Tìm số cạnh
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 nha!
Tìm số cạnh
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Số cạnh của hình đa diện
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Số cực trị của hàm số
Cho hàm số y = f(x) có đạo hàm trên
là
. Hàm số đã cho có bao nhiêu điểm cực trị?
Tập xác định:
Ta có:
Ta có bảng xét dầu’(x) như sau:

Dựa vào bảng xét dấy của f’(x) ta thấy f’(x) đổi dấu qua hai điểm x = 2018, x = 2019 nên hàm số đã cho có hai điểm cực trị.
Ghi đáp án vào ô trống
Cho một tấm nhôm hình vuông cạnh
, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

Đáp án: 2 dm
Cho một tấm nhôm hình vuông cạnh
, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

Đáp án: 2 dm
Ta có:
tại
Chia khối tứ diện
Cho khối tứ diện
. Lấy điểm M nằm giữa A và B, điểm N nằm giữa C và D. Bằng hai mp
và
, ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?

Dựa vào hình vẽ, ta thấy hai mặt phẳng (CDM) và (ABN) chia khối tứ diện ABCD thành bốn khối tứ diện:
Thể tích khối chóp
Cho hình chóp
có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?

Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Xét tính đúng sai của các nhận định
Cho hàm số
có bảng biến thiên như sau:

a)
Đúng||Sai
b)
Sai||Đúng
c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên
là 7. Đúng||Sai
d)
Sai||Đúng
Cho hàm số
có bảng biến thiên như sau:

a)
Đúng||Sai
b)
Sai||Đúng
c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên
là 7. Đúng||Sai
d)
Sai||Đúng
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) Trên hàm số có giá trị lớn nhất bằng 5.
b) Trên hàm số không có giá trị nhỏ nhất.
c) Trên , hàm số có giá trị lớn nhất bằng 5, giá trị nhỏ nhất bằng 2.
Do đó tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên
là 7
d) Ta có:
Tìm hàm số đồng biến trên tập số thực
Hàm số nào sau đây là hàm số đồng biến trên
?
Xét hàm số ta có:
suy ra hàm số liên tục trên
.
Tổng độ dài
Tổng độ dài
của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Tổng độ dài
của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Khối mười hai mặt đều có tất cả 30 cạnh:

Suy ra ta có tổng độ dài tất cả các cạnh bằng .
Tìm tọa độ điểm A
Hai đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
cắt nhau tại điểm
. Xác định tọa độ điểm
?
Đồ thị hàm số có đường tiệm cận đứng
và đường tiệm cận ngang
. Do đó giao điểm của hai đường tiệm cận là
.
Tìm giá trị lớn nhất của hàm số
Xác định giá trị lớn nhất của hàm số
trên đoạn
?
Ta có:
Ta có:
Vậy đáp án cần tìm là .
Chọn đáp án đúng
Cho hàm số
có đồ thị như hình vẽ. Giá trị lớn nhất của hàm số
trên đoạn
là:

Dựa vào đồ thị ta thấy trên đoạn hàm số
có giá trị lớn nhất bằng
khi
Suy ra
Tính giá trị biểu thức
Tổng bình phương của tất cả các giá trị nguyên của tham số
để hàm số
nghịch biến trên
là:
Tập xác định: .
Ta có: .
Hàm số nghịch biến trên ( dấu "=" xảy ra tại hữu hạn
)
TH1: .
+ Với ta có
nên
thỏa mãn.
+ Với ta có
(không thỏa với mọi
) nên loại
.
TH2: . Ta có
Vậy .
Tìm khoảng đồng biến của hàm số
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào sau đây?
Hàm số đã cho đồng biến trên khoảng
Tổng độ dài các cạnh của một tứ diện đều
Tổng độ dài
của tất cả các cạnh của một tứ diện đều cạnh
.

Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Chọn đáp án đúng
Cho hàm số
có đồ thị
và đường thẳng
. Tất cả các giá trị của tham số
để
cắt
tại bốn điểm phân biệt?
Ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy đồ thị hàm số cắt đường thẳng
tại
điểm phân biệt
.
Chọn đáp án đúng
Cho hình chóp tam giác đều
. Mặt bên
là tam giác gì?
Hình chóp tam giác đều có các mặt bên là các tam giác cân.
Mệnh đề nào sai
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Đếm số đa diện lồi
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Tìm min và max của hàm số
Cho hai số thực x, y thỏa mãn
và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức
lần lượt là:
Ta có:
Đặt t = xy ta được
Vì
Mặt khác
Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số trên
Xét hàm số xác định và liên tục trên
Ta có:
=> Hàm số g(t) nghịch biến trên đoạn
=>
Tìm số giao điểm của (C) với trục hoành
Cho hàm số
có đồ thị
. Tìm số giao điểm của
và trục hoành.
Xét phương trình hoành độ giao điểm của và trục hoành:
Vậy số giao điểm của và trục hoành là 3.
Tính thể tích khối chóp
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Xác định số giá trị nguyên của tham số m
Số giá trị nguyên của tham số
để hàm số
đồng biến trên
?
Theo yêu cầu bài toán
Mà
Vậy có tất cả 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Điền đáp án
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Chọn khẳng định đúng
Gọi
lần lượt là số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Đồ thị hàm số không có tiệm cận ngang.
ta có
là tiệm cận đứng.
ta có:
là tiệm cận đứng.
Vậy .
Tính V lăng trụ
Tính thể tích
của khối lăng trụ tam giác đều có tất cả các cạnh bằng
?
Xét khối lăng trụ tam giác đều có tất cả các cạnh bằng
.
Chọn đáp án đúng
Hàm số nào dưới dây nghịch biến trên khoảng
?
Xét hàm số có
nên hàm số
nghịch biến trên khoảng
.
Chọn mệnh đề đúng
Cho hàm số
xác định và liên tục trên các khoảng
và
có bảng biến thiên như hình vẽ:

Mệnh đề nào sau đây đúng?
Vì nên
là tiệm cận ngang của đồ thị hàm số.
Vì nên
là tiệm cận đứng của đồ thị hàm số.
Tìm m nguyên để hàm số nghịch biến
Cho hàm số
với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số đã cho nghịch biến trên từng khoảng xác định?
Ta có:
Để hàm số nghịch biến trên từng khoảng xác định thì
Mà
Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Tính giá trị lớn nhất của hàm số
Giá trị lớn nhất của hàm số
trên đoạn
bằng:
Ta có:
Khi đó
Ghi đáp án vào ô trống
Cho hàm số bậc ba
với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số bậc ba
với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Chọn đáp án đúng
Cho hàm số
đạt cực đại tại
thỏa mãn
. Khi đó:
Tập xác định
Ta có: hàm số có hai cực trị
khi và chỉ khi
Khi đó .
Mặt khác
Vậy đáp án cần tìm là .
Xác định số tiệm cận của đồ thị hàm số
Hỏi đồ thị của hàm số
có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?
Tập xác định
Ta có: nên đồ thị hàm số có tiệm cận ngang là
nên đồ thị hàm số có tiệm cận đứng là
Vậy đồ thị hàm số có 2 đường tiệm cận.
Khối lăng trụ ngũ giác
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Ghi đáp án vào ô trống
Cho hàm số
có đạo hàm trên
và có đồ thị như hình vẽ:

Xét hàm số
. Tìm
để
.
Cho hàm số
có đạo hàm trên
và có đồ thị như hình vẽ:

Xét hàm số
. Tìm
để
.
Đồ thị hàm số tương ứng với hàm số nào
Cho hình vẽ:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số thỏa mãn.
Hình lập phương
Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?
Có 9 mặt đối xứng (như hình vẽ sau):

Xác định tham số m thỏa mãn bài toán
Tập hợp tất cả các giá trị thực của tham số
để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Tìm số mặt của đa diện
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Tính bán kính đường tròn nội tiếp tam giác
Gọi A, B, C là các điểm cực trị của đồ thị hàm số
. Bán kính của đường tròn nội tiếp tam giác ABC bằng:
Ta có:
=> Đồ thị hàm số có ba điểm cực trị là A(0; 4), B(1; 3), C(-1;; 3)
Tính được
Áp dụng công thức tính bán kính đường tròn nội tiếp tam giác ABC ta có:
Chọn phương án thích hợp
Cho hàm số
có bảng biến thiên như sau

Hàm số đạt cực đại tại điểm
Dựa vào bảng biến thiên ta thấy đối dấu từ
sang
tại
.
Nên hàm số đạt cực đại tại điểm .
Tình tổng các giá trị nguyên của tham số m
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số
có 3 điểm cực trị. Tổng các phần tử của S là:
Xét hàm số có đạo hàm
Để hàm số có 3 điểm cực trị thì
Vậy tổng các phần tử của S là 2
Tìm điều kiện cần và đủ của tham số m theo yêu cầu
Cho hàm số
. Đồ thị hàm số
như hình vẽ. Cho bất phương trình
(
là tham số thực). Điều kiện cần và đủ để bất phương trình
đúng với mọi
là

Ta có
Đặt . Tính
Có
Nghiệm của phương trình là hoành độ giao điểm của đồ thị hàm số
và parabol
Dựa vào đồ thị hàm số ta có:
BBT
Để bất phương trình nghiệm đúng với mọi thì
.
Xác định m thỏa mãn yêu cầu
Biết đồ thị hàm số
(với
là tham số) nhận trục hoành và trục tung làm hai đường tiệm cận. Tính tổng
?
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số.
Suy ra .
Đồ thị hàm số nhận trục tung là tiệm cận đứng nên phương trình
có một nghiệm bằng
hay
Theo giả thiết ta có:
Thể tích chóp tứ giác
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và
. Tính theo a thể tích V khối chóp S.ABCD.

Đường chéo hình vuông
Xét tam giác SAC, ta có .
Chiều cao khối chóp là .
Diện tích hình vuông ABCD là
Vậy thể tích khối chóp .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: