Xác định điều kiện của m thỏa mãn yêu cầu
Cho hàm
. Mệnh đề nào sau đây là đúng?
Tập xác định: .
Ta có ,
.
Vậy hàm số đồng biến trên khoảng
Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 nha!
Xác định điều kiện của m thỏa mãn yêu cầu
Cho hàm
. Mệnh đề nào sau đây là đúng?
Tập xác định: .
Ta có ,
.
Vậy hàm số đồng biến trên khoảng
Tìm m để hàm số có 11 cực trị
Cho hàm số y = f’(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng 11 điểm cực trị?

Hàm số đạt cực trị tại
Xét hàm số
Bảng biến thiên của hàm số suy ra chỉ có phương trình
cho ta nghiệm bội lẻ.
Nếu
=> Số điểm cực trị u là 1
=> Số nghiệm bội lẻ của phương trình u = 4 tối đa 2 nghiệm bội lẻ (Không thỏa yêu cầu)
Khi m > 0 => Số điểm cực trị u là 5 ta có bảng biến thiên của hàm số

Áp dụng công thức:
Số điểm cực trị của hàm số f(u) = số nghiệm bội lẻ của phương trình (u = 4) + số điểm cực trị của u
=> . Kết hợp với điều kiện
=> Có 29 giá trị nguyên thỏa mãn yêu cầu.
Xác định m thỏa mãn yêu cầu đề bài
Cho hàm số
có bảng biến thiên trên đoạn
như hình vẽ:

Có bao nhiêu giá trị của tham số
trên đoạn
sao cho giá trị lớn nhất của hàm số
trên đoạn
bằng
?
Ta có:
Suy ra
Khi đó hay
Theo yêu cầu bài toán
Nhìn vào bảng biến thiên ta thấy có ba nghiệm
Vậy có 3 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Xác định điều kiện của m thỏa mãn yêu cầu
Hàm số
nghịch biến trên khoảng
khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng khi
Vậy đáp án cần tìm là .
Định các giá trị tham số m theo yêu cầu
Cho hàm số
với
là tham số thực. Tìm tất cả các giá trị của
để hàm số có hai điểm cực trị
thỏa mãn
.
Ta có
Yêu cầu bài toán có hai nghiệm phân biệt
thỏa mãn
Nhận xét. Nhắc lại kiến thức lớp dưới phương trình
có hai nghiệm phân biệt
thỏa mãn
Tìm mệnh đề đúng
Cho hàm số
. Gọi
lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số. Mệnh đề nào sau đây là đúng?
Để căn thức có nghĩa khi
Xét
Do đó tập xác định của hàm số:
Ta có
là TCĐ;
không là TCĐ;
là TCN;
là TCN.
Vậy
Cho các khẳng định sau:
i) Hàm số
luôn đồng biến trên
.
ii) Hàm số
luôn đồng biến trên mỗi khoảng xác định của nó.
iii) Hàm số
luôn nghịch biến trên
.
iv) Hàm số
luôn nghịch biến trên mỗi khoảng xác định của nó.
Số khẳng định sai là:
Xác định tính đúng sai của từng phương án
Cho hàm số
xác định trên tập
và một số thực
. Xét tính đúng sai của các khẳng định sau:
a) Nếu
thì
. Sai|| Đúng
b) Nếu
thì
. Sai|| Đúng
c) Nếu
thì
. Đúng||Sai
d) Nếu
thì
. Đúng||Sai
Cho hàm số
xác định trên tập
và một số thực
. Xét tính đúng sai của các khẳng định sau:
a) Nếu
thì
. Sai|| Đúng
b) Nếu
thì
. Sai|| Đúng
c) Nếu
thì
. Đúng||Sai
d) Nếu
thì
. Đúng||Sai
a) Khẳng định này sai, cần bổ sung thêm điều kiện để
.
b) Khẳng định này sai, cần bổ sung thêm điều kiện để
.
c) Nếu thì
là hàm hằng trên
(đồ thị là đường thẳng nằm ngang).
Suy ra .
d) Nếu thì
là hàm hằng trên
(đồ thị là đường thẳng nằm ngang).
Suy ra.
Tìm giá trị lớn nhất của hàm số
Tìm giá trị lớn nhất của hàm số
trên đoạn ![]()
Đạo hàm
Ta có
Cách 2. Sử dụng chức năng MODE 7 và nhập hàm với thiết lập Start 1, End
Step
.
Quan sát bảng giá trị ta thấy giá trị lớn nhất
bằng
khi
Xét tính đúng sai của các nhận định
Một công ty bất động sản
có 100 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá
triệu đồng một tháng thì mọi căn hộ đều có người thuê, và cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm
đồng mỗi tháng thì có thêm
căn hộ bị bỏ trống. Gọi
là số lần tăng giá cho thuê mỗi căn hộ của công ty
. Các mệnh đề dưới đây đúng hay sai?
a) Nếu giữ nguyên giá thuê mỗi căn hộ là
triệu đồng một tháng thì công ty
thu về
triệu đồng mỗi tháng. Đúng||Sai
b) Sau
lần tăng giá cho thuê mỗi căn hộ của công ty
, số căn hộ có người thuê là
. Đúng||Sai
c) Giá thuê một căn hộ của công ty
là
đồng/tháng sau
lần tăng giá. Sai||Đúng
d) Công ty
thu về nhiều nhất là
triệu đồng/tháng. Đúng||Sai
Một công ty bất động sản
có 100 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá
triệu đồng một tháng thì mọi căn hộ đều có người thuê, và cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm
đồng mỗi tháng thì có thêm
căn hộ bị bỏ trống. Gọi
là số lần tăng giá cho thuê mỗi căn hộ của công ty
. Các mệnh đề dưới đây đúng hay sai?
a) Nếu giữ nguyên giá thuê mỗi căn hộ là
triệu đồng một tháng thì công ty
thu về
triệu đồng mỗi tháng. Đúng||Sai
b) Sau
lần tăng giá cho thuê mỗi căn hộ của công ty
, số căn hộ có người thuê là
. Đúng||Sai
c) Giá thuê một căn hộ của công ty
là
đồng/tháng sau
lần tăng giá. Sai||Đúng
d) Công ty
thu về nhiều nhất là
triệu đồng/tháng. Đúng||Sai
a) Nếu giữ nguyên giá thuê mỗi căn hộ là triệu đồng một tháng thì công ty
thu về:
Suy ra mệnh đề đúng.
b) Sau lần tăng giá cho thuê mỗi căn hộ, công ty
có số căn hộ bị bỏ trống là:
.
Khi đó, số căn hộ có người thuê là: .
Suy ra mệnh đề đúng.
c) Sau lần tăng giá, giá thuê mỗi căn hộ của công ty
tăng thêm:
.
Khi đó, giá thuê mỗi căn hộ của công ty là:
.
Suy ra mệnh đề sai.
d) Mỗi tháng, công ty thu về:
.
Ta thấy: .
Công ty muốn có thu nhập thì không được tăng quá
lần tăng giá thuê mỗi căn hộ.
Xét hàm số:
trên
.
.
Ta có:
Suy ra .
Vậy công ty thu về nhiều nhất là
đồng/tháng hay
triệu đồng/tháng.
Suy ra mệnh đề đúng.
Tổng độ dài
Tổng độ dài
của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Tổng độ dài
của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Khối mười hai mặt đều có tất cả 30 cạnh:

Suy ra ta có tổng độ dài tất cả các cạnh bằng .
Chọn đáp án đúng
Cho hình chóp tam giác đều
. Mặt bên
là tam giác gì?
Hình chóp tam giác đều có các mặt bên là các tam giác cân.
Tìm số đường tiệm cận
Cho hàm số
có bảng biến thiên như sau:

Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?
Đồ thị của hàm số đã cho có đường tiệm cận.
Tìm giá trị lớn nhất nhỏ nhất của hàm số
Cho hàm số
. Tìm giá trị lớn nhất
và giá trị nhỏ nhất
của hàm số trên đoạn ![]()
Đạo hàm .
Ta có .
Suy ra hàm số đồng biến trên đoạn
.
Vậy
Số mặt của hình chóp
Cho hình chóp 22 cạnh. Tính số mặt của hình chóp đó?
Gọi số cạnh đáy là với
Đáy của chóp là
– giác.
Ứng với mỗi đỉnh của đáy của 1 cạnh nối đỉnh của hình chóp với đỉnh của chóp.
Suy ra hình chóp có tổng số cạnh là .
Theo đề bài, hình chóp có 22 cạnh nên ta được (TMĐK)
Do đó, hình chóp có đáy là 11 – giác.
Do đó chóp có 11 mặt bên cộng 1 đáy.
Vậy hình chóp có tổng 12 mặt.
Tìm m để hàm số thỏa mãn yêu cầu
Cho hàm số
với
là tham số. Với điều kiện nào của tham số
thì hàm số đã cho có cực đại và cực tiểu?
Ta có:
Để hàm số có cực đại và cực tiểu thì phương trình (*) có hai nghiệm phân biệt
.
Vậy đáp án cần tìm là .
Tìm hàm số tương ứng với bảng biến thiên
Cho hàm số
có đạo hàm trên khoảng
và có bảng biến thiên như sau:

Hàm số
là hàm số nào dưới đây?
Nhận diện đồ thị hàm số bậc 4 trùng phương nên loại hàm số
Hàm số có 3 cực trị nên nên loại hàm số
.
Vì nên hàm số cần tìm là
.
Tính thể tích khối chóp
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Chọn đáp án chính xác
Tìm tất cả các giá trị của tham số
để hàm số
có cực trị?
Ta có:
Để hàm số có cực trị thì
có hai nghiệm phân biệt
.
Tìm số đường tiệm cận của đồ thị hàm số
Đồ thị hàm số
có tất cả bao nhiêu đường tiệm cận?
TXĐ: không tồn tại
và
Suy ra đồ thị hàm số không có tiệm cận ngang.
Ta có là TCĐ.
Vậy đồ thị hàm số có đúng một tiệm cận.
Số cạnh của hình đa diện
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Xác định cực tiểu của hàm số
Cho hàm số
xác định và liên tục trên
, đạo hàm
có đồ thị như hình vẽ sau:

Tìm số điểm cực tiểu của hàm số
?
Hàm số đạt cực tiểu tại điểm có đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.
Tìm m để hàm số có ba đường tiệm cận
Số các giá trị nguyên của tham số
để đồ thị hàm số
có ba đường tiệm cận bằng:
Ta có:
nên
là tiệm cận ngang của đồ thị hàm số
Theo yêu cầu bài toán ta suy ra có hai nghiệm phân biệt
Mà
Vậy có 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Tính V lăng trụ tam giác đều
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Chọn khẳng định đúng
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Xác định tính đúng sai của từng phương án
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho đạt cực đại tại
. Đúng||Sai
b) Hàm số đã cho đạt cực tiểu tại
. Sai|| Đúng
c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là
. Sai|| Đúng
d) Đồ thị hàm số
có điểm cực đại là
. Sai|| Đúng
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho đạt cực đại tại
. Đúng||Sai
b) Hàm số đã cho đạt cực tiểu tại
. Sai|| Đúng
c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là
. Sai|| Đúng
d) Đồ thị hàm số
có điểm cực đại là
. Sai|| Đúng
Ta có:
Bảng biến thiên
a) Dựa vào bảng biến thiên ta thấy hàm số đạt cực đại tại
b) Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại
c) Dựa vào bảng biến thiên ta thấy hàm số giá trị cực đại và cực tiểu lần lượt là
d) Dựa vào bảng biến thiên ta thấy hàm số có được bằng cách tịnh tiến đồ thị
lên trên 3 đơn vị. Suy ra đồ thị hàm số
có điểm cực đại là
.
Chọn hàm số thích hợp với hình vẽ
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

Đồ thị hàm số bậc 4 có hệ số cắt trục tung tại điểm có tung độ lớn hơn
nên hàm số cần tìm là
.
Tìm khoảng nghịch biến của hàm số
Hàm số
nghịch biến trên
Hàm số có tập xác định là
.
với
.
Vậy hàm số đã cho nghịch biến trên các khoảng và
.
Ghi đáp án đúng vào ô trống
Cho hàm số
, gọi
là giá trị lớn nhất của hàm số trên đoạn
. Tính giá trị của biểu thức
?
Đáp án: 9
Cho hàm số
, gọi
là giá trị lớn nhất của hàm số trên đoạn
. Tính giá trị của biểu thức
?
Đáp án: 9
Ta có:
Ta có .
Khi đó .
Mệnh đề nào sai
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Tìm m để đồ thị hàm số không có tiệm cận đứng
Tìm tất cả các giá trị thực của tham số
để đồ thị hàm số
không có tiệm cận đứng.
TXĐ: .
Ta có
Để đồ thị hàm số không có tiệm cận đứng thì các giới hạn tồn tại hữu hạn
Cách 2. (Chỉ áp dụng cho mẫu thức là bậc nhất)
Từ yêu cầu bài toán suy ra phương trình có một nghiệm là
.
Chọn kết luận đúng
Đồ thị của hàm số
(với
là tham số) cắt trục hoành tại bốn điểm phân biệt có hoành độ lập thành một cấp số cộng. Kết luận nào sau đây đúng?
Phương trình hoành độ giao điểm
Đặt . Phương trình trở thành
Phương trình (1) có 4 nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương phân biệt, nghĩa là
Gọi ;
là nghiệm cỉa phương trình (1) và
là nghiệm của phương trình (2)
Theo giả thiết ta có:
Ta có hệ:
Vậy
Tính tổng số cạnh
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Chọn hàm số thích hợp
Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?

Đường cong trong hình vẽ là đồ thị hàm số với
nên đồ thị đã cho là đồ thị của hàm số
.
Chọn mệnh đề đúng
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên ta suy ra mệnh đề đúng là: “Điểm cực tiểu của đồ thị hàm số là ”.
Trục đối xứng
Gọi
lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng?
Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).
Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).
Khối lập phương có 9 trục đối xứng
(Loại 1: đi qua tâm của các mặt đối diện ;
Loại 2: đi qua trung điểm các cặp cạnh đối diện).
Tính thể tích
Cho hình chóp
có tam giác
là tam giác vuông cân tại S,
và khoảng cách từ A đến mặt phẳng
bằng
. Tính theo a thể tích V của khối chóp
.
Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Trung điểm các cạnh của một tứ diện đều
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Tìm số phần từ của tập hợp S
Gọi
là tập hợp tất cả các giá trị thực của tham số
để hàm số
có giá trị lớn nhất trên
bằng
. Số phần tử của tập hợp
:
Ta có:
Đặt
Hàm số đã cho trở thành:
Ta có:
Vậy số phần tử của tập hợp S là 1.
Tìm số cạnh
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Tìm số mặt của đa diện
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Chọn đáp án đúng
Tìm tập hợp tất cả các giá trị của
để hàm số
nghịch biến trên
.
Ta có
Để hàm số nghịch biến trên thì
,
, vì
Đặt .
Khi đó
Ta xét hàm
Ta có
Bảng biến thiên
Từ bảng biến thiên suy ra .
V lăng trụ đứng
Cho khối lăng trụ đứng
có
, đáy
là tam giác vuông cân tại
và
. Tính thể tích của khối lăng trụ đã cho.

Tam giác vuông cân tại
,
suy ra
Vậy thể tích khối lăng trụ
Số đường tiệm cận của đồ thị hàm số
Cho hàm số
. Đồ thị hàm số có mấy đường tiệm cận?
Tập xác định:
Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.
=> y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
Tìm số mặt của đa diện
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: