Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm:

Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Xác định điều kiện của m thỏa mãn yêu cầu

    Cho hàm y = \sqrt{x^{2} - 6x +
5}. Mệnh đề nào sau đây là đúng?

    Tập xác định: D = ( - \infty;1brack
\cup \lbrack 5; + \infty).

    Ta có y' = \frac{x - 3}{\sqrt{x^{2} -
6x + 5}} > 0, \forall x \in (5;
+ \infty).

    Vậy hàm số đồng biến trên khoảng (5; +
\infty).

  • Câu 2: Vận dụng cao

    Tìm m để hàm số có 11 cực trị

    Cho hàm số y = f’(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \left[ { - 30;30} ight] để hàm số f\left( {{x^3} - 3{m^2}x} ight) có đúng 11 điểm cực trị?

    Tìm m để hàm số có 11 cực trị

    Hàm số đạt cực trị tại x = a <  - 1;x =  - 1;x = 4

    Xét hàm số f\left( {\left| {{x^3} - 3mx} ight|} ight) = f\left( u ight)

    Bảng biến thiên của hàm số u = \left| {{x^3} - 3mx} ight| \geqslant 0 suy ra chỉ có phương trình u = \left| {{x^3} - 3mx} ight| = 4 cho ta nghiệm bội lẻ.

    Nếu m \leqslant 0

    => Số điểm cực trị u là 1

    => Số nghiệm bội lẻ của phương trình u = 4 tối đa 2 nghiệm bội lẻ (Không thỏa yêu cầu)

    Khi m > 0 => Số điểm cực trị u là 5 ta có bảng biến thiên của hàm số u = \left| {{x^3} - 3mx} ight|

    Tìm m để hàm số có 11 cực trị

    Áp dụng công thức:

    Số điểm cực trị của hàm số f(u) = số nghiệm bội lẻ của phương trình (u = 4) + số điểm cực trị của u

    => \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {2m\sqrt m  > 4} \end{array}} ight. \Leftrightarrow m > \sqrt[3]{4}. Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \mathbb{Z}} \\   {m \in \left[ { - 30;30} ight]} \end{array}} ight.

    => Có 29 giá trị nguyên thỏa mãn yêu cầu.

  • Câu 3: Vận dụng

    Xác định m thỏa mãn yêu cầu đề bài

    Cho hàm số y = f(x) có bảng biến thiên trên đoạn \lbrack -
4;4brack như hình vẽ:

    Có bao nhiêu giá trị của tham số m trên đoạn \lbrack - 4;4brack sao cho giá trị lớn nhất của hàm số y = f\left( \left| x^{3}
ight| + 3|x| ight) + f(m) trên đoạn \lbrack - 1;1brack bằng 1?

    Ta có: x \in \lbrack - 1;1brack
\Rightarrow |x| \in \lbrack 0;1brack \Rightarrow \left| x^{3} ight|
\in \lbrack 0;1brack

    Suy ra t = \left| x^{3} ight| + 3|x|
\in \lbrack 0;4brack

    Khi đó f\left( \left| x^{3} ight| +
3|x| ight) \in \lbrack - 3;3brack hay f\left( \left| x^{3} ight| + 3|x| ight) + f(m)
\in \left\lbrack - 3 + f(m);3 + f(m) ightbrack

    Theo yêu cầu bài toán \Leftrightarrow 3 +
f(m) = 1 \Leftrightarrow f(m) = - 2

    Nhìn vào bảng biến thiên ta thấy f(m) = -
2 có ba nghiệm

    Vậy có 3 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 4: Thông hiểu

    Xác định điều kiện của m thỏa mãn yêu cầu

    Hàm số y = \frac{x - 2}{x - m} nghịch biến trên khoảng ( -
\infty;3) khi:

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{- m + 2}{(x -
m)^{2}}

    Hàm số nghịch biến trên khoảng ( -
\infty;3) khi \left\{ \begin{matrix}
m otin ( - \infty;3) \\
- m + 2 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 3 \\
m > 2 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

    Vậy đáp án cần tìm là m \geq
3.

  • Câu 5: Vận dụng

    Định các giá trị tham số m theo yêu cầu

    Cho hàm số y = x^{3} + 6x^{2} + 3(m + 2)x
- m - 6 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có hai điểm cực trị x_{1},\
x_{2} thỏa mãn x_{1} < - 1 <
x_{2}.

    Ta có y' = 3x^{2} + 12x + 3(m + 2) =
3\left\lbrack x^{2} + 4x + (m + 2) ightbrack.

    Yêu cầu bài toán \Leftrightarrow y'=0 có hai nghiệm phân biệt x_{1},\
x_{2} thỏa mãn x_{1} < - 1 <
x_{2}

    \Leftrightarrow y'( - 1) < 0
\Leftrightarrow m < 1.

    Nhận xét. Nhắc lại kiến thức lớp dưới ''phương trình ax^{2} + bx + c = 0 có hai nghiệm phân biệt x_{1},\ \ x_{2}\ \ \left( x_{1} <
x_{2} ight) thỏa mãn x_{1} <
x_{0} < x_{2} \Leftrightarrow af\left( x_{0} ight) <
0''.

  • Câu 6: Thông hiểu

    Tìm mệnh đề đúng

    Cho hàm số y = \frac{x - 1}{\sqrt{2x^{2}
- 1} - 1}. Gọi d,n lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số. Mệnh đề nào sau đây là đúng?

    Để căn thức có nghĩa khi 2x^{2} - 1 \geq
0 \Leftrightarrow x \in \left( - \infty; - \frac{1}{\sqrt{2}}
ightbrack \cup \left\lbrack \frac{1}{\sqrt{2}}; + \infty
ight)

    Xét \sqrt{2x^{2} - 1} - 1 =
0

    \Leftrightarrow \sqrt{2x^{2} - 1} = 1
\Leftrightarrow 2x^{2} - 1 = 1

    \Leftrightarrow x = \pm 1 \in \left( -
\infty; - \frac{1}{\sqrt{2}} ightbrack \cup \left\lbrack
\frac{1}{\sqrt{2}}; + \infty ight)

    Do đó tập xác định của hàm số:

    D = \left(
- \infty; - \frac{1}{\sqrt{2}} ightbrack \cup \left\lbrack
\frac{1}{\sqrt{2}}; + \infty ight)\backslash\left\{ - 1;1
ight\}.

    Ta có

    \lim_{x ightarrow - 1}y = \lim_{x
ightarrow - 1}\frac{(x - 1)\left( \sqrt{2x^{2} - 1} + 1
ight)}{2\left( x^{2} - 1 ight)}= \lim_{x ightarrow -1}\frac{\sqrt{2x^{2} - 1} + 1}{2(x + 1)} = \infty ightarrow x = -1 là TCĐ;

    \lim_{x ightarrow 1}y = \lim_{x
ightarrow 1}\frac{(x - 1)\left( \sqrt{2x^{2} - 1} + 1 ight)}{2\left(x^{2} - 1 ight)}= \lim_{x ightarrow 1}\frac{\sqrt{2x^{2} - 1} +
1}{2(x + 1)} = \frac{1}{2} ightarrow x = 1 không là TCĐ;

    \lim_{x ightarrow + \infty}\frac{x -
1}{\sqrt{2x^{2} - 1} - 1} = \frac{1}{\sqrt{2}} ightarrow y =
\frac{1}{\sqrt{2}} là TCN;

    \lim_{x ightarrow - \infty}\frac{x -
1}{\sqrt{2x^{2} - 1} - 1} = - \frac{1}{\sqrt{2}} ightarrow y = -
\frac{1}{\sqrt{2}} là TCN.

    Vậy d = 1,n = 2 ightarrow n + d =
3.

  • Câu 7: Thông hiểu

    Cho các khẳng định sau:

    i) Hàm số y = x - sin^{2} x luôn đồng biến trên \mathbb{R}.

    ii) Hàm số y = \frac{2x-1}{x+2} luôn đồng biến trên mỗi khoảng xác định của nó.

    iii) Hàm số y = -x + \sqrt{x^{2}+8 } luôn nghịch biến trên \mathbb{R}.

    iv) Hàm số y = \frac{-x^{2} +x+2}{x-1} luôn nghịch biến trên mỗi khoảng xác định của nó.

    Số khẳng định sai là:

  • Câu 8: Nhận biết

    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    a) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    b) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    c) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra \underset{D}{\max f(x)} = M.

    d) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra\underset{D}{\min f(x)} = M.

  • Câu 9: Nhận biết

    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{3} - 2x^{2} - 4x + 1 trên đoạn \lbrack 1;3brack.

    Đạo hàm f'(x) = 3x^{2} - 4x -
4

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \in \lbrack 1;3brack \\
x = - \frac{2}{3} otin \lbrack 1;3brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(1) = - 4 \\
f(2) = - 7 \\
f(3) = - 2 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
2

    Cách 2. Sử dụng chức năng MODE 7 và nhập hàm f(X) = X^{3} - 2X^{2} - 4X + 1 với thiết lập Start 1, End 3, Step 0,2.

    Quan sát bảng giá trị F(X) ta thấy giá trị lớn nhất F(X) bằng - 2 khi X = 3.

  • Câu 10: Vận dụng cao

    Xét tính đúng sai của các nhận định

    Một công ty bất động sản A có 100 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 triệu đồng một tháng thì mọi căn hộ đều có người thuê, và cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm 200000 đồng mỗi tháng thì có thêm 4 căn hộ bị bỏ trống. Gọi x,\left( x\mathbb{\in N} \right) là số lần tăng giá cho thuê mỗi căn hộ của công ty A. Các mệnh đề dưới đây đúng hay sai?

    a) Nếu giữ nguyên giá thuê mỗi căn hộ là 3 triệu đồng một tháng thì công ty A thu về 300 triệu đồng mỗi tháng. Đúng||Sai

    b) Sau x lần tăng giá cho thuê mỗi căn hộ của công ty A, số căn hộ có người thuê là 100 - 4x. Đúng||Sai

    c) Giá thuê một căn hộ của công ty A200000x đồng/tháng sau x lần tăng giá. Sai||Đúng

    d) Công ty A thu về nhiều nhất là 320 triệu đồng/tháng. Đúng||Sai

    Đáp án là:

    Một công ty bất động sản A có 100 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 triệu đồng một tháng thì mọi căn hộ đều có người thuê, và cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm 200000 đồng mỗi tháng thì có thêm 4 căn hộ bị bỏ trống. Gọi x,\left( x\mathbb{\in N} \right) là số lần tăng giá cho thuê mỗi căn hộ của công ty A. Các mệnh đề dưới đây đúng hay sai?

    a) Nếu giữ nguyên giá thuê mỗi căn hộ là 3 triệu đồng một tháng thì công ty A thu về 300 triệu đồng mỗi tháng. Đúng||Sai

    b) Sau x lần tăng giá cho thuê mỗi căn hộ của công ty A, số căn hộ có người thuê là 100 - 4x. Đúng||Sai

    c) Giá thuê một căn hộ của công ty A200000x đồng/tháng sau x lần tăng giá. Sai||Đúng

    d) Công ty A thu về nhiều nhất là 320 triệu đồng/tháng. Đúng||Sai

    a) Nếu giữ nguyên giá thuê mỗi căn hộ là 3 triệu đồng một tháng thì công ty A thu về: 3\
\ .\ \ 100 = 300

    Suy ra mệnh đề đúng.

    b) Sau x lần tăng giá cho thuê mỗi căn hộ, công ty A có số căn hộ bị bỏ trống là: 4x.

    Khi đó, số căn hộ có người thuê là: 100 -
4x.

    Suy ra mệnh đề đúng.

    c) Sau x lần tăng giá, giá thuê mỗi căn hộ của công ty A tăng thêm: 200000x.

    Khi đó, giá thuê mỗi căn hộ của công ty A là: 3000000
+ 200000x.

    Suy ra mệnh đề sai.

    d) Mỗi tháng, công ty A thu về: (100 - 4x).(3000000 + 200000x).

    Ta thấy: 100 - 4x > 0 \Leftrightarrow
x < 25.

    Công ty A muốn có thu nhập thì không được tăng quá 24 lần tăng giá thuê mỗi căn hộ.

    Xét hàm số: y = (100 - 4x).(3000000 +
200000x) = - 800000x^{2} + 8000000x
+ 300000000 trên \lbrack
0;24\rbrack.

    y' = - 1600000x + 8000000 = 0
\Leftrightarrow x = 5 \in \lbrack 0;24\rbrack.

    Ta có: y(0) = 300000000

    y(5) = 320000000

    y(24) = 31200000

    Suy ra \underset{x \in \lbrack
0;24\rbrack}{Max}\ y = y(5) = 320000000.

    Vậy công ty A thu về nhiều nhất là 320000000 đồng/tháng hay 320 triệu đồng/tháng.

    Suy ra mệnh đề đúng.

  • Câu 11: Vận dụng

    Tổng độ dài

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

    Đáp án là:

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

     Khối mười hai mặt đều có tất cả 30 cạnh:

     Suy ra ta có tổng độ dài tất cả các cạnh bằng \ell  = 30.2 = 60.

  • Câu 12: Nhận biết

    Chọn đáp án đúng

    Cho hình chóp tam giác đều S.ABC. Mặt bên SBC là tam giác gì?

    Hình chóp tam giác đều có các mặt bên là các tam giác cân.

  • Câu 13: Nhận biết

    Tìm số đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?

    Đồ thị của hàm số đã cho có 2 đường tiệm cận.

  • Câu 14: Thông hiểu

    Tìm giá trị lớn nhất nhỏ nhất của hàm số

    Cho hàm số f(x) = \frac{2x^{2} + x + 1}{x
+ 1}. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn \lbrack 0;1brack.

    Đạo hàm f'(x) = \frac{2x^{2} + 4x}{(x+ 1)^2}.

    Ta có \left\{ \begin{matrix}
f'(x) \geq 0,\ \forall x \in \lbrack 0;1brack \\
f'(x) = 0 \Leftrightarrow x = 0 \\
\end{matrix} ight..

    Suy ra hàm số f(x) đồng biến trên đoạn \lbrack 0;1brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;1brack}f(x) = f(1) = 2 \\
m = \min_{\lbrack 0;1brack}f(x) = f(0) = 1 \\
\end{matrix} ight.

  • Câu 15: Vận dụng cao

    Số mặt của hình chóp

    Cho hình chóp 22 cạnh. Tính số mặt của hình chóp đó?

     

    Gọi số cạnh đáy là n với  (n \in {\mathbb{N} ^*}) \Rightarrow Đáy của chóp là n – giác.

    Ứng với mỗi đỉnh của đáy của 1 cạnh nối đỉnh của hình chóp với đỉnh của chóp.

    Suy ra hình chóp có tổng số cạnh là 2n.

    Theo đề bài, hình chóp có 22 cạnh nên ta được 2n =22 \Rightarrow n =11(TMĐK)

    Do đó, hình chóp có đáy là 11 – giác.

    Do đó chóp có 11 mặt bên cộng 1 đáy.

    Vậy hình chóp có tổng 12 mặt.

  • Câu 16: Thông hiểu

    Tìm m để hàm số thỏa mãn yêu cầu

    Cho hàm số y = - x^{3} - 3x^{2} + mx +
2 với m là tham số. Với điều kiện nào của tham số m thì hàm số đã cho có cực đại và cực tiểu?

    Ta có: y' = - 3x^{2} - 6x +
m(*)

    Để hàm số có cực đại và cực tiểu thì phương trình (*) có hai nghiệm phân biệt

    \Rightarrow \Delta' > 0
\Leftrightarrow 9 + 3m > 0 \Leftrightarrow m > - 3.

    Vậy đáp án cần tìm là m > -
3.

  • Câu 17: Thông hiểu

    Tìm hàm số tương ứng với bảng biến thiên

    Cho hàm số y = f(x) có đạo hàm trên khoảng ( - \infty; + \infty) và có bảng biến thiên như sau:

    Hàm số y = f(x) là hàm số nào dưới đây?

    Nhận diện đồ thị hàm số bậc 4 trùng phương y = ax^{4} + bx^{2} + c;(a > 0) nên loại hàm số y = - x^{4} + 2x^{2} -
3

    Hàm số có 3 cực trị nên ab <
0 nên loại hàm số y = x^{4} +
2x^{2} - 3.

    x_{0} = 0 \Rightarrow y_{0} =
3 nên hàm số cần tìm là y = x^{4} -
2x^{2} - 3.

  • Câu 18: Thông hiểu

    Tính thể tích khối chóp

    Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60^{0}. Thể tích V của khối chóp S.ABCD bằng

    Hình vẽ minh họa

    Gọi O là tâm của đáy, gọi M là trung điểm của BC.

    Ta có \left\{ \begin{matrix}
SO\bot BC \\
OM\bot BC \\
\end{matrix} ight. nên (SOM)\bot BC

    Suy ra \left\lbrack (SCD),(ABCD)
ightbrack = (SM,OM) = \widehat{SMO} = 60^{0}.

    OM = \frac{1}{2}BC =
\frac{a}{2}, SO = OMtan60^{0} =
\frac{a\sqrt{3}}{2}.

    Thể tích khối chóp S.ABCD

    V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^{2} =
\frac{a^{3}\sqrt{3}}{6}.

  • Câu 19: Thông hiểu

    Chọn đáp án chính xác

    Tìm tất cả các giá trị của tham số m để hàm số y
= x^{3} - 3(m + 1)x^{2} + 3(3m + 7)x + 1 có cực trị?

    Ta có: y' = 3x^{2} - 6(m + 1)x + 3(3m
+ 7)

    Để hàm số y = x^{3} - 3(m + 1)x^{2} +
3(3m + 7)x + 1 có cực trị thì y' = 0 có hai nghiệm phân biệt

    \Rightarrow \Delta' > 0
\Leftrightarrow 9m^{2} - 9m - 54 > 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 2 \\
m > 3 \\
\end{matrix} ight..

  • Câu 20: Thông hiểu

    Tìm số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{2x\sqrt{3 -
x^{2}}}{x^{2} + x - 2} có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = \left\lbrack - \sqrt{3}\ ;\
\sqrt{3} ightbrack\backslash\left\{ 1 ight\}\ \
\overset{}{ightarrow}không tồn tại \lim_{x ightarrow - \infty}y\lim_{x ightarrow + \infty}y. Suy ra đồ thị hàm số không có tiệm cận ngang.

    Ta có \left\{ \begin{matrix}
\lim_{x ightarrow \ 1^{+}}\frac{2x\sqrt{3 - x^{2}}}{x^{2} + x - 2} = +
\infty \\
\lim_{x ightarrow 1^{-}}\frac{2x\sqrt{3 - x^{2}}}{x^{2} + x - 2} = -
\infty \\
\end{matrix} ight.\ \overset{}{ightarrow}\ \ x = 1 là TCĐ.

    Vậy đồ thị hàm số có đúng một tiệm cận.

  • Câu 21: Thông hiểu

    Số cạnh của hình đa diện

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 22: Nhận biết

    Xác định cực tiểu của hàm số

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}, đạo hàm y = f'(x) có đồ thị như hình vẽ sau:

    Tìm số điểm cực tiểu của hàm số y =
f(x)?

    Hàm số đạt cực tiểu tại điểm có f'(x) đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.

  • Câu 23: Thông hiểu

    Tìm m để hàm số có ba đường tiệm cận

    Số các giá trị nguyên của tham số m để đồ thị hàm số y = \frac{1}{x^{2} - 2mx + 2m^{2} - 4m -
12} có ba đường tiệm cận bằng:

    Ta có:

    \lim_{x ightarrow \pm \infty}f(x) =
\lim_{x ightarrow \pm \infty}\frac{1}{x^{2} - 2mx + 2m^{2} - 4m - 12}
= 0 nên y = 0 là tiệm cận ngang của đồ thị hàm số

    Theo yêu cầu bài toán ta suy ra x^{2} -
2mx + 2m^{2} - 4m - 12 = 0 có hai nghiệm phân biệt

    \Leftrightarrow \Delta' > 0
\Leftrightarrow m^{2} - \left( 2m^{2} - m - 12 ight) >
0

    \Leftrightarrow - m^{2} + 4m + 12 > 0
\Leftrightarrow - 2 < m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4;5 ight\}

    Vậy có 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 24: Thông hiểu

    Tính V lăng trụ tam giác đều

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 25: Thông hiểu

    Chọn khẳng định đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 26: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) = x^{4} - 2x^{2} -
3. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho đạt cực đại tại x = 0. Đúng||Sai

    b) Hàm số đã cho đạt cực tiểu tại x = −3. Sai|| Đúng

    c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là −4, −3. Sai|| Đúng

    d) Đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0). Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) = x^{4} - 2x^{2} -
3. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho đạt cực đại tại x = 0. Đúng||Sai

    b) Hàm số đã cho đạt cực tiểu tại x = −3. Sai|| Đúng

    c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là −4, −3. Sai|| Đúng

    d) Đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0). Sai|| Đúng

    Ta có:

    f'(x) = 4x^{3} - 4x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên

    a) Dựa vào bảng biến thiên ta thấy hàm số đạt cực đại tại x = 0

    b) Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = −3

    c) Dựa vào bảng biến thiên ta thấy hàm số giá trị cực đại và cực tiểu lần lượt là −4, −3

    d) Dựa vào bảng biến thiên ta thấy hàm số g(x) = f(x) + 3 có được bằng cách tịnh tiến đồ thị y = f(x) lên trên 3 đơn vị. Suy ra đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0).

  • Câu 27: Nhận biết

    Chọn hàm số thích hợp với hình vẽ

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Đồ thị hàm số bậc 4 có hệ số a >
0 cắt trục tung tại điểm có tung độ lớn hơn 0 nên hàm số cần tìm là y = x^{4} - 2x^{2} - 1.

  • Câu 28: Nhận biết

    Tìm khoảng nghịch biến của hàm số

    Hàm số y = \frac{5 - 2x}{x + 3} nghịch biến trên

    Hàm số y = \frac{5 - 2x}{x + 3} có tập xác định là D\mathbb{=
R}\backslash\left\{ - 3 ight\}.

    y' = \frac{- 11}{(x + 3)^{2}} <
0,với x \in D.

    Vậy hàm số đã cho nghịch biến trên các khoảng ( - \infty; - 3)( - 3; + \infty).

  • Câu 29: Thông hiểu

    Ghi đáp án đúng vào ô trống

    Cho hàm số y = e^{x}\left( x^{2} - 3
\right), gọi M =
\frac{a}{e^{b}}\left( a\mathbb{\in N},b\mathbb{\in N} \right) là giá trị lớn nhất của hàm số trên đoạn \lbrack - 5; - 2\rbrack. Tính giá trị của biểu thức P = a + b?

    Đáp án: 9

    Đáp án là:

    Cho hàm số y = e^{x}\left( x^{2} - 3
\right), gọi M =
\frac{a}{e^{b}}\left( a\mathbb{\in N},b\mathbb{\in N} \right) là giá trị lớn nhất của hàm số trên đoạn \lbrack - 5; - 2\rbrack. Tính giá trị của biểu thức P = a + b?

    Đáp án: 9

    Ta có: y' = e^{x}\left( x^{2} + 2x -
3 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 3 \in \lbrack - 5; - 2brack \\
x = 1 otin \lbrack - 5; - 2brack \\
\end{matrix} ight.

    Ta có y( - 5) = \frac{22}{e^{5}};y( - 3)
= \frac{6}{e^{3}};y( - 2) = \frac{1}{e^{2}}.

    Khi đó \max_{\lbrack - 5; - 2brack}y =
\frac{6}{e^{3}} \Rightarrow a = 6;b = 3 \Rightarrow a + b =
9.

  • Câu 30: Nhận biết

    Mệnh đề nào sai

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 31: Vận dụng

    Tìm m để đồ thị hàm số không có tiệm cận đứng

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{2x^{2} - 3x + m}{x - m} không có tiệm cận đứng.

    TXĐ: D\mathbb{= R}\backslash\left\{ m
ight\}.

    Ta có y = \frac{(x - m)(2x + 2m - 3) +
2m(m - 1)}{x - m} = 2x + 2m - 3 +
\frac{2m(m - 1)}{x - m}

    Để đồ thị hàm số không có tiệm cận đứng thì các giới hạn \lim_{x ightarrow m^{\pm}}y tồn tại hữu hạn \Leftrightarrow 2m(m - 1) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 0 \\
\end{matrix} ight.\ .

    Cách 2. (Chỉ áp dụng cho mẫu thức là bậc nhất)

    Từ yêu cầu bài toán suy ra phương trình 2x^{2} - 3x + m = 0 có một nghiệm là x = m

    \Rightarrow 2m^{2} - 3m + m = 0 \Leftrightarrow 2m(m - 1) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 1 \\
\end{matrix} ight..

  • Câu 32: Vận dụng cao

    Chọn kết luận đúng

    Đồ thị của hàm số y = x^{4} - 2(m +
1)x^{2} + 2m + 1 (với m là tham số) cắt trục hoành tại bốn điểm phân biệt có hoành độ lập thành một cấp số cộng. Kết luận nào sau đây đúng?

    Phương trình hoành độ giao điểm y = x^{4}
- 2(m + 1)x^{2} + 2m + 1 = 0\ \ (1)

    Đặt t = x^{2};t \geq 0. Phương trình trở thành t^{2} - 2(m + 1)t + 2m + 1 =
0\ \ \ (2)

    Phương trình (1) có 4 nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương phân biệt, nghĩa là \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(m + 1)^{2} - (2m + 1) > 0 \\
m + 1 > 0 \\
2m + 1 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - 1 \\m > - \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - \dfrac{1}{2} \\\end{matrix} ight.

    Gọi x_{1};x_{2};x_{3};x_{4};\left( x_{1} < x_{2} < x_{3} < x_{4}
ight) là nghiệm cỉa phương trình (1) và t_{1};t_{2};\left( t_{1} < t_{2}
ight) là nghiệm của phương trình (2)

    Theo giả thiết ta có:

    x_{4} - x_{3} = x_{3} - x_{2} = x_{2} -
x_{1}

    \Leftrightarrow x_{4} - x_{3} = x_{3} -
x_{2}

    \Leftrightarrow \sqrt{t_{2}} -
\sqrt{t_{1}} = \sqrt{t_{1}} + \sqrt{t_{1}} \Leftrightarrow t_{2} =
9t_{1} > 0

    Ta có hệ:

    \left\{ \begin{matrix}t_{1} + t_{2} = 2(m + 1) \\t_{1}.t_{2} = 2m + 1 \\t_{1} = 9t_{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t_{1} = \dfrac{m}{5} + \dfrac{1}{5} \\t_{2} = \dfrac{9m}{5} + \dfrac{9}{5} \\t_{1}.t_{2} = 2m + 1 \\\end{matrix} ight.

    \Leftrightarrow \left( \dfrac{m}{5} +\dfrac{1}{5} ight)\left( \dfrac{9m}{5} + \dfrac{9}{5} ight) = 2m + 1\Leftrightarrow \left\lbrack \begin{matrix}m = 4 \\m = - \dfrac{4}{9} \\\end{matrix} ight.

    Vậy m \in (2;6)

  • Câu 33: Nhận biết

    Tính tổng số cạnh

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 34: Nhận biết

    Chọn hàm số thích hợp

    Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?

    Đường cong trong hình vẽ là đồ thị hàm số y = ax^{3} + bx^{2} + cx + d với a > 0 nên đồ thị đã cho là đồ thị của hàm số y = x^{3} - 3x - 1.

  • Câu 35: Nhận biết

    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Dựa vào bảng biến thiên ta suy ra mệnh đề đúng là: “Điểm cực tiểu của đồ thị hàm số là B(0;1)”.

  • Câu 36: Vận dụng

    Trục đối xứng

    Gọi {n_1},{m{ }}{n_2},{m{ }}{n_3} lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng? 

    Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).

    Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).

    Khối lập phương có 9 trục đối xứng

    (Loại 1: đi qua tâm của các mặt đối diện ;

    Loại 2: đi qua trung điểm các cặp cạnh đối diện).

  • Câu 37: Nhận biết

    Tính thể tích

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 38: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 39: Thông hiểu

    Tìm số phần từ của tập hợp S

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để hàm số y = \frac{\cos x + m^{2}}{2 - \cos
x} có giá trị lớn nhất trên \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack bằng 1. Số phần tử của tập hợp S:

    Ta có: y = \frac{\cos x + m^{2}}{2 - \cos
x};\forall x \in \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack

    Đặt t = \cos x;(0 \leq t \leq
1)

    Hàm số đã cho trở thành: f(t) = \frac{t +
m^{2}}{2 - t};\forall t \in \lbrack 0;1brack

    Ta có: f'(t) = \frac{2 + m^{2}}{(2 -
t)^{2}} > 0;\forall t \in \lbrack 0;1brack

    \Rightarrow \underset{\left\lbrack -
\frac{\pi}{2};\frac{\pi}{3} ightbrack}{\max y} = f(1) = m^{2} + 1 =
1 \Leftrightarrow m = 0

    Vậy số phần tử của tập hợp S là 1.

  • Câu 40: Thông hiểu

    Tìm số cạnh

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 41: Nhận biết

    Tìm số mặt của đa diện

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 42: Vận dụng

    Chọn đáp án đúng

    Tìm tập hợp tất cả các giá trị của m để hàm số y
= \frac{m - \sin x}{cos^{2}x} nghịch biến trên \left( 0;\frac{\pi}{6} \right).

    Ta có

    y' = \frac{- cos^{2}x + 2m\sin x -
2sin^{2}x}{cos^{3}x} = \frac{- 1 +
2m\sin x - sin^{2}x}{cos^{3}x}

    Để hàm số nghịch biến trên \left(
0;\frac{\pi}{6} ight) thì

    y' \leq 0,\forall x \in \left(
0;\frac{\pi}{6} ight)

    \Leftrightarrow - sin^{2}x + 2m\sin x - 1
\leq 0,\forall x \in \left(
0;\frac{\pi}{6} ight), vì cos^{3}x > 0,\forall x \in \left(
0;\frac{\pi}{6} ight) (1)

    Đặt \sin x = t,t \in \left( 0;\frac{1}{2}
ight).

    Khi đó (1) \Leftrightarrow - t^{2} + 2mt
- 1 \leq 0,\forall t \in \left( 0;\frac{1}{2} ight)

    \Leftrightarrow m \leq \frac{t^{2} +
1}{2t},\forall t \in \left( 0;\frac{1}{2} ight)\ (2)

    Ta xét hàm f(t) = \frac{t^{2} +
1}{2t},\forall t \in \left( 0;\frac{1}{2} ight)

    Ta có f'(t)=\frac{2\left( t^{2}-1ight)}{4t^2} < 0,\forall t \in \left( 0;\frac{1}{2}ight)

    Bảng biến thiên

    Từ bảng biến thiên suy ra (2)
\Leftrightarrow m \leq \frac{5}{4}.

  • Câu 43: Nhận biết

    V lăng trụ đứng

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 44: Nhận biết

    Số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = \frac{{\sqrt {{x^2} - 4} }}{{x - 1}}. Đồ thị hàm số có mấy đường tiệm cận?

    Tập xác định: D = \left( { - \infty ;2} ight] \cup \left[ {2; + \infty } ight)

    Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.

    \begin{matrix}  \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt {{x^2} - 4} }}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|\sqrt {1 - \dfrac{4}{{{x^2}}}} }}{{x\left( {1 - \dfrac{1}{x}} ight)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|}}{x} \hfill \\   = \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

  • Câu 45: Thông hiểu

    Tìm số mặt của đa diện

    Khối đa diện nào sau đây có số mặt nhỏ nhất?

    Khối tứ diện đều có 4 mặt là 4 tam giác đều.

    Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.

    Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông

    Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.

     

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo