matrix}ight.

    Ta có H\in \triangle \Rightarrow H(2+t;1+2t;3+5t)

    H\in P \Rightarrow 2+t+2(1+2t)+5(3+5t)-4=0

    \Rightarrow t=\frac{-1}{2}\Rightarrow H(\frac{3}{2};0;\frac{1}{2})\Rightarrow a+b=\frac{3}{2}

  • Câu 12: Nhận biết
    Tìm câu sai

    Trong không gian Oxyz cho ba vectơ \vec a,\,\,\vec b\vec c  khác \vec 0 . Câu nào sai?

    Hướng dẫn:

     Theo điều kiện để hai vecto cùng phương, ta có:

    \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]=\vec 0  Suy ra 

    • \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]= 0

    sai vì thiếu dấu vecto.

  • Câu 13: Thông hiểu
    Viết PT mặt phẳng song song với 1 vecto

    Cho hai điểmA\left( {1, - 4,5} ight),B\left( { - 2,3, - 4} ight) và vectơ \overrightarrow a  = \left( {2, - 3, - 1} ight). Mặt phẳng chứa hai điểm A, B và song song với vectơ \vec{a} có phương trình:

    Hướng dẫn:

    Theo đề bài, ta có: A\left( {1, - 4,5} ight);B\left( { - 2,3, - 4} ight)

    \Rightarrow \overrightarrow {AB}  = \left( { - 3,7, - 9} ight);\overrightarrow a  = \left( {2, - 3, - 1} ight)

    Như vậy, \vec{AB}\vec{a} sẽ là cặp vectơ chỉ phương của (\beta)

    \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow a } ight] = \left( { - 34, - 21, - 5} ight) =\vec{n}

    Chọn \overrightarrow n  = \left( {34,21,5} ight) làm vectơ pháp tuyến của  (\beta)

    Phương trình mặt phẳng (\beta) có dạng 34x + 21y + 5z + D = 0

    Mặt khác, vì điểm A \in (\beta) nên thay tọa độ điểm A vào phương trình mặt phẳng (\beta)  được: 34 - 84 + 25 + D = 0 \Leftrightarrow D = 25

    Vậy (\beta) có phương trình là: 34x + 21y + 5z + 25 = 0

  • Câu 14: Thông hiểu
    Viết PT mp song song Oz

    Cho hai điểm C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight). Mặt phẳng chứa đường thẳng CD và song song với Oz có phương trình :

    Hướng dẫn:

    Theo đề bài ta có C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight)

    \Rightarrow \overrightarrow {CD}  = \left( {3, - 9,3} ight) cùng phương với vectơ \overrightarrow a  = \left( {1, - 3,1} ight)

    Mặt khác, trục Oz có vectơ chỉ phương \overrightarrow k  = \left( {0,0,1} ight)

    \Rightarrow \left[ {\overrightarrow a ,\overrightarrow k } ight] = \left( { - 3, - 1,0} ight) cùng phương với vectơ \overrightarrow n  = \left( {3,1,0} ight)

    Chọn \overrightarrow n  = \left( {3,1,0} ight) làm vectơ pháp tuyến cho mặt phẳng chứa CD và song song với trục Oz. Phương trình mặt phẳng này có dạng : 3x + y + D = 0

    Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có: 

    - 3 + 4 + D = 0 \Leftrightarrow D =  - 1

    Vậy phương trình mặt phẳng cần tìm : 3x + y - 1 = 0

  • Câu 15: Vận dụng cao
    Thể tích khối chóp

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng (P) cắt các trục tọa độ tại các điểm A, B, C. Tính thể tích khối chóp O.ABC .

    Hướng dẫn:

    Gọi H là hình chiếu của O lên mp (P)

    Tam giác OHM có  OH \le OM,\,\,\,\,\,\,\,\,\forall H

    Khi đó d\left( {O,\left( P ight)} ight) = OH lớn nhất khi M \equiv H, hay OM \bot \left( P ight).

    Mp (P) đi qua và nhận \overrightarrow {OM}  = \left( {1;\,2;\,3} ight) làm véc tơ pháp tuyến,

    phương trình : (P):x + 2y + 3z - 14 = 0

    (P) cắt Ox, Oy, Oz lần lượt tại A\left( {14;\,0;\,0} ight),\,B\left( {0;\,7;\,0} ight),\,C\left( {0;\,0;\,\frac{{14}}{3}} ight)

    => Thể tích cần tìm là:  {V_{O.ABC}} = \frac{{686}}{9}.

  • Câu 16: Vận dụng cao
    Tìm Vecto chỉ phương

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân

    giác trong góc A là \frac{x}{1}=\frac{y-6}{-4}=\frac{z-6}{-3}.  Biết rằng điểm M(0; 5; 3) thuộc đường thẳng AB và điểm N(1;1;0)thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?

    Hướng dẫn:

    Giả sử , A(t; 6-4t; 6-3t), ta có:

    \vec{u_d}=(1; -4; -3),

    \vec{AM}=(-t;4t-1;-3+3t)

    \vec{AN}=(1-t;-5+4t;3t-6)

    Theo bài ra: Vì d là đường phân giác của góc A nên:

    \left | \cos(\vec{u_d}, \vec{AM}) ight |= \left | \cos(\vec{u_d}, \vec{AN}) ight |

    \Leftrightarrow \dfrac{\left | 26t-13 ight |}{\sqrt{26t^2 -26t+10} } =\dfrac{\left | 26t-39 ight |}{\sqrt{26t^2 -78t+62} }

    \Leftrightarrow \dfrac{\left | 2t-1 ight |}{\sqrt{13t^2 -13t+5} } =\dfrac{\left | 2t-3 ight |}{\sqrt{13t^2 -39t+31} }

    Từ đây ta bình phương 2 vế được:

    (4t^2-4t+1)(13t^2-39t+31)=(4t^2-12t+9)(13t^2-13t+5)

    \Leftrightarrow 14t=14

    \Leftrightarrow t=1

    \Rightarrow A(1;2;3)\Rightarrow \vec{AN}=(0; -1; -3)

    Vậy một véc tơ chỉ phương của AC  là  \vec{u}(0;1;3).

  • Câu 17: Vận dụng cao
    Tính tổng?

    Trong không gian hệ tọa độ Oxyz, cho điểm A(1;4;5), B(3;4;0), C(2;-1;0) và mặt phẳng (P): 3x-3y-2z-12=0. Gọi M(a; b; c) thuộc (P) sao cho MA^2+MB^2+3MC^2 đạt giá trị nhỏ nhất. Tính tổng a+b+c.

    Hướng dẫn:

    Giả sử I(x;y;z) là điểm thỏa mãn \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\vec{0} .

    Khi đó \overrightarrow{IA}(1-x;4-y;5-z), \overrightarrow{IB}(3-x;4-y;-z), \overrightarrow{IC}(2-x;-1-y;-z) ;

    \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=(10-5x;5-5y;5-5z); ;

    \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0} \Rightarrow \left\{\begin{matrix} x=2 \\ y=1 \\ z=1 \end{matrix}ight. \Rightarrow I (2;1;1);

    MA^2+MB^2+3MC^2 = \overrightarrow{MA}^2+\overrightarrow{MB}^2+3\overrightarrow{MC}^2

    = (\overrightarrow{MI}+\overrightarrow{IA})^2+(\overrightarrow{MI}+\overrightarrow{IB})^2+3(\overrightarrow{MI}+\overrightarrow{IC})^2

    =5MI^2+2\vec{MI}(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC})+IA^2+IB^2+IC^2

    =5MI^2+IA^2+IB^2+IC^2   (vì \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\vec{0})

    Vì I cố định nên MA^2+MB^2+3MC^2 đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên (P) .

    Gọi \triangle là đường thẳng qua I và vuông góc với (P)

    Phương trình đường thẳng \triangle:\left\{\begin{matrix} x=2+3t \\ y=1-3t \\ z=1-2t \end{matrix}ight..

    Tọa độ của M là nghiệm hệ phương trình:

     \left\{\begin{matrix} x=2+3t \\ 1-3t \\ z=1-2t \\3x-3y-2z-12=0 \end{matrix}ight. \Leftrightarrow\left\{\begin{matrix} t=\dfrac{1}{2} \\ x=\dfrac{7}{2} \\ y=\dfrac{-1}{2} \\ z=0\end{matrix}ight.

    \Rightarrow M(\frac{7}{2};\frac{-1}{2};0)  \Rightarrow a+b+c=3.

  • Câu 18: Thông hiểu
    Tìm E cách đều 3 điểm

    Cho ba điểm A\left( {2, - 1,1} ight);\,\,B\left( {3, - 2, - 1} ight);\,\,\,C\left( {1,3,4} ight). Tìm điểm E trên mặt phẳng (xOy) cách đều A, B, C.

    Hướng dẫn:

     Gọi E\left( {x,y,0} ight)  trên mặt phẳng (xOy).

    Ta có:EA =EB=EC

    \Rightarrow \left\{ \begin{array}{l}A{E^2} = B{E^2}\\A{E^2} = C{E^2}\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - 2} ight)^2} + {\left( {y + 1} ight)^2} + {\left( { - 1} ight)^2} = {\left( {x - 3} ight)^2} + {\left( {y + 2} ight)^2} + {1^2}\\{\left( {x - 2} ight)^2} + {\left( {y + 1} ight)^2} + {\left( { - 1} ight)^2} = {\left( {x - 1} ight)^2} + {\left( {y - 3} ight)^2} + {\left( { - 4} ight)^2}\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x - y = 4\\x - 4y =  - 10\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{26}}{3}\\y = \dfrac{{14}}{3} \Rightarrow E\left( {\dfrac{{26}}{3},\dfrac{{14}}{3},0} ight)\end{array} ight.

  • Câu 19: Thông hiểu
    Tìm điểm N cách đều

    Cho ba điểm A\left( {2, - 1,1} ight);\,\,B\left( {3, - 2, - 1} ight);\,\,\,C\left( {1,3,4} ight).

    Tìm điểm N trên x’Ox cách đều A và B.

    Hướng dẫn:

     Gọi N(x, 0, 0) trên x'Ox

    Ta có A{N^2} = B{N^2}

    \Leftrightarrow {\left( {x - 2} ight)^2} + {\left( 1 ight)^2} + {\left( { - 1} ight)^2} = {\left( {x - 3} ight)^2} + {\left( 2 ight)^2} + {1^2}

    \Leftrightarrow x = 4 \Rightarrow N\left( {4,0,0} ight)

  • Câu 20: Vận dụng
    Vecto cùng phương

    Cho hai vectơ \overrightarrow a  = \,\,\left( {2, - 1,1} ight);\,\,\overrightarrow b  = \,\,\left( { - 2,3,1} ight). Xác định vectơ \vec c, biết \vec c cùng phương với \vec a và \vec a .\vec c=-4

    Hướng dẫn:

    Gọi tọa độ của \vec c  là \overrightarrow c  = \left( {{c_1};{c_2};{c_3}} ight)

    Theo đề bài, ta có \vec c cùng phương \overrightarrow a  \Leftrightarrow \frac{{{c_1}}}{2} = \frac{{{c_2}}}{{ - 1}} = \frac{{{c_3}}}{1}

    \Rightarrow {c_1} = 2{c_3};\,{c_2} =  - {c_3}

    Mặt khác, \vec a .\vec c=-4, thay vào ta được:

    \begin{array}{l}\overrightarrow a .\overrightarrow c  =  - 4\\ \Leftrightarrow 2{c_1} - {c_2} + {c_3} =  - 4\\ \Leftrightarrow 4{c_3} + {c_3} + {c_3} =  - 4\\ \Leftrightarrow {c_3} =  - \dfrac{2}{3}\end{array}

    \begin{array}{l} \Rightarrow {c_1} = 2{c_3} =  - \dfrac{4}{3};\,{c_2} = \dfrac{2}{3}\\ \Rightarrow \overrightarrow c  = \left( { - \dfrac{4}{3};\dfrac{2}{3}; - \dfrac{2}{3}} ight)\end{array}

  • Câu 21: Nhận biết
    Giao điểm của 2 đường thẳng

    Hai đường thẳng ({d_1}):\left\{ \begin{array}{l}x - y - z - 7 = 0\\3x - 4y - 11 = 0\end{array} ight.({d_2}):\left\{ \begin{array}{l}x + 2y - z + 1 = 0\\x + y + 1 = 0\end{array} ight. cắt nhau tại điểm A. Tọa độ của A là:

    Hướng dẫn:

     Để tìm được A là giao điểm của 2 đường thẳng, ta sẽ xét và giải hệ PT giữa chúng.

    Từ phương trình của  ({d_1}):\left\{ \begin{array}{l}x - y - z - 7 = 0\\3x - 4y - 11 = 0\end{array} ight.  ,tính x,y theo z được 

    \left\{ \begin{array}{l}x = 4z + 17\\y = 3z + 10\end{array} ight.

    Thế vào phương trình của ({d_2}):\left\{ \begin{array}{l}x + 2y - z + 1 = 0\\x + y + 1 = 0\end{array} ight. , được z = - 4 .

    Từ đó suy ra x = 1, y = - 2

    \Rightarrow A(1, - 2, - 4)

  • Câu 22: Vận dụng
    PT mp trong hệ trục tọa độ Oxyz

    Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi \alpha ,\,\,\beta ,\,\,\gamma lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là ( OH = p):

    Hướng dẫn:

    Theo đề bài, ta có: H\left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight) \Rightarrow \overrightarrow {OH}  = \left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight)

    Gọi M\left( {x,y,z} ight) \in \left( P ight)

    \Rightarrow \overrightarrow {HM}  = \left( {x - p\cos \alpha ,y - p\cos \beta ,z - c\cos \gamma } ight)

    Ta có:

    \overrightarrow {OH}  \bot \overrightarrow {HM}

    \Leftrightarrow \left( {x - p\cos \alpha } ight)p\cos \alpha  + \left( {y - p\cos \beta } ight)p\cos \beta  + \left( {z - p\cos \gamma } ight)p\cos \gamma \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,

    \Leftrightarrow \left( P ight):x\cos \alpha  + y\cos \beta  + z\cos \gamma  - p = 0

  • Câu 23: Nhận biết
    Giao điểm 3 mp

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y + 3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Tọa độ của điểm A đó là:

    Hướng dẫn:

     Tọa độ giao điểm của ba mặt phẳng là nghiệm của hệ phương trình :

    \left\{ \begin{array}{l}x + 2y - z - 6 = 0\left( 1 ight)\\2x - y + 3z + 13 = 0\left( 2 ight)\\3x - 2y + 3z + 16 = 0\left( 3 ight)\end{array} ight.

    Giải (1),(2) tính x,y theo z được x =  - z - 4;y = z + 5.

    Thế vào phương trình (3) được z=-3 , từ đó có x =  - 1,y = 2

    Vậy  A(-1,2,-3).

  • Câu 24: Nhận biết
    Giao điểm 3 mp

    Ba mặt phẳng 2x + y - z - 1 = 0,3x - y - z + 2 = 0,4x - 2y + z - 3 = 0 cắt nhau tại điểm A.Tọa độ của A là:

    Hướng dẫn:

     Tọa độ của A là nghiệm của hệ phương trình :

    \left\{ \begin{array}{l}2x + y - z - 1 = 0\left( 1 ight)\\3x - y - z + 2 = 0\left( 2 ight)\\4x - 2y + z - 3 = 0\left( 3 ight)\end{array} ight.

    Giải (1),(2) tính x,y theo z được x = \frac{{2z - 1}}{5};y = \frac{{z + 7}}{5}

    Thế vào phương trình (3) được z=3, từ đó có x=1,y=2.

    Vậy A(1, 2, 3).

  • Câu 25: Thông hiểu
    Phương trình tổng quát

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tổng quát của cạnh AC.

    Gợi ý:

    Để dễ dàng viết phương trình tổng quát của (AC) như yêu cầu bài toán, ta sẽ viết phương trình chính tắc của AC.

    Hướng dẫn:

    (AC) là đường thẳng đi qua 2 điểm A và C nên nhận \overrightarrow {AC}  = 2\left( {1, - 2,4} ight) làm 1 VTCP.

    (AC) đi qua C (3,-2,5) và có 1 VTCP là (1,-2,4) có phương trình chính tắc:

    \begin{array}{l}x - 3 = \frac{{y + 2}}{{ - 2}} = \frac{{z - 5}}{4}\\ \Rightarrow PTTQ\,\,\,(AC):\left\{ \begin{array}{l}2x + y - 4 = 0\\4x - z - 7 = 0\end{array} ight. \vee \left\{ \begin{array}{l}2x + y - 4 = 0\\2y + z - 1 = 0\end{array} ight.\end{array}

     

  • Câu 26: Vận dụng cao
    Tìm hệ thức sai?

    Cho tứ diệnABCD. MN lần lượt là trung điểm ACBD. Chọn hệ thức sai:

    Hướng dẫn:

    Ta sẽ xét các đáp án:

    Với \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MN} (luôn đúng vì đây là hệ thức trung điểm)

    Gọi P và Q lần lượt là trung điểm của AD và BC

    \Rightarrow MNPQ là hình bình hành nên ta có:

        \overrightarrow {MP}  + \overrightarrow {MQ}  = \overrightarrow {MN}

    \Rightarrow \left\{ \begin{array}{l}\overrightarrow {MP}  = \dfrac{1}{2}\overrightarrow {CD} \\\overrightarrow {MQ}  = \dfrac{1}{2}\overrightarrow {AB} \end{array} ight. \Rightarrow \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {CD}  = \overrightarrow {MN}  \Rightarrow \overrightarrow {AB}  + \overrightarrow {CD}  = 2\overrightarrow {MN}

    Suy ra:\overrightarrow {AB}  + \overrightarrow {CD}  = 2\overrightarrow {MN}(đúng)

    Ta có: \overrightarrow {NC}  + \overrightarrow {NA}  = 2\overrightarrow {NM} {m{  }}nên chọn đáp án sai là \overrightarrow {NC}  + \overrightarrow {NA}  = 2\overrightarrow {MN}(sai)

    Với \overrightarrow {AD}  + \overrightarrow {CB}  = \overrightarrow {AB}  + \overrightarrow {BD}  + \overrightarrow {CD}  + \overrightarrow {DB}= \overrightarrow {AB}  + \overrightarrow {CD}  = 2\overrightarrow {MN}(đúng)

  • Câu 27: Vận dụng cao
    Khoảng cách nhỏ nhất

    Trong không gian Oxyz, cho mặt phẳng (P): x-2y+2z-5=0 và hai điểm A(-3;0;1), B(1;-1;3). Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

    Hướng dẫn:

     khoảng cách nhỏ nhất

    Gọi (Q) là mặt phẳng qua A và song song (P).

    Ta có: (-3-2.0+2.1-5)(1+2.1+2.3-5) < 0 \Rightarrow A, B nằm về hai phía với (P).

    Gọi H là hình chiếu vuông góc của B lên (Q) \Rightarrow BH cố định và d(B,(Q))=BH.

    Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay d//(P) .

    Ta có: BK \geq BH \Leftrightarrow d(B, d) \geq d(B, d) \Rightarrow d (B, d)bé nhất bằng BH  khi K trùng với điểm H.

    Gọi \vec{n} là VTPT của (ABH) \Rightarrow \vec{n}=[\vec{n_p}, \vec{AB}]=(-2;6;7)

    Ta có đường thẳng d cần lập qua  A, H và có VTCP là \vec{u_d}=[\vec{n},\vec{n_P}]=(26; 11; -2)

    Vậy phương trình đường thẳng d cần lập là: \dfrac{x+3}{26}=\dfrac{y}{11}=\dfrac{z-1}{-2}

  • Câu 28: Thông hiểu
    Phương trình tổng quát

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight). Phương trình tổng quát của đường cao AH.

    Hướng dẫn:

    Theo đề bài, ta tính được: \overrightarrow {AB}  = \left( {1, - 3,7} ight);\,\,\overrightarrow {AC}  = 2\left( {1, - 2,4} ight);\,\,\overrightarrow {BC}  = 2\left( {1, - 1,1} ight)

    Mp (ABC) có 2 VTCP là \overrightarrow {AB}  = \left( {1, - 3,7} ight);\,\,\overrightarrow {AC}  = 2\left( {1, - 2,4} ight) nên vecto pháp tuyến của (ABC) chính là tích có hướng của 2 VTCP trên. Ta có:

    \overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } ight] = \left( {2,3,1} ight)

    Vì AH là đường cao của tam giác ABC nên ta có \overrightarrow {AH}  \bot \overrightarrow {BC}.

    Mặt khác \overrightarrow {AH}  \bot \overrightarrow n nên ta viết được vecto chỉ phương của đường thẳng AH là tích có hướng của 2 vecto pháp tuyến

    \Rightarrow \overrightarrow {AH}  = \left[ {\overrightarrow n ,\overrightarrow {BC} } ight] = \left( {4, - 1, - 5} ight)

    Từ đây, ta có phương trình chính tắc của AH:\frac{{x - 1}}{4} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{{ - 5}}

    \Rightarrow AH\left\{ \begin{array}{l}x + 4y - 9 = 0\\5x + 4z + 7 = 0\end{array} ight. \vee AH\left\{ \begin{array}{l}x + 4y - 9 = 0\\5y - z - 13 = 0\end{array} ight.

  • Câu 29: Vận dụng cao
    Khoảng cách điểm đến mp

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;1;2), B(-3;1;0)  và mặt phẳng (P):x+y+3z-14=0. Gọi M là điểm thuộc (P) sao cho \triangle AMB vuông tại M . Khoảng cách từ M đến (Oxy) bằng:

    Hướng dẫn:

    Ta có: \widehat{AMB}=90^{\circ} suy ra M thuộc mặt cầu (S) đường kính AB.

    Gọi I là trung điểm AB , khi đó I(0;0;1)R=\frac{AB}{2}=\sqrt{11}.

    Ta tính được d(I;(P))=\sqrt{11}=R suy ra (P) và mặt cầu (S) tiếp xúc nhau hay M là tiếp điểm của (P) và (S). Vậy M là hình chiếu của I trên (P) .

    Phương trình đường thẳng qua I và vuông góc với (P) là: 

    \left\{\begin{matrix} x=t \\ y=t \\ z=1+3t \end{matrix}ight.,  t\in \mathbb{R}

    Tọa độ của M là nghiệm của hệ phương trình:

     \left\{\begin{matrix} x=t \\ y=t \\ z=1+3t \\x+y+3z-14=0 \end{matrix}ight.,  t\in \mathbb{R}

    suy ra t=1.

    Suy ra M(1;1;4)\Rightarrow d(M;(Oxy))=4.

  • Câu 30: Vận dụng
    Tính góc?

    Trong không gian Oxyz, cho vectơ \vec a hợp với \overrightarrow {Ox} góc 60^0, hợp với \overrightarrow {Oz} góc 60^0 . Tính góc hợp bởi \vec a\overrightarrow {Oy}.

    Hướng dẫn:

    Gọi \alpha  = {60^0},\beta  và  \gamma  = {60^0} lần lượt là các góc hợp bởi \vec a với ba trục \overrightarrow {Ox} ,\overrightarrow {Oy} ,\overrightarrow {Oz}. Đặt \left| {\overrightarrow a } ight| = a

    Ta có:

    \overrightarrow a  = \left( {a\cos {{60}^0};a\cos \beta ;a\cos {{60}^0}} ight)

    \Rightarrow {\left| {\overrightarrow a } ight|^2} = {a^2} = {a^2}\left( {{{\cos }^2}{{60}^0} + {{\cos }^2}\beta  + {{\cos }^2}{{60}^0}} ight)

       \Leftrightarrow \dfrac{1}{4} + {\cos ^2}\beta  + \dfrac{1}{4} = 1

       \Leftrightarrow {\cos ^2}\beta  = \dfrac{1}{2}

       \Rightarrow \cos \beta  =  \pm \frac{{\sqrt 2 }}{2} \Rightarrow \beta  = {45^0} \vee \beta  = {135^0}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (23%):
    2/3
  • Thông hiểu (27%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 12 (cũ)

Xem thêm