Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 2 Hàm số lũy thừa; hàm số mũ; hàm số Logarit

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Hàm số lũy thừa - Hàm số mũ - Hàm số Logarit Toán 12 các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Biến đổi biểu thức P

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 2: Thông hiểu

    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = {\left( {{x^2} - 3x + 2} ight)^{\sqrt 3 }}

    Ta có:

    \begin{matrix}  y' = \sqrt 3 .{\left( {{x^2} - 3x + 2} ight)^{\sqrt 3  - 1}}.\left( {{x^2} - 3x + 1} ight)\prime \hfill \\   \Rightarrow y' = \sqrt 3 .\left( {2x - 3} ight).{\left( {{x^2} - 3x + 2} ight)^{\sqrt 3  - 1}} \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Định nghiệm của phương trình

    Nghiệm của phương trình 2^{2x - 1} =
8 là:

    Ta có:

    2^{2x - 1} = 8 \Leftrightarrow 2x - 1 = 3
\Leftrightarrow x = 2.

  • Câu 4: Vận dụng cao

    Tính giá trị nhỏ nhất của biểu thức

    Cho x,y > 0 thỏa mãn \log \left( {x + 2y} ight) = \log x + \log y. Khi đó giá trị nhỏ nhất của biểu thức M = \frac{{{x^2}}}{{1 + 2y}} + \frac{{4{y^2}}}{{1 + x}} là:

    Ta có:

    \begin{matrix}  \log \left( {x + 2y} ight) = \log x + \log y \hfill \\   \Rightarrow x + 2y = xy \hfill \\ \end{matrix}

    Đặt 2y = z. Ta có: x,z > 0 thỏa mãn 2\left( {x + z} ight) = xz \leqslant {\left( {\frac{{x + z}}{2}} ight)^2} \Rightarrow x + z \geqslant 8

    Ta lại có

    M = \frac{{{x^2}}}{{1 + z}} + \frac{{{z^2}}}{{1 + x}} \geqslant \frac{{{{\left( {x + z} ight)}^2}}}{{2 + x + z}} = x + z - 2 + \frac{4}{{2 + x + z}}

     

    Xét hàm số

    \begin{matrix}  f\left( t ight) = t - 2 + \dfrac{4}{{2 + t}} \Rightarrow f'\left( t ight) = 1 - \dfrac{4}{{{{\left( {t + 2} ight)}^2}}} > 0;\forall t \geqslant 8 \hfill \\   \Rightarrow \mathop {\min f\left( t ight)}\limits_{t \geqslant 8}  = f\left( 8 ight) = \dfrac{{32}}{5} \hfill \\ \end{matrix}

    Vậy giá trị nhỏ nhất của biểu thức là {M_{\min }} = \frac{{32}}{5} khi x = z = 4 \Rightarrow \left( {x;y} ight) = \left( {4;2} ight)

  • Câu 5: Thông hiểu

    Biểu diễn biểu thức theo tham số

    Đặt a = {\log _7}11;b = {\log _2}7. Hãy biểu diễn {\log _{\sqrt[3]{7}}}\frac{{121}}{8} theo a và b.

    Ta có: 

    {\log _{\sqrt[3]{7}}}\frac{{121}}{8} = 3\left( {{{\log }_7}121 - {{\log }_7}8} ight) = 6{\log _7}11 - 9.\frac{1}{{{{\log }_2}7}} = 6a - \frac{9}{b}

  • Câu 6: Thông hiểu

    Tìm điều kiện của x để hàm số có nghĩa?

    Tìm điều kiện của x để hàm số y = {\left( {{x^2} - 3x + 2} ight)^\pi } có nghĩa?

     Ta có điều kiện xác định {x^2} - 3x + 2 > 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > 2} \end{array}} ight.

  • Câu 7: Vận dụng

    Đếm số nghiệm thực

    Phương trình {\left( {\sqrt 3  - \sqrt 2 } ight)^x} + {\left( {\sqrt 3  + \sqrt 2 } ight)^x} = {\left( {\sqrt {10} } ight)^x} có tất cả bao nhiêu nghiệm thực ?

     Ta có: {\left( {\sqrt 3  - \sqrt 2 } ight)^x} + {\left( {\sqrt 3  + \sqrt 2 } ight)^x} = {\left( {\sqrt {10} } ight)^x}\Leftrightarrow {\left( {\frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }}} ight)^x} + {\left( {\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }}} ight)^x} = 1

    Xét hàm số f\left( x ight) = {\left( {\frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }}} ight)^x} + {\left( {\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }}} ight)^x}

    Ta có: f\left( 2 ight) = 1

    Hàm số f (x) nghịch biến trên R do các cơ số \frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }} < 1;\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }} < 1.

    Vậy phương trình có nghiệm duy nhất là x=2.

  • Câu 8: Thông hiểu

    Tìm tập nghiệm của PT

    Tập nghiệm của phương trình {\log _2}\frac{1}{x} = {\log _{\frac{1}{2}}}\left( {{x^2} - x - 1} ight) là:

     Điều kiện: x > 0 và {x^2} - x - 1 > 0

    Với điều kiện đó thì {\log _2}\frac{1}{x} = {\log _{\frac{1}{2}}}x.

    Khi đó, phương trình đã cho tương đương phương trình:

    {\log _{\frac{1}{2}}}x = {\log _{\frac{1}{2}}}\left( {{x^2} - x - 1} ight) \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x = {x^2} - x - 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \left[ \begin{gathered}  x = 1 + \sqrt 2  \hfill \\  x = 1 - \sqrt 2  \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 1 + \sqrt 2

  • Câu 9: Thông hiểu

    Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề nào sau đây là mệnh đề sai?

    Ta thấy: y = {2^{ - x}} = {\left( {\frac{1}{2}} ight)^x}

    Do vậy đồ thị của hàm số y = {2^{ - x}} không có tiệm cận đứng

  • Câu 10: Nhận biết

    Tập xác định của hàm số

    Tập xác định của hàm số y = \log {\left( {x - 2} ight)^2} là:

    Hàm số y = \log {\left( {x - 2} ight)^2} xác định nếu {\left( {x - 2} ight)^2} > 0 \Leftrightarrow x e 2

    Vậy tập xác định D = \mathbb{R}\backslash \left\{ 2 ight\}

  • Câu 11: Vận dụng

    Tính số dân của tỉnh A năm 2025

    Cho biết năm 2018, tỉnh A có 2 triệu người và tỉ lệ dân số là 1,4%/năm. Hỏi đến năm 2025 tỉnh A có bao nhiêu người, nếu tỉ lệ tăng dân số hằng năm không đổi?

    Ta có: A = 2, n = 7; I = 0,014

    Số dân tỉnh A đến năm 2025 là S = 2.{e^{7.0,014}} \approx 2,2059 triệu người.

  • Câu 12: Vận dụng

    Mệnh đề nào sau đây đúng?

    Cho các hàm số y = {\log _a}x;{\text{ }}y = {\log _b}x có đồ thị như hình vẽ. Đường thẳng x = 5 cắt trục hoành, đồ thị hàm số y = {\log _a}xy = {\log _b}x lần lượt tại A,B,C. Biết rằng CB = 2AB. Mệnh đề nào sau đây đúng?

    Mệnh đề nào sau đây đúng

    Ta có: A\left( {5;0} ight),B\left( {5;{{\log }_a}5} ight),C\left( {5;{{\log }_b}5} ight)

    Theo bài ra ta có: CB = 2AB

    \begin{matrix}   \Leftrightarrow {\log _b}5 - {\log _a}5 = 2{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = 3{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = \dfrac{1}{3}{\log _5}a \hfill \\   \Leftrightarrow a = {b^3} \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = {\log _9}\left( {{x^2} + 1} ight)

    Ta có:

    y' = \left[ {{{\log }_9}\left( {{x^2} + 1} ight)} ight]' = \frac{{2x}}{{\left( {{x^2} + 1} ight)\ln {3^2}}} = \frac{{2x}}{{\left( {{x^2} + 1} ight).2.\ln 3}} = \frac{x}{{\left( {{x^2} + 1} ight)\ln 3}}

  • Câu 14: Nhận biết

    Đạo hàm của hàm số lũy thừa

    Đạo hàm của hàm số y = \frac{{{e^{4x}}}}{5}

    Ta có: y' = \frac{1}{5}\left( {{e^{4x}}} ight)' = \frac{1}{5}\left( {4x} ight)'.{e^{4x}} = \frac{4}{5}.{e^{4x}}

  • Câu 15: Vận dụng

    Tính tích 2 nghiệm

    Gọi x_1, x_2 là 2 nghiệm của phương trình \frac{1}{{4 + {{\log }_2}x}} + \frac{2}{{2 - {{\log }_2}x}} = 1. Khi đó x_1.x_2 bằng:

     Điều kiện: \left\{ \begin{gathered}  x > 0 \hfill \\  x e 4 \hfill \\  x e \frac{1}{{16}} \hfill \\ \end{gathered}  ight..

    Đặt t = {\log _2}x ,điều kiện \left\{ \begin{gathered}  t e  - 4 \hfill \\  t e 2 \hfill \\ \end{gathered}  ight.. Khi đó phương trình trở thành:

    \frac{1}{{4 + t}} + \frac{2}{{2 - t}} = 1 \Leftrightarrow {t^2} + 3t + 2 = 0 \Leftrightarrow \left[ \begin{gathered}  t =  - 1 \hfill \\  t =  - 2 \hfill \\ \end{gathered}  ight. \Rightarrow \left[ \begin{gathered}  x = \frac{1}{2} \hfill \\  x = \frac{1}{4} \hfill \\ \end{gathered}  ight.

    Vậy {x_1}.{x_2} = \frac{1}{8}.

  • Câu 16: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho x,y là các số thực thỏa mãn f(x,y) = \log_{4}(x + y) + \log_{4}(x - y)\geq 1\ \ (*) . Các khẳng định sau đúng hay sai?

    a) Điều kiện xác định của hàm số f(x,y)\left\{ \begin{matrix}
x + y > 0 \\
x - y > 0 \\
\end{matrix} ight. . Đúng||Sai

    b) Với cặp số x,y thỏa mãn điều kiện xác định của hàm số f(x,y) , ta có: f(x,y) = x^{2} - y^{2} . Sai||Đúng

    c) Cặp số \left\{ \begin{matrix}
x = 8 \\
y = 16 \\
\end{matrix} ight. thỏa mãn f(x,y) = \log_{4}(x + y) + \log_{4}(x - y) \geq 1 . Sai||Đúng

    d) Với P = 2x - y thì P_{\min} = 2\sqrt{3} . Đúng||Sai

    Đáp án là:

    Cho x,y là các số thực thỏa mãn f(x,y) = \log_{4}(x + y) + \log_{4}(x - y)\geq 1\ \ (*) . Các khẳng định sau đúng hay sai?

    a) Điều kiện xác định của hàm số f(x,y)\left\{ \begin{matrix}
x + y > 0 \\
x - y > 0 \\
\end{matrix} ight. . Đúng||Sai

    b) Với cặp số x,y thỏa mãn điều kiện xác định của hàm số f(x,y) , ta có: f(x,y) = x^{2} - y^{2} . Sai||Đúng

    c) Cặp số \left\{ \begin{matrix}
x = 8 \\
y = 16 \\
\end{matrix} ight. thỏa mãn f(x,y) = \log_{4}(x + y) + \log_{4}(x - y) \geq 1 . Sai||Đúng

    d) Với P = 2x - y thì P_{\min} = 2\sqrt{3} . Đúng||Sai

    a) Điều kiện để bất phương trình có nghĩa là \left\{ \begin{matrix}
x + y > 0 \\
x - y > 0 \\
\end{matrix} ight., suy ra mệnh đề đúng.

    b) Ta có f(x,y) = \log_{4}(x + y) +\log_{4}(x - y) = \log_{4}\left( x^{2} - y^{2} ight), suy ra mệnh đề sai.

    c) Ta thấy x - y = 8 - 16 = - 8 <
0, suy ra mệnh đề sai.

    d) Ta có: \log_{4}(x + y) + \log_{4}(x - y)\geq 1

    \Leftrightarrow x^{2} - y^{2} \geq 4
\Rightarrow x \geq \sqrt{y^{2} + 4}

    Do đó P \geq 2\sqrt{y^{2} + 4} - y =
f(y).

    Khi đó P' = \frac{2y}{\sqrt{y^{2} +
4}} - 1 = 0\overset{y > 0}{ightarrow}y =
\frac{2}{\sqrt{3}}

    Suy ra P_{\min} = 2\sqrt{3}. suy ra mệnh đề đúng.

  • Câu 17: Nhận biết

    Tìm tập xác định của hàm số

    Tìm tập xác định của hàm số y = {\log _2}\frac{{3 - x}}{{2x}} là:

    Hàm số đã cho xác định khi \frac{{3 - x}}{{2x}} > 0 \Rightarrow x \in \left( {0;3} ight)

  • Câu 18: Vận dụng

    Nghiệm nguyên nhỏ nhất

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) \geqslant {\log _4}\left( {{{\log }_2}x} ight) là:

    8 || tám || Tám

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) \geqslant {\log _4}\left( {{{\log }_2}x} ight) là:

    8 || tám || Tám

     BPT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  {\log _2}x > 0 \hfill \\  {\log _4}x > 0 \hfill \\   + {\log _2}\left( {{{\log }_{{2^2}}}x} ight) \geqslant {\log _{{2^2}}}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\   + {\log _2}\left( {\frac{1}{2}{{\log }_2}x} ight) \geqslant \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\   + {\log _2}\left( {\frac{1}{2}{{\log }_2}x} ight) \geqslant \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}\left( {{{\log }_2}x} ight) - 1 \geqslant \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \geqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}\left( {{{\log }_2}x} ight) \geqslant 2 \hfill \\ \end{gathered}  ight.

    \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}x \geqslant 4 \hfill \\ \end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  x \geqslant 8 \hfill \\ \end{gathered}  ight. \Rightarrow x \geqslant 8

    Vậy giá trị nghiệm nguyên nhỏ nhất của BPT là 8.

     

  • Câu 19: Vận dụng

    Bài toán lãi suất

    Bác Thu có 600 triệu đồng mang đi gửi tiết kiện ở hai loại kì hạn khác nhau đều theo thể thức lãi kép. Bác gửi 300 triệu đồng theo kì hạn quý với lãi suất 2,1% một quý, 300 triệu đồng còn lại bác gửi theo kì hạn tháng với lãi suất 0,73%/tháng. Sau khi gửi được đúng một năm, bác rút ra một nửa số tiền ở loại kì hạn quý và gửi vào loại kì hạn theo tháng. Hỏi sau đúng hai năm kể từ khi gửi tiền lần đầu, bác Thu thu về tất cả bao nhiêu tiền lãi (làm tròn đến chữ số hàng nghìn)?

     Số tiền bác Thu thu được ở năm thứ nhất là:

    + Gửi kì hạn theo quý: 300.{\left( {1 + {r_1}} ight)^4} = A (triệu đồng)

    + Gửi kì hạn theo tháng: 300.{\left( {1 + {r_2}} ight)^{12}} = B (triệu đồng)

    Số tiền bác Thu thu được ở sau năm thứ hai là:

    + Gửi kì hạn theo quý: \frac{A}{2}{\left( {1 + {r_1}} ight)^4} (triệu đồng)

    + Gửi kì hạn theo tháng: \left( {\frac{A}{2} + B} ight){\left( {1 + {r_2}} ight)^{12}} (triệu đồng)

    Số tiền lãi bác Thu thu được là

    \frac{A}{2}{\left( {1 + {r_1}} ight)^4} + \left( {\frac{A}{2} + B} ight){\left( {1 + {r_2}} ight)^{12}} - 600 \approx 112,219 (triệu đồng)

  • Câu 20: Vận dụng

    Phương trình tiếp tuyến của đồ thị hàm số

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    Ta có: y = {x^{\frac{\pi }{2}}} \Rightarrow y' = \frac{\pi }{2}.{x^{\frac{\pi }{2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = 1} \\   {y'\left( 1 ight) = \dfrac{\pi }{2}} \end{array}} ight.

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    y = y'\left( 1 ight)\left( {x - 1} ight) + y\left( 1 ight) = \frac{\pi }{2}x - \frac{\pi }{2} + 1

  • Câu 21: Thông hiểu

    Tìm tập xác định của hàm số y = f(x)

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 22: Thông hiểu

    Thực hiện phép tính

    Với a > 0 hãy rút gọn biểu thức P = \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } } :{x^{\frac{9}{{16}}}}

    Ta có: 

    \begin{matrix}  \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } }  = \sqrt {x\sqrt {x\sqrt {x\sqrt {{x^{\frac{3}{2}}}} } } }  = \sqrt {x\sqrt {x\sqrt {{x^{\frac{7}{4}}}} } }  \hfill \\   = \sqrt {x\sqrt {x.{x^{\frac{7}{8}}}} }  = \sqrt {x\sqrt {{x^{\frac{{15}}{8}}}} }  = \sqrt {x.{x^{\frac{{15}}{{16}}}}}  = \sqrt {{x^{\frac{{31}}{{16}}}}}  = {x^{\frac{{31}}{{32}}}} \hfill \\   \Rightarrow P = {x^{\frac{{31}}{{32}}}}:{x^{\frac{9}{{16}}}} = {x^{\frac{{13}}{{32}}}} \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Tính giá trị biểu thức

    Cho {\log _2}a = x;{\log _2}b = y biết , biểu thức {\log _2}\left( {4{a^2}{b^3}} ight) có giá trị là:

    Ta có: 

    {\log _2}\left( {4{a^2}{b^3}} ight) = {\log _2}4 + {\log _2}{a^2} + {\log _2}{b^3} = 2 + 2{\log _2}a + 3{\log _2}b = 2x + 3y + 2

  • Câu 24: Thông hiểu

    Nghiệm nguyên nhỏ nhất

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _{0,2}}x - {\log _5}\left( {x - 2} ight) < {\log _{0,2}}3 là:

    x=4 || 4 || X=4 || bốn || Bốn

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _{0,2}}x - {\log _5}\left( {x - 2} ight) < {\log _{0,2}}3 là:

    x=4 || 4 || X=4 || bốn || Bốn

     Điều kiện: x > 2

    {\log _{0,2}}x - {\log _5}\left( {x - 2} ight) < {\log _{0,2}}3 \Leftrightarrow {\log _{0,2}}\left[ {x\left( {x - 2} ight)} ight] < {\log _{0,2}}3

    \Leftrightarrow {x^2} - 2x - 3 > 0 \Leftrightarrow \left[ \begin{gathered}  x <  - 1 \hfill \\  x > 3 \hfill \\ \end{gathered}  ight.

    So điều kiện suy ra x > 3

  • Câu 25: Thông hiểu

    Xác định giá trị của biểu thức logarit

    Với các số a, b > 0 thỏa mãn {a^2} + {b^2} = 6ab, biểu thức {\log _2}\left( {a + b} ight) bằng:

    Ta có: 

    \begin{matrix}  {a^2} + {b^2} = 6ab \hfill \\   \Rightarrow {\left( {a + b} ight)^2} = 8ab \hfill \\   \Rightarrow {\log _2}{\left( {a + b} ight)^2} = {\log _2}\left( {8ab} ight) \hfill \\   \Rightarrow 2{\log _2}\left( {a + b} ight) = {\log _2}8 + {\log _2}a + {\log _2}b \hfill \\   \Rightarrow {\log _2}\left( {a + b} ight) = \dfrac{1}{2}\left( {{{\log }_2}8 + {{\log }_2}a + {{\log }_2}b} ight) \hfill \\   \Rightarrow {\log _2}\left( {a + b} ight) = \dfrac{1}{2}\left( {3 + {{\log }_2}a + {{\log }_2}b} ight) \hfill \\ \end{matrix}

  • Câu 26: Thông hiểu

    Tính tích

    Gọi x_1, x_2là nghiệm của phương trình {\log _x}2 - {\log _{16}}x = 0. Khi đó tích x_1.x_2 bằng:

    1 || x1.x2=1

    Đáp án là:

    Gọi x_1, x_2là nghiệm của phương trình {\log _x}2 - {\log _{16}}x = 0. Khi đó tích x_1.x_2 bằng:

    1 || x1.x2=1

    Điều kiện: 0 < x e 1

    PT \Leftrightarrow {\log _x}2 - {\log _{16}}x = 0 \Leftrightarrow {\log _x}2 - {\log _{{2^4}}}x = 0 \Leftrightarrow {\log _x}2 - \frac{1}{4}{\log _2}x = 0

    \Leftrightarrow {\log _x}2 - \frac{1}{{4{{\log }_x}2}} = 0 \Leftrightarrow \frac{{4{{({{\log }_x}2)}^2} - 1}}{{4{{\log }_x}2}} = 0 \Leftrightarrow 4{({\log _x}2)^2} - 1 = 0

    \Leftrightarrow {({\log _x}2)^2} = \frac{1}{4} \Leftrightarrow \left[ \begin{gathered}  {\log _x}2 = \frac{1}{2} \hfill \\  {\log _x}2 =  - \frac{1}{2} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  2 = {x^{\frac{1}{2}}} \hfill \\  2 = {x^{ - \frac{1}{2}}} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  {x_1} = 4 \hfill \\  {x_2} = \frac{1}{4} \hfill \\ \end{gathered}  ight.

    Vậy {x_1}.{x_2} = 4.\frac{1}{4} = 1.

  • Câu 27: Nhận biết

    Rút gọn biểu thức

    Cho 0 < a e 1. Rút gọn biểu thức P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}}

    Ta có: P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}} = \frac{{{a^{12}}}}{{{a^{\frac{7}{2}}}}} = {a^{12 - \frac{7}{2}}} = {a^{\frac{{17}}{2}}}

  • Câu 28: Nhận biết

    BPT có tập nghiệm là?

    Bất phương trình {\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} ight) < 0 có tập nghiệm là:

     Ta có {\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} ight) < 0 

    \Leftrightarrow 2{x^2} - x + 1 > 1 \Leftrightarrow \left[ \begin{gathered}  x < 0 \hfill \\  x > \frac{1}{2} \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là  S = \left( { - \infty ;0} ight) \cup \left( {\frac{1}{2}; + \infty } ight).

  • Câu 29: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số

    Tìm tất cả các giá trị thực của tham số m để bất phương trình {\log _2}\left( {7{x^2} + 7} ight) \geqslant {\log _2}\left( {m{x^2} + 4x + m} ight),{\text{ }}\forall x \in \mathbb{R} \, \, (1)

     Bất phương trình tương đương 7{x^2} + 7 \geqslant m{x^2} + 4x + m > 0,{\text{ }}\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{gathered}  \left( {7 - m} ight){x^2} - 4x + 7 - m \geqslant 0{\text{   }}(2) \hfill \\  m{x^2} + 4x + m > 0{\text{                 }}(3) \hfill \\ \end{gathered}  ight.,{\text{ }}\forall x \in \mathbb{R}.

    m=7: (2) không thỏa \forall x \in \mathbb{R}

    m=0: (3) không thỏa \forall x \in \mathbb{R}

    (1) thỏa mãn \forall x \in \mathbb{R}  \Leftrightarrow \left\{ \begin{gathered}  7 - m > 0 \hfill \\  {{\Delta '}_2} = 4 - {\left( {7 - m} ight)^2} \leqslant 0 \hfill \\  m > 0 \hfill \\  {{\Delta '}_3} = 4 - {m^2} < 0 \hfill \\ \end{gathered}  ight.{\text{   }}

    \Leftrightarrow {\text{  }}\left\{ \begin{gathered}  m < 7 \hfill \\  m \leqslant 5 \hfill \\  m > 0 \hfill \\  m > 2 \hfill \\ \end{gathered}  ight.{\text{  }} \Leftrightarrow {\text{  }}2 < m \leqslant 5.

    Vậy m \in \left( {2;5} ight].

  • Câu 30: Thông hiểu

    Chọn đáp án thích hợp

    Dựa vào thông tin dưới đây và trả lời các câu hỏi

    Số lượng của một loại vi khuẩn X trong một phòng thí nghiệm được biểu diễn theo công thức S(t) =
A.e^{rt} , trong đó A là số lượng vi khuẩn tại thời điểm chọn mốc thời gian, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng (tính theo đơn vị là giờ). Lúc 6 giờ sáng, số lượng vi khuẩn X là 150 con. Sau 3 giờ, số lượng vi khuẩn X là 450 con.

    Tỉ lệ tăng trưởng của vi khuẩn X gần nhất với kết quả nào sau đây?

    Chọn 6 giờ là mốc thời gian. Khi đó A =
150.

    Sau 3 giờ, số lượng vi khuẩn là 450 con nên t = 3;S(3) = 450.

    Từ đó ta có phương trình:

    150.e^{3r} = 450 \Leftrightarrow e^{3r}
= 3 \Leftrightarrow r = \frac{ln3}{3} \approx 0,37.

  • Câu 31: Nhận biết

    Tính giá trị biểu thức

    Tính giá trị của {a^{{{\log }_{\sqrt a }}4}} với  a > 0;a e 1

     Ta có: {a^{{{\log }_{\sqrt a }}4}} = {a^{2{{\log }_a}4}} = {a^{{{\log }_a}16}} = 16

  • Câu 32: Nhận biết

    Tìm giá trị của n

    Cho 0 < a e 1 và biểu thức \sqrt {a.\sqrt[3]{a}} viết dưới dạng {a^n}. Giá trị của n là:

    Ta có:

    \sqrt {a.\sqrt[3]{a}}  = {\left( {a.{a^{\frac{1}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{2}{3}}}

    Vậy n = \frac{2}{3}

  • Câu 33: Vận dụng cao

    Tính giá trị của a + b bằng:

    Giả sử a,b là các số thực sao cho {x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}} đúng với mọi các số dương x,y,z thỏa mãn \log \left( {x + y} ight) = z\log \left( {{x^2} + {y^2}} ight) = z + 1. Tính giá trị của a + b bằng:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\log \left( {x + y} ight) = z} \\   {\log \left( {{x^2} + {y^2}} ight) = z + 1} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x + y = {{10}^z}} \\   {{x^2} + {y^2} = {{10}^{z + 1}}} \end{array}} ight. \Rightarrow xy = \frac{{{{10}^{2x}} - {{10.10}^z}}}{2}

    Khi đó:

    \begin{matrix}  {x^3} + {y^3} = \left( {x + y} ight)\left( {{x^2} + {y^2} - xy} ight) \hfill \\   = {10^z}\left( {{{10.10}^z} - \dfrac{{{{10}^{2x}} - {{10.10}^z}}}{2}} ight) \hfill \\   = {15.10^{2z}} - \dfrac{1}{2}{.10^{3z}} \hfill \\ \end{matrix}

    Vậy a = 15;b =  - \frac{1}{2} \Rightarrow a + b = \frac{{29}}{2}

  • Câu 34: Thông hiểu

    Giá trị của biểu thức

    Biết {\log _2}3 = a;{\log _2}5 = b,  khi đó {\log _{15}}8 có giá trị là:

    Ta có:

    {\log _{15}}8 = {\log _{15}}{2^3} = 3{\log _{15}}2 = \frac{3}{{{{\log }_2}15}} = \frac{3}{{{{\log }_2}3 + {{\log }_2}5}} = \frac{3}{{a + b}}

  • Câu 35: Vận dụng

    Tính giá trị của biểu thức M

    Cho hàm số f\left( x ight) = \ln \frac{{x + 1}}{{x + 4}}. Tính giá trị của biểu thức M = f'\left( 0 ight) + f'\left( 3 ight) + f'\left( 6 ight) + ... + f'\left( {2019} ight)

    Với x \in \left[ {0; + \infty } ight) ta có: \left\{ {\begin{array}{*{20}{c}}  {x + 1 > 0} \\   {x + 4 > 0} \end{array}} ight. \Rightarrow f\left( x ight) = \ln \frac{{x + 1}}{{x + 4}} = \ln \left( {x + 1} ight) - \ln \left( {x + 4} ight)

    Ta có: f'\left( x ight) = \frac{1}{{x + 1}} - \frac{1}{{x + 4}} do đó:

    \begin{matrix}  M = f'\left( 0 ight) + f'\left( 3 ight) + f'\left( 6 ight) + ... + f'\left( {2019} ight) \hfill \\  M = \left( {1 - \dfrac{1}{4}} ight) + \left( {\dfrac{1}{4} - \dfrac{1}{7}} ight) + \left( {\dfrac{1}{7} - \dfrac{1}{{10}}} ight) + ... + \left( {\dfrac{1}{{2020}} - \dfrac{1}{{2023}}} ight) \hfill \\  M = 1 - \dfrac{1}{{2023}} = \dfrac{{2022}}{{2023}} \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Tìm tập xác định của hàm số đã cho

    Cho hàm số y = {\left( {{x^2} - 2x + 1} ight)^{\frac{1}{3}}}. Tập xác định của hàm số đã cho là:

    Điều kiện xác đinh: {x^2} - 2x + 1 > 0 \Rightarrow x e 1

    => Tập xác định của hàm số là: D = \mathbb{R}\backslash \left\{ 1 ight\}

  • Câu 37: Thông hiểu

    Tính đạo hàm hàm số lũy thừa

    Cho hàm số y = {x^\pi }. Tính y''\left( 1 ight)

    Ta có:

    \begin{matrix}  y' = \pi .{x^{\pi  - 1}} \Rightarrow y'' = \pi \left( {\pi  - 1} ight).{x^{\pi  - 2}} \hfill \\  y''\left( 1 ight) = \pi \left( {\pi  - 1} ight) \hfill \\ \end{matrix}

  • Câu 38: Vận dụng cao

    Tìm các giá trị nguyên của tham số m thỏa mãn điều kiện đề bài

    Có bao nhiêu giá trị nguyên của m để hàm số f\left( x ight) = {\left( {2{x^2} + mx + 2} ight)^{\frac{3}{2}}} xác định với mọi x \in \mathbb{R}?

    Hàm số f\left( x ight) = {\left( {2{x^2} + mx + 2} ight)^{\frac{3}{2}}} xác định với mọi x \in \mathbb{R}

    => \Delta  < 0 \Leftrightarrow {m^2} - 16 < 0 \Leftrightarrow  - 4 < m < 4

    Vì m nguyên nên m \in \left\{ { - 3; - 2; - 1;0;1;2;3} ight\}

    Vậy có tất cả 7 giá trị của m thỏa mãn điều kiện đề bài.

  • Câu 39: Thông hiểu

    Khẳng định nào sau đây sai?

    Cho hàm số y = {x^{\frac{{ - 3}}{4}}}. Khẳng định nào sau đây sai?

    Hàm số y = {x^{\frac{{ - 3}}{4}}} có các tính chất như sau:

    Đồ thị hàm số nhận trục tung làm tiệm cận đứng

    Đồ thị hàm số nhận trục hoành làm tiệm cận ngang

    Là hàm số nghịch biến trên \left( {0; + \infty } ight)

  • Câu 40: Vận dụng cao

    Khẳng định đúng?

    Biết phương trình \frac{1}{{{{\log }_2}x}} - \frac{1}{2}{\log _2}x + \frac{7}{6} = 0 có hai nghiệm x_1, x_2. Khẳng định nào sau đây là đúng?

    Điều kiện: \left\{ \begin{gathered}  x > 0 \hfill \\  {\log _2}x e 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x e 1 \hfill \\ \end{gathered}  ight..

    Đặt t = {\log _2}x. Phương trình đã cho trở thành 3{t^2} - 7t - 6 = 0.

    \Leftrightarrow \left[ \begin{gathered}  t = 3 \hfill \\  t =  - \frac{2}{3} \hfill \\ \end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}  {\log _2}x = 3 \hfill \\  {\log _2}x =  - \frac{2}{3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = {2^3} = 9 \hfill \\  x = {2^{ - \frac{2}{3}}} = \frac{1}{{\sqrt[3]{4}}} \hfill \\ \end{gathered}  ight. (thỏa mãn điều kiện)

    Vậy tập nghiệm của phương trình đã cho là S = \left\{ {8;\frac{1}{{\sqrt[3]{4}}}} ight\} \Rightarrow x_1^3 + x_2^3 = \frac{{2049}}{4}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Hàm số lũy thừa; hàm số mũ; hàm số Logarit Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo