Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm:

Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn đáp án chính xác

    Hàm số tương ứng với đồ thị trong hình vẽ dưới đây là:

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a < 0 nên hàm số tương ứng là y = - x^{3} + 3x.

  • Câu 2: Thông hiểu

    Tìm giá trị lớn nhất của hàm số

    Cho hàm số f(x) = x^{3} - 3x +
e^{m} với m là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên \lbrack 0;2brack bằng 0. Khi đó giá trị lớn nhất của hàm số đó là:

    Ta có: f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight. do xét trên \lbrack 0;2brack nên nhận x = 1

    \left\{ \begin{matrix}
f(1) = e^{m} - 2 \\
f(0) = e^{m} \\
f(2) = e^{m} + 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}f(x) = e^{m}
- 2 = 0 \Leftrightarrow e^{m} = 2

    Từ đó \max_{\lbrack 0;2brack}f(x) =
e^{m} + 2 = 4.

  • Câu 3: Vận dụng cao

    Chọn đáp án chính xác

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ.

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f\left( \left| \frac{3sinx - \cos x - 1}{2cosx -
\sin x + 4} \right| + 2 \right) = f\left( \sqrt{(m + 2)^{2} + 4}
\right) có nghiệm?

    Ta có: - 1 \leq \sin x \leq 1,\ \  - 1
\leq \cos x \leq 1 nên suy ra 2cosx
- \sin x + 4 > 0,\ \ \forall x\mathbb{\in R}.

    Đặt t = \frac{3sinx - \cos x - 1}{2cosx -
\sin x + 4} \Rightarrow t(2cosx -
\sin x + 4) = 3sinx - \cos x - 1

    \Leftrightarrow (2t + 1)cosx - (t +
3)sinx = - (4t + 1).

    Phương trình trên có nghiệm khi

    (2t + 1)^{2} + (t + 3)^{2} \geq (4t +
1)^{2}

    \Leftrightarrow \frac{- 9}{11} \leq t
\leq 1 \Rightarrow 2 \leq |t| + 2 \leq 3.

    Nhìn vào hình trên ta thấy hàm số f(x) luôn đồng biến trên \lbrack 2\ ;\ 3brack nên phương trình f\left( \left| \frac{3sinx - \cos x -
1}{2cosx - \sin x + 4} ight| + 2 ight) = f\left( \sqrt{(m + 2)^{2} +
4} ight) hay phương trình f\left(
|t| + 2 ight) = f\left( \sqrt{(m + 2)^{2} + 4} ight) có nghiệm khi và chỉ khi phương trình |t| + 2 =
\sqrt{(m + 2)^{2} + 4} có nghiệm t thỏa mãn điều kiện 2 \leq |t| + 2 \leq 3

    \Leftrightarrow 2 \leq \sqrt{(m + 2)^{2}
+ 4} \leq 3 \Rightarrow m^{2} + 4m - 1 \leq 0 \Leftrightarrow - 2 -
\sqrt{5} \leq m \leq - 2 + \sqrt{5}

    m\mathbb{\in Z} nên có tất cả 5 giá trị m thỏa mãn.

  • Câu 4: Nhận biết

    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ \pm 2
ight\} và có bảng biến thiên như sau:

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số không có điểm cực trị. Đúng||Sai

    b) \lim_{x ightarrow ( - 2)^{-}}f(x) =
+ \infty. Sai||Đúng

    c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai

    d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ \pm 2
ight\} và có bảng biến thiên như sau:

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số không có điểm cực trị. Đúng||Sai

    b) \lim_{x ightarrow ( - 2)^{-}}f(x) =
+ \infty. Sai||Đúng

    c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai

    d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng

    Dựa vào bảng biến thiên ta thấy

    a) Hàm số không có điểm cực trị.

    b) lim \lim_{x ightarrow ( -
2)^{-}}f(x) = - 10.

    c) \lim_{x ightarrow \pm \infty}f(x) =
0. Suy ra đồ thị có đúng 1 đường tiệm cận ngang là y = 0.

    d) \lim_{x ightarrow ( - 2)^{+}}f(x) =
+ \infty\lim_{x ightarrow
2^{+}}f(x) = + \infty nên đồ thị hàm số có đúng 2 đường tiệm cận đứng x = \pm 2.

  • Câu 5: Vận dụng

    Tìm tham số m để hàm số nghịch biến trên khoảng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Tìm số nghiệm thực của phương trình

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình vẽ bên.

    Số nghiệm thực của phương trình f(x) =
2 là:

    Ta có số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f(x) với đường thẳng y = 2.

    Dựa vào đồ thị ta có phương trình có ba nghiệm phân biệt.

  • Câu 7: Thông hiểu

    Tìm m để hàm số không có cực trị

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{1}{3}x^{3} - mx^{2} + (5m - 4)x - 1 không có điểm cực trị?

    Ta có: y' = x^{2} - 2mx + 5m -
4

    Hàm số đã cho không có cực trị khi và chỉ khi y' = 0 vô nghiệm hoặc có nghiệm kép.

    \Leftrightarrow \Delta' \leq 0
\Leftrightarrow m^{2} - 5m + 4 \leq 0 \Leftrightarrow m \in \lbrack
1;4brack

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;4 ight\}

    Vậy có bốn giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 8: Vận dụng

    Định giá trị m thỏa mãn bất phương trình

    Cho hàm số f(x) có đạo hàm trên \mathbb{R} và thỏa mãn f(x) > f'(x) + 1;\forall x\mathbb{\in
R}. Bất phương trình f(x) <
me^{x} + 1 nghiệm đúng với mọi x
\in (0; + \infty) khi và chỉ khi

    Ta có:

    f(x) < me^{x} + 1 \Leftrightarrow
f(x) - 1 < me^{x}

    \Leftrightarrow \frac{f(x) - 1}{e^{x}}
< m.

    Xét hàm số g(x) = \frac{f(x) -
1}{e^{x}}

    g'(x) = \frac{f'(x) -
\left\lbrack f(x) - 1 ightbrack}{e^{x}} < 0;\forall x \in (0; +
\infty)

    Bảng biến thiên

    Vậy bất phương trình f(x) < me^{x} +
1 nghiệm đúng với mọi x \in (0; +
\infty) khi và chỉ khi m \geq f(0)
- 1.

  • Câu 9: Thông hiểu

    Ghi đáp án vào ô trống

    Ta xác định được các số a, b, c để đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) và có điểm cực trị (2;1). Tính giá trị biểu thức T = 2025(a + c -
b).

    Đáp án: 4050

    Đáp án là:

    Ta xác định được các số a, b, c để đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) và có điểm cực trị (2;1). Tính giá trị biểu thức T = 2025(a + c -
b).

    Đáp án: 4050

    Ta có: y' = 3x^{2} + 2ax +
b.

    Đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) nên ta có: a - b +c = 2.

    Đồ thị hàm số có điểm cực trị (2;1) nên \left\{ \begin{matrix}
4a + 2b + c = - 7 \\
y'(2) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
4a + 2b + c = 7 \\
4a + b = - 12 \\
\end{matrix} ight..

    Xét hệ phương trình \left\{
\begin{matrix}
a - b + c = 2 \\
4a + 2b + c = - 7 \\
4a + b = - 12 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = 0 \\
c = 5 \\
\end{matrix} ight..

    Vậy T = 2025(a + c - b) = 2025( - 3 + 5 -
0) = 4050.

  • Câu 10: Thông hiểu

    Chọn khẳng định đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 11: Thông hiểu

    Chọn khẳng định đúng

    Cho hàm số y = f(x) có bảng biến thiên sau:

    Khẳng định nào sau đây là đúng?

    "Hàm số có hai điểm cực trị" sai vì hàm số có ba điểm cực trị là x =
- 1;\ x = 0;\ x = 1.

    "Hàm số đạt giá trị lớn nhất bằng -
3." sai vì hàm số không có giá trị lớn nhất.

    "Hàm số có một điểm cực tiểu" sai vì hàm số có hai điểm cực tiểu là x
= - 1x = 1.

  • Câu 12: Vận dụng

    Tổng các góc ở đỉnh

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {3;5} ight\} là:

    Khối đa diện đều loại \left\{ {3;5} ight\} là khối hai mươi mặt đều:

    Gồm 20 mặt là các tam giác đều nên tổng các góc bằng: 20.\pi  = 20\pi

  • Câu 13: Nhận biết

    Mệnh đề nào sai

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 14: Thông hiểu

    Tìm khoảng đồng biến của hàm số

    Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?

     Ta có bảng biến thiên như sau:

    Tìm khoảng đồng biến của hàm số

    Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)

  • Câu 15: Thông hiểu

    Tổng độ dài các cạnh của một tứ diện đều

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 16: Thông hiểu

    Tính V

    Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên gấp hai lần cạnh đáy. Tính thể tích V của khối chóp đã cho.

     

    Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Vì S.ABC là khối chóp đều nên suy ra \,SI \bot \left( {ABC} ight).

    Gọi M là trung điểm của BC\,\, \Rightarrow \,\,AI = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}

    Tam giác SAI vuông tại I, có:

    SI = \sqrt {S{A^2} - S{I^2}}  = \sqrt {{{\left( {2a} ight)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} ight)}^2}}  = \frac{{a\sqrt {33} }}{3}

    Diện tích tam giác ABC là:  {S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy thể tích khối chóp:  {V_{S.ABCD}} = \frac{1}{3}{S_{\Delta ABC}}.SI = \frac{{\sqrt {11} \,{a^3}}}{{12}}

  • Câu 17: Nhận biết

    Tìm giá trị cực đại và giá trị cực tiểu của hàmsố

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.

    Từ bảng biến thiên ta có: y_{CÐ} =
0;y_{CT} = - 3.

  • Câu 18: Nhận biết

    Tính V hộp chữ nhật

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 19: Thông hiểu

    Chọn phương án đúng

    Hình vẽ sau đây là đồ thị của một trong bốn hàm số cho ở các đáp án A,\ B,\ C,\ D. Hỏi đó là hàm số nào?

    Dựa vào đồ thị, ta có \lim_{x ightarrow
+ \infty}y = + \infty, loại phương án y = - x^{3} + 2x + 1.

    Xét phương án y = x^{3} + 2x + 1y' = 3x^{2} + 2 > 0,\ \ \forall
x\mathbb{\in R}, hàm số không có cực tri, loại phương án y = x^{3} + 2x + 1.

    Xét phương án y = x^{3} - 2x^{2} +
1y' = 3x^{2} - 6xy' đổi dấu khi đi qua các điểm x = 0,\ \ x = 2 nên hàm số đạt cực tri tại x = 0x = 2, loại phương án y = x^{3} - 2x^{2} + 1.

    Vậy phương án đúng là y = x^{3} - 2x +
1.

  • Câu 20: Nhận biết

    Tìm khoảng đồng biến của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây

    Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng (0;2).

  • Câu 21: Thông hiểu

    Tìm tổng số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Hàm số y = f(x) có tập xác định: D\mathbb{= R}\backslash\left\{ 0
ight\}.

    Ta có:

    \lim_{x ightarrow + \infty}f(x) = +
\infty Không tồn tại tiệm cận ngang khi x \to  + \infty .

    \lim_{x ightarrow - \infty}f(x) =
2 vậy hàm số y = f(x) có tiệm cận ngang y = 2.

    \underset{\mathbf{x
ightarrow}\mathbf{0}^{\mathbf{+}}}{\mathbf{\lim}}\mathbf{f}\left(
\mathbf{x} ight)\mathbf{= + \infty}; \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  - 4.

    Đồ thị hàm số y = f(x) có tiệm cận đứng x = 0.

    Vậy tổng số tiệm cận đứng và ngang là 2.

  • Câu 22: Nhận biết

    Tính tổng số cạnh

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 23: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y = \frac{\sqrt{x - 1} - 1}{x
- 2}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Tập xác định D = \lbrack 1;2) \cup (2; +
\infty)

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x - 1} - 1}{x - 2} = 1

    \lim_{x ightarrow 2^{-}}y = \lim_{x
ightarrow 2^{-}}\frac{\sqrt{x - 1} - 1}{x - 2} = \lim_{x ightarrow
2^{-}}\frac{x - 2}{(x - 2)\left( \sqrt{x - 1} + 1 ight)} = \lim_{x
ightarrow 2^{-}}\frac{1}{\sqrt{x - 1} + 1} = \frac{1}{2}

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{\sqrt{x - 1} - 1}{x - 2} = \lim_{x ightarrow
2^{+}}\frac{x - 2}{(x - 2)\left( \sqrt{x - 1} + 1 ight)} = \lim_{x
ightarrow 2^{+}}\frac{1}{\sqrt{x - 1} + 1} = \frac{1}{2}

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{\sqrt{x - 1} - 1}{x - 2} = 0

    Vậy đồ thị có một tiệm cận ngang y =
0.

  • Câu 24: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) = x^{4} - 2x^{2} -
3. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho đạt cực đại tại x = 0. Đúng||Sai

    b) Hàm số đã cho đạt cực tiểu tại x = −3. Sai|| Đúng

    c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là −4, −3. Sai|| Đúng

    d) Đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0). Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) = x^{4} - 2x^{2} -
3. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho đạt cực đại tại x = 0. Đúng||Sai

    b) Hàm số đã cho đạt cực tiểu tại x = −3. Sai|| Đúng

    c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là −4, −3. Sai|| Đúng

    d) Đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0). Sai|| Đúng

    Ta có:

    f'(x) = 4x^{3} - 4x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên

    a) Dựa vào bảng biến thiên ta thấy hàm số đạt cực đại tại x = 0

    b) Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = −3

    c) Dựa vào bảng biến thiên ta thấy hàm số giá trị cực đại và cực tiểu lần lượt là −4, −3

    d) Dựa vào bảng biến thiên ta thấy hàm số g(x) = f(x) + 3 có được bằng cách tịnh tiến đồ thị y = f(x) lên trên 3 đơn vị. Suy ra đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0).

  • Câu 25: Nhận biết

    Chọn đáp án đúng

    Hàm số nào sau đây không có điểm cực trị?

    Các hàm số y = x^{2} + x - 1; y = x^{2} + 3x - 1; y = x^{4} + 2x^{2} - 1 đều có một điểm cực trị.

    Xét hàm số y = x^{3} + 6x + 3 ta có: y' = 3x^{2} + 6 > 0;\forall
x\mathbb{\in R} nên hàm số không có cực trị.

  • Câu 26: Vận dụng cao

    Tính xác suất thỏa mãn yêu cầu đề bài

    Cho tập hợp A = \left\{ n\mathbb{\in Z}|0
\leq n \leq 20 ight\}F là tập hợp các hàm số f(x) = x^{3} + \left( 2m^{2} - 5 ight)x^{2} + 6x
- 8m^{2}m \in A. Chọn ngẫu nhiên một hàm số f(x) \in F. Tính xác suất để đồ thị hàm số y =
f(x) có hai điểm cực trị nằm khác phía đối với trục Ox?

    Không gian mẫu |\Omega| = 21

    Ta có: f(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \\
x^{2} + \left( 2m^{2} - 3 ight)x + 4m^{2} = 0(*) \\
\end{matrix} ight.

    Đồ thị của hàm số y = f(x) có hai điểm cực trị nằm khác phía đối với trục Ox suy ra phương trình (*) có hai nghiệm phân biệt khác 2.

    \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  {\left( {2{m^2} - 3} ight)^2} - 16{m^2} > 0 \hfill \\
  {2^2} + \left( {2{m^2} - 3} ight).2 + 4{m^2} e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  \left[ \begin{gathered}
  m > \sqrt {\dfrac{{7 + 2\sqrt {10} }}{2}}  \approx 2,58 \hfill \\
  0 \leqslant m < \sqrt {\dfrac{{7 - 2\sqrt {10} }}{2}}  \approx 0,58 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;3;4;...;20 ight\}

    Vậy xác suất cần tìm là P =
\frac{19}{21}.

  • Câu 27: Thông hiểu

    Tâm đối xứng

    Hình đa diện nào dưới đây không có tâm đối xứng?

     Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)

    Hình lăng trụ tam giác cũng không có tâm đối xứng.

    Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng

    Bát diện đều cũng có tâm đối xứng.

  • Câu 28: Vận dụng

    Tìm số tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1;2
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Số đường tiệm cận của đồ thị hàm số y =
\frac{1}{f(x) - 1} bằng:

    Dựa vào bảng biến thiên ta thấy f(x) - 1
= 0 có 4 nghiệm phân biệt nên đồ thị hàm số y = \frac{1}{f(x) - 1} có 4 đường tiệm cận đứng.

    Ngoài ra \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{f\left( x ight) - 1}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{f\left( x ight) - 1}} =  - \frac{1}{2} \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số y = \frac{1}{f(x) - 1} có hai đường tiệm cận ngang.

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{1}{f(x) - 1} bằng 6.

  • Câu 29: Nhận biết

    Xác định phương trình các đường tiệm cận

    Cho hàm số y = f(x) có đồ thị như sau:

    Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:

    Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là x = 1 và đường tiệm cận ngang là y = 1.

  • Câu 30: Vận dụng cao

    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{x^{2} + mx +
1}{x + m}. Xét tính đúng sai của các khẳng định dưới đây:

    a) Khi m = 0, ta có \min_{(0; + \infty)}y = - 2. Sai||Đúng

    b) Hàm số đã cho luôn có 2 cực trị. Đúng||Sai

    c) Với mọi giá trị của m, ta luôn có \min_{( - m; + \infty)}y -
\underset{( - \infty; - m)}{max}y = 4. Đúng||Sai

    d) Khi m = - 3 thì giá trị lớn nhất của hàm số trên đoạn \lbrack -
1;2\rbrack bằng 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + mx +
1}{x + m}. Xét tính đúng sai của các khẳng định dưới đây:

    a) Khi m = 0, ta có \min_{(0; + \infty)}y = - 2. Sai||Đúng

    b) Hàm số đã cho luôn có 2 cực trị. Đúng||Sai

    c) Với mọi giá trị của m, ta luôn có \min_{( - m; + \infty)}y -
\underset{( - \infty; - m)}{max}y = 4. Đúng||Sai

    d) Khi m = - 3 thì giá trị lớn nhất của hàm số trên đoạn \lbrack -
1;2\rbrack bằng 1. Đúng||Sai

    Tổng quan đáp án

    a. Sai

    b. Đúng

    c. Đúng

    d. Đúng

    a) Khi m = 0 thì giá trị nhỏ nhất của hàm số trên khoảng (0; +
\infty) bằng 2.

    Thay m = 0 vào y = \frac{x^{2} + mx + 1}{x + m}, ta có

    y = \frac{x^{2} + 1}{x} \Rightarrow y' = \frac{x^{2} - 1}{x^{2}} = 0\Leftrightarrow x^{2} - 1 = 0

    \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = - 1 \notin (0; + \infty)\end{matrix} \right..

    Ta có bảng biến thiên như sau:

    b) Ta có y = \frac{x^{2} + mx + 1}{x + m}
\Rightarrow y' = \frac{x^{2} + 2mx + m^{2} - 1}{(x +
m)^{2}}.

    + y' = 0 \Leftrightarrow x^{2} + 2mx
+ m^{2} - 1 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - m - 1;\ (\ x \neq - m) \\
x = - m + 1;\ (\ x \neq - m)
\end{matrix} \right..

    \Rightarrow y' = 0 luôn có 2 nghiệm phân biệt thỏa mãn x \neq - m,\ \
\forall m.

    Vậy hàm số luôn có 2 cực trị.

    c) + y' = 0 \Leftrightarrow x^{2} +2mx + m^{2} - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - m - 1 \\x = - m + 1\end{matrix} \right..

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta có:

    \max_{( -\infty; - m)}y = - 2 - m;\min_{( - m; + \infty)}y = 2 - m

    \Rightarrow \min_{( - m; + \infty)}y - \underset{( - \infty; - m)}{max}y= 4

    d) Khi m = - 3thay vào y = \frac{x^{2} + mx + 1}{x + m}, ta có y = \frac{x^{2} - 3x + 1}{x -
3}.

    + Hàm số y = \frac{x^{2} - 3x + 1}{x -
3} là hàm phân thức hữu tỉ, liên tục trên các khoảng ( - \infty;3)(3; + \infty).

    Mặt khác \lbrack - 1;2\rbrack \subset ( -
\infty;3) \Rightarrow Hàm số liên tục trên đoạn \lbrack - 1;2\rbrack.

    + Ta có y' = \frac{x^{2} - 6x + 8}{(x
- 3)^{2}} > 0\ \ \forall x \in ( - 1;2)y(2) = 1.

    Vì hàm số tăng trên ( - 1;2) nên hàm số đạt giá trị lớn nhất \max_{\lbrack -
1;2\rbrack}y = y(2) = 1.

  • Câu 31: Thông hiểu

    Xác định khoảng đồng biến của hàm số

    Cho hàm số y =
f(x) có đồ thị như hình vẽ:

    Xác định khoảng đồng biến của hàm số g(x)
= - 3f(x) + 2?

    Từ đồ thị hàm số y = f(x) ta có:

    f'(x) > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x < - 5 \\
x > 0 \\
\end{matrix} ight.f'(x)
< 0 \Leftrightarrow - 5 < x < 0

    Ta có: g'(x) = -
3f'(x)

    Khi đó: g'(x) > 0 \Leftrightarrow
- 3f'(x) > 0 \Leftrightarrow f'(x) < 0 \Leftrightarrow - 5
< x < 0

    g'(x) < 0 \Leftrightarrow -
3f'(x) < 0 \Leftrightarrow f'(x) > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x < - 5 \\
x > 0 \\
\end{matrix} ight.

    Vậy hàm số g(x) = - 3f(x) + 2 đồng biến trên khoảng ( - 5;0).

  • Câu 32: Nhận biết

    Chọn kết luận đúng

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Quan sát đồ thị ta thấy \left\{\begin{matrix}\max_{\lbrack 2;5brack}y = M = 4 \\\min_{\lbrack 2;5brack}y = m = - 6 \\\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 33: Nhận biết

    Phân chia khối đa diện

    Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

    Quan sát hình vẽ, ta thấy:

    Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.

  • Câu 34: Nhận biết

    Tính thể tích

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 35: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trên đoạn \lbrack - 1\ ;\
3brack như hình vẽ bên. Khẳng định nào sau đây đúng?

    Dựa vào bảng biến thiên ta thấy: \max_{\lbrack - 1;3brack}f(x) = 5 tại x = 0.

    Suy ra \max_{\lbrack - 1;3brack}f(x) =
f(0).

  • Câu 36: Nhận biết

    Tìm số mặt của đa diện

    Tìm số mặt của hình đa diện dưới đây là?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 37: Thông hiểu

    Chọn phương án đúng

    Giá trị nhỏ nhất của hàm số y = x +
\frac{2}{x} - \left( 1 + \sqrt{2} \right)^{2} trên khoảng (0; + \infty)

    Hàm số xác định và liên tục trên khoảng (0; + \infty).

    y' = 1 - \frac{2}{x^{2}} =
\frac{x^{2} - 2}{x^{2}}.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = \sqrt{2} \\
x = - \sqrt{2} \\
\end{matrix} ight.\ .

    Bảng biến thiên:

    Vậy \min_{(0; + \infty)}y = f\left(
\sqrt{2} ight) = - 3.

  • Câu 38: Thông hiểu

    Tìm số đường tiệm cận tối đa của đồ thị hàm số

    Cho hàm số y = \frac{mx + n}{ax^{2} + bx
+ c} (với m,n,a,b,c\mathbb{\in
R}). Hỏi đồ thị hàm số có tối đa bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

    Ta có:

    Phương trình ax^{2} + bx + c = 0 có tối đa 2 nghiệm

    Nên đồ thị hàm số có nhiều nhất hai đường tiệm cận đứng.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\ 
\end{gathered}  ight. nên y =
0 là đường tiệm cận ngang.

    Vậy đồ thị hàm số có nhiều nhất 3 đường tiệm cận ngang và tiệm cận đứng.

  • Câu 39: Thông hiểu

    Khẳng định sai?

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 40: Vận dụng

    Xác định tham số m thỏa mãn điều kiện

    Cho hàm số y = \frac{1}{3}x^{3} - (m +
2)x^{2} + (2m + 3)x + 2017 với m là tham số thực. Tìm tất cả các giá trị của m để x = 1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.

    Đạo hàm y' = x^{2} - 2(m + 2)x + (2m
+ 3)

    \ y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2m + 3 \\
\end{matrix} ight.

    Để hàm số có hai điểm cực trị x_{1},\
x_{2} khi và chỉ khi 2m + 3 eq 1
\Leftrightarrow m eq - 1. (*)

    Gọi A\left( x_{1};y_{1} ight)B\left( x_2;y_2 ight) là hai điểm cực trị của đồ thị hàm số.

    Khi đó theo định lí Viet, ta có x_{1} +
x_{2} = 2m + 4.

    Yêu cầu bài toán \Leftrightarrow \frac{2m
+ 4}{2} = 1 \Leftrightarrow m = - 1: không thỏa mãn (*).

    Nhận xét.

    Qua khảo sát 99% học sinh chọn đáp án A, lý do là quên điều kiện để có hai cực trị.

    Tôi cố tình ra giá trị m đúng ngay giá trị loại đi.

    Nếu gặp bài toán không ra nghiệm đẹp như trên thì ta giải như sau: ''x_{0} là hoành độ trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số bậc ba y = ax^{3} + bx^{2} + cx + d khi và chỉ khi y' = 0 có hai nghiệm phân biệt (\Delta > 0) và y''\left( x_{0} ight) =
0''.

  • Câu 41: Vận dụng cao

    Chia khối tứ diện

    Cho khối tứ diện ABCD. Lấy điểm M nằm giữa A và B, điểm N nằm giữa C và D. Bằng hai mp (CDM)(ABN), ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?

    Chia khối tứu diện

    Dựa vào hình vẽ, ta thấy hai mặt phẳng (CDM) và (ABN) chia khối tứ diện ABCD thành bốn khối tứ diện:  MBND, MBNC, AMDN, AMNC

  • Câu 42: Vận dụng

    Mp đối xứng trong lăng trụ

    Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?

    Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).

    Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

    Mp đối xứng trong lăng trụ

  • Câu 43: Nhận biết

    Chọn đáp án thích hợp

    Xác định hàm số nghịch biến trên \mathbb{R}?

    Xét hàm số y = - x^{3} + x^{2} -
x ta có:

    y' = - 3x^{2} + 2x - 1 = - 3\left( x
- \frac{1}{3} ight)^{2} - \frac{2}{3} < 0;\forall x\mathbb{\in
R}

    Nên hàm số y = - x^{3} + x^{2} -
x nghịch biến trên \mathbb{R}.

  • Câu 44: Thông hiểu

    Tính V lăng trụ tam giác đều

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 45: Thông hiểu

    Khối lăng trụ ngũ giác

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo