Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 2 Hàm số lũy thừa; hàm số mũ; hàm số Logarit

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Hàm số lũy thừa - Hàm số mũ - Hàm số Logarit Toán 12 các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Khẳng định đúng?

    Cho phương trình {\left( {7 + 4\sqrt 3 } ight)^x} + {\left( {2 + \sqrt 3 } ight)^x} = 6. Khẳng định nào sau đây là đúng?

     Ta có: {\left( {7 + 4\sqrt 3 } ight)^x} + {\left( {2 + \sqrt 3 } ight)^x} = 6

    \Leftrightarrow {\left[ {{{\left( {2 + \sqrt 3 } ight)}^2}} ight]^x} + {\left( {2 + \sqrt 3 } ight)^x} - 6 = 0

    \Leftrightarrow {\left[ {{{\left( {2 + \sqrt 3 } ight)}^x}} ight]^2} + {\left( {2 + \sqrt 3 } ight)^x} - 6 = 0{\text{   }}\left( {*} ight)

    Đặt t = {\left( {2 + \sqrt 3 } ight)^x} > 0.

    Khi đó \left( {*} ight) \Leftrightarrow {t^2} + t - 6 = 0 \Leftrightarrow \left[ \begin{gathered}  t = 2{\text{      }}\left( TM ight) \hfill \\  t =  - 3{\text{   }}\left( L ight) \hfill \\ \end{gathered}  ight.

    Với t = 2 \Rightarrow {\left( {2 + \sqrt 3 } ight)^x} = 2 \Leftrightarrow \boxed{x = {{\log }_{\left( {2 + \sqrt 3 } ight)}}2}.

  • Câu 2: Nhận biết

    Tìm đạo hàm của hàm số

    Tìm đạo hàm của hàm số y = \ln \left( {1 + {e^{2x}}} ight)

    Ta có: y' = \left( {\ln \left( {1 + {e^{2x}}} ight)} ight)' = \frac{{\left( {1 + {e^{2x}}} ight)'}}{{1 + {e^{2x}}}} = \frac{{2{e^{2x}}}}{{{{\left( {{e^{2x}} + 1} ight)}^2}}}

  • Câu 3: Nhận biết

    Tính đạo hàm của hàm số

    Hàm số y = {\log _{2019}}\left| x ight|;\forall x e 0 có đạo hàm là:

    Áp dụng công thức đạo hàm ta có: y' = \frac{1}{{x\ln 2019}}

  • Câu 4: Thông hiểu

    Đặt t

    Cho bất phương trình \frac{{1 - {{\log }_9}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2}. Nếu đặt t = {\log _3}x thì bất phương trình trở thành: 

     Ta có: \frac{{1 - {{\log }_9}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2} \Leftrightarrow \frac{{1 - \frac{1}{2}{{\log }_3}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2}

    \Leftrightarrow \frac{{2 - {{\log }_3}x}}{{2\left( {1 + {{\log }_3}x} ight)}} \leqslant \frac{1}{2} \Leftrightarrow 1 - \frac{{2 - {{\log }_3}x}}{{1 + {{\log }_3}x}} \geqslant 0

    \Leftrightarrow \frac{{2{{\log }_3}x - 1}}{{1 + {{\log }_3}x}} \geqslant 0

    Hay  \frac{{2t - 1}}{{1 + t}} \geqslant 0.

  • Câu 5: Nhận biết

    Rút gọn biểu thức

    Cho 0 < a e 1. Rút gọn biểu thức P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}}

    Ta có: P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}} = \frac{{{a^{12}}}}{{{a^{\frac{7}{2}}}}} = {a^{12 - \frac{7}{2}}} = {a^{\frac{{17}}{2}}}

  • Câu 6: Thông hiểu

    Hàm số nào nghịch biến trên tập số thực?

    Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực \mathbb{R}?

     Hàm số y = {\left( {\frac{2}{e}} ight)^x} là hàm số mũ có cơ số bằng \frac{2}{e} \in \left( {0;1} ight) nghịch biến trên \mathbb{R}

    Hàm số y = {\left( {\frac{\pi }{3}} ight)^x} là hàm số mũ có cơ số \frac{\pi }{3} > 1 nên đồng biến trên \mathbb{R}

    Hàm số y = {\log _{\frac{1}{2}}}x chỉ xác định trên \left( {0; + \infty } ight)

    Hàm số y = {\log _{\frac{\pi }{4}}}\left( {2{x^2} + 1} ight)y' = \frac{{4x}}{{\left( {2{x^2} + 1} ight)\ln \frac{\pi }{4}}} nên nghịch biến trên \left( {0; + \infty } ight)

  • Câu 7: Thông hiểu

    Trong các phát biểu sau đây, phát biểu nào sai?

    Trong các phát biểu sau đây, phát biểu nào sai?

    Phát biểu sai là: Hàm số mũ y = {a^x}\left( {a > 0,a e 1} ight) có tập xác định là \left( {0, + \infty } ight)

    Sửa lại: Hàm số mũ y = {a^x}\left( {a > 0,a e 1} ight) có tập xác định là \mathbb{R}

  • Câu 8: Thông hiểu

    Tìm tập xác định của hàm số y = f(x)

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 9: Thông hiểu

    Tìm nghiệm nguyên nhỏ nhất

    Nghiệm nguyên nhỏ nhất của phương trình - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight) là?

    3 || ba || Ba

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của phương trình - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight) là?

    3 || ba || Ba

    Điều kiện: x>2

    Ta có: - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight)

    \Leftrightarrow  - 2{\log _3}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight)

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}\left( {x - 2} ight) = 0 \hfill \\  {\log _5}x =  - 1 \hfill \\ \end{gathered}  ight. 

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}\left( {x - 2} ight) = 0 \hfill \\  {\log _5}x =  - 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = \frac{1}{5} \hfill \\ \end{gathered}  ight.

    So điều kiện suy ra phương trình có nghiệm x=3.

  • Câu 10: Vận dụng

    Tính giá trị của biểu thức M

    Cho hàm số f\left( x ight) = \ln \frac{{x + 1}}{{x + 4}}. Tính giá trị của biểu thức M = f'\left( 0 ight) + f'\left( 3 ight) + f'\left( 6 ight) + ... + f'\left( {2019} ight)

    Với x \in \left[ {0; + \infty } ight) ta có: \left\{ {\begin{array}{*{20}{c}}  {x + 1 > 0} \\   {x + 4 > 0} \end{array}} ight. \Rightarrow f\left( x ight) = \ln \frac{{x + 1}}{{x + 4}} = \ln \left( {x + 1} ight) - \ln \left( {x + 4} ight)

    Ta có: f'\left( x ight) = \frac{1}{{x + 1}} - \frac{1}{{x + 4}} do đó:

    \begin{matrix}  M = f'\left( 0 ight) + f'\left( 3 ight) + f'\left( 6 ight) + ... + f'\left( {2019} ight) \hfill \\  M = \left( {1 - \dfrac{1}{4}} ight) + \left( {\dfrac{1}{4} - \dfrac{1}{7}} ight) + \left( {\dfrac{1}{7} - \dfrac{1}{{10}}} ight) + ... + \left( {\dfrac{1}{{2020}} - \dfrac{1}{{2023}}} ight) \hfill \\  M = 1 - \dfrac{1}{{2023}} = \dfrac{{2022}}{{2023}} \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Khẳng định nào sau đây đúng?

    Cho hàm số y = {\left( {x - 1} ight)^{ - \frac{1}{4}}}. Khẳng định nào sau đây đúng?

     Đồ thị hàm số có đường tiệm cận đứng x = 1 

  • Câu 12: Thông hiểu

    Hàm số nào sau đây nghịch biến trên tập xác định của nó?

    Hàm số nào sau đây nghịch biến trên tập xác định của nó?

    Ta có: y = {x^{ - \frac{5}{2}}} \Rightarrow y' =  - \frac{5}{2}.{x^{ - \frac{7}{2}}};\forall x > 0 nên hàm số nghịch biến trên tập xác định của nó.

  • Câu 13: Thông hiểu

    Tính giá trị của biểu thức logarit

    Với các số a, b, c là các số thực dương tùy ý khác 1 và {\log _a}c = x;{\log _b}c = y. Khi đó giá trị của {\log _a}\left( {ab} ight) bằng:

     Với a, b, c là các số thực dương tùy ý khác 1 ta có: {\log _c}a = \frac{1}{x};{\log _c}b = \frac{1}{y}

    Khi đó ta có: {\log _c}\left( {ab} ight) = {\log _c}a + {\log _c}b = \frac{1}{x} + \frac{1}{y}

  • Câu 14: Vận dụng

    Tìm số cực trị của hàm số lũy thừa

    Hàm số y = \sqrt[3]{{{{\left( {{x^2} - 2x - 3} ight)}^2}}} + 2 có bao nhiêu điểm cực trị?

    Tập xác định D = \mathbb{R}

    Ta có: y' = \frac{2}{3}.\frac{{2x - 2}}{{\sqrt[3]{{{x^2} - 2x - 3}}}};\left( {x e  - 1;x e 3} ight)

    Ta có bảng biến thiên như sau:

    Tìm số cực trị của hàm số lũy thừa

    Vậy hàm số đã cho có ba điểm cực trị

  • Câu 15: Vận dụng cao

    Khẳng định nào sau đây là đúng?

    Cho các số thực a và b thỏa mãn \sqrt[3]{{{a^{14}}}} > \sqrt[3]{{{a^7}}};{\log _b}\left( {2\sqrt {a + 1} } ight) < {\log _b}\left( {\sqrt a  + \sqrt {a + 2} } ight). Khẳng định nào sau đây là đúng?

    Điều kiện để các căn thức có nghĩa là a > 1

    Ta có: \sqrt[3]{{{a^{14}}}} > \sqrt[3]{{{a^7}}} \Leftrightarrow {a^{\frac{{14}}{3}}} > {a^{\frac{7}{4}}} \Rightarrow a > 1\left( * ight)

    Xét hiệu

    \begin{matrix}  {\left( {2\sqrt {a + 1} } ight)^2} - {\left( {\sqrt a  + \sqrt {a + 2} } ight)^2} \hfill \\   = 4a + 4 - \left( {2a + 2 + 2\sqrt {a\left( {a + 2} ight)} } ight) \hfill \\   = 2a + 2 - 2\sqrt {a\left( {a + 2} ight)}  \hfill \\ \end{matrix}

    a > 1 nên 2a + 2 = a + a + 2 \geqslant 2\sqrt {a\left( {a + 2} ight)}

    \begin{matrix}   \Leftrightarrow {\left( {2\sqrt {a + 1} } ight)^2} - {\left( {\sqrt a  + \sqrt {a + 2} } ight)^2} > 0 \hfill \\   \Leftrightarrow {\left( {2\sqrt {a + 1} } ight)^2} > {\left( {\sqrt a  + \sqrt {a + 2} } ight)^2} \hfill \\   \Leftrightarrow 2\sqrt {a + 1}  > \sqrt a  + \sqrt {a + 2}  \hfill \\ \end{matrix}

    Từ đó ta có: {\log _b}\left( {2\sqrt {a + 1} } ight) < {\log _b}\left( {\sqrt a  + \sqrt {a + 2} } ight) \Rightarrow 0 < b < 1\left( {**} ight)

    Từ (*) và (**) suy ra 0 < b < 1 < a

  • Câu 16: Vận dụng cao

    Tính tổng m + n

    Cho a,b,c > 1, biết rằng biểu thức H = {\log _a}\left( {bc} ight) + {\log _b}\left( {ac} ight) + 4{\log _c}\left( {ab} ight) đạt giá trị nhỏ nhất bằng m khi {\log _b}c = n. Tính giá trị của m+n.

    Do a,b,c > 1 nên {\log _a}b;{\log _b}c;{\log _c}a > 0

    Ta có:

    \begin{matrix}  H = {\log _a}\left( {bc} ight) + {\log _b}\left( {ac} ight) + 4{\log _c}\left( {ab} ight) \hfill \\  H = {\log _a}b + {\log _a}c + {\log _b}a + {\log _b}c + 4{\log _c}a + 4{\log _a}b \hfill \\  H = \left( {{{\log }_a}b + {{\log }_b}a} ight) + \left( {{{\log }_a}c + 4{{\log }_c}a} ight) + \left( {{{\log }_b}c + 4{{\log }_a}b} ight) \hfill \\  H = \left( {{{\log }_a}b + \dfrac{1}{{{{\log }_a}b}}} ight) + \left( {\dfrac{1}{{{{\log }_c}a}} + 4{{\log }_c}a} ight) + \left( {\dfrac{1}{{{{\log }_b}c}} + 4{{\log }_a}b} ight) \hfill \\  H \geqslant 2\sqrt {{{\log }_a}b.\dfrac{1}{{{{\log }_a}b}}}  + 2\sqrt {\dfrac{1}{{{{\log }_c}a}}.4{{\log }_c}a}  + 2\sqrt {\dfrac{1}{{{{\log }_b}c}}.4{{\log }_a}b}  = 2 + 4 + 4 = 10 \hfill \\ \end{matrix}

    Dấu “=” xảy ra khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {{{\log }_a}b = \dfrac{1}{{{{\log }_a}b}}} \\   {\dfrac{1}{{{{\log }_c}a}} = 4{{\log }_c}a} \\   {\dfrac{1}{{{{\log }_b}c}} = 4{{\log }_a}b} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{{\log }_a}b = 1} \\   {{{\log }_c}a = \dfrac{1}{2}} \\   {{{\log }_b}c = 2} \end{array}} ight.

    Vậy H đạt giá trị nhỏ nhất là 10 khi {\log _b}c = 2 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 10} \\   {n = 2} \end{array}} ight. \Rightarrow m + n = 12

  • Câu 17: Thông hiểu

    Viết biểu thức P dưới dạng lũy thừa với số mũ hữu tỉ

    Viết biểu thức P = \frac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}};\left( {a > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}} = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.{a^{\frac{4}{3}}}}}{{{a^{\frac{5}{6}}}}} = {a^5}

  • Câu 18: Vận dụng

    Đếm số nghiệm không âm

    Phương trình {3^{2x}} + 2x\left( {{3^x} + 1} ight) - {4.3^x} - 5 = 0 có tất cả bao nhiêu nghiệm không âm ?

     Ta có: {3^{2x}} + 2x\left( {{3^x} + 1} ight) - {4.3^x} - 5 = 0 \Leftrightarrow \left( {{3^{2x}} - 1} ight) + 2x\left( {{3^x} + 1} ight) - \left( {{{4.3}^x} + 4} ight) = 0

    \Leftrightarrow \left( {{3^x} - 1} ight)\left( {{3^x} + 1} ight) + \left( {2x - 4} ight)\left( {{3^x} + 1} ight) = 0

    \Leftrightarrow \left( {{3^x} + 2x - 5} ight)\left( {{3^x} + 1} ight) = 0 \Leftrightarrow {3^x} + 2x - 5 = 0

    Xét hàm số f\left( x ight) = {3^x} + 2x - 5, ta có:f(1)=0.

    f'\left( x ight) = {3^x}\ln 3 + 2 > 0;\forall x \in \mathbb{R}. Do đó hàm số f(x) đồng biến trên R.

    Vậy nghiệm duy nhất của phương trình là x=1.

  • Câu 19: Nhận biết

    Giá trị của biểu thức

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 20: Nhận biết

    Tìm tập xác định của hàm số đã cho

    Cho hàm số y = {\left( {{x^2} - 2x + 1} ight)^{\frac{1}{3}}}. Tập xác định của hàm số đã cho là:

    Điều kiện xác đinh: {x^2} - 2x + 1 > 0 \Rightarrow x e 1

    => Tập xác định của hàm số là: D = \mathbb{R}\backslash \left\{ 1 ight\}

  • Câu 21: Thông hiểu

    Chọn đáp án thích hợp

    Dựa vào thông tin dưới đây và trả lời các câu hỏi

    Số lượng của một loại vi khuẩn X trong một phòng thí nghiệm được biểu diễn theo công thức S(t) =
A.e^{rt} , trong đó A là số lượng vi khuẩn tại thời điểm chọn mốc thời gian, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng (tính theo đơn vị là giờ). Lúc 6 giờ sáng, số lượng vi khuẩn X là 150 con. Sau 3 giờ, số lượng vi khuẩn X là 450 con.

    Thời điểm số lượng vi khuẩn X gấp 9 lần số lượng vi khuẩn ban đầu là:

    Gọi t_{1} là thời điểm số lượng vi khuẩn gấp 9 lần ban đầu.

    Khi đó: S\left( t_{1} ight) =
1350 con.

    Ta có phương trình:

    150.e^{\frac{ln3}{3}.t_{1}} = 1350
\Leftrightarrow e^{\frac{ln3}{3}.t_{1}} = 9 \Leftrightarrow
\frac{ln3}{3}t_{1} = ln9 \Leftrightarrow t_{1} = 6.

  • Câu 22: Vận dụng

    Tính giá trị của hàm số tại một điểm

    Biết đồ thị hàm số y = f\left( x ight) đối xứng với đồ thị hàm số y = {\log _a}x;{\text{ }}\left( {0 < a e 1} ight) qua điểm I\left( {2;2} ight). Giá trị của f\left( {4 - {a^{2018}}} ight) là:

    Gọi M\left( {x;{{\log }_a}x} ight) là điểm thuộc đồ thị hàm số y = {\log _a}x thì điểm đối xứng với M qua IM'\left( {4 - x;4 - {{\log }_a}x} ight) thuộc đồ thị hàm số y = f\left( x ight)

    => f\left( {4 - x} ight) = 4 - {\log _a}x \Rightarrow f\left( {4 - {a^{2018}}} ight) = 4 - {\log _a}^{2018} =  - 2014

  • Câu 23: Thông hiểu

    Tìm tập xác định của hàm số logarit

    Tìm tập xác định của hàm số {\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} ight)

    Điều kiện xác định {x^2} - 3x + 2 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > 2} \end{array}} ight.

    => Tập xác định của hàm số là D = \left( { - \infty ;1} ight) \cup \left( {2; + \infty } ight)

  • Câu 24: Thông hiểu

    Biểu diễn biểu thức theo tham số

    Đặt a = {\log _7}11;b = {\log _2}7. Hãy biểu diễn {\log _{\sqrt[3]{7}}}\frac{{121}}{8} theo a và b.

    Ta có: 

    {\log _{\sqrt[3]{7}}}\frac{{121}}{8} = 3\left( {{{\log }_7}121 - {{\log }_7}8} ight) = 6{\log _7}11 - 9.\frac{1}{{{{\log }_2}7}} = 6a - \frac{9}{b}

  • Câu 25: Vận dụng

    Tìm tập nghiệm của BPT logarit

    Bất phương trình {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 có tập nghiệm là:

     Điều kiện: {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 \Leftrightarrow {\log _2}\left[ {\left( {{x^2} - x - 2} ight)\left( {x - 1} ight)} ight] \geqslant 1

    \Leftrightarrow \left( {{x^2} - x - 2} ight)\left( {x - 1} ight) - 2 \geqslant 0 \Leftrightarrow {x^3} - 2{x^2} - x \geqslant 0 \Leftrightarrow \left[ \begin{gathered}  1 - \sqrt 2  \leqslant x \leqslant 0 \hfill \\  x \geqslant 1 + \sqrt 2  \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là S = \left[ {1 + \sqrt 2 ; + \infty } ight).

     

  • Câu 26: Thông hiểu

    Tìm x là nghiệm của PT

    Phương trình \ln \frac{{x - 1}}{{x + 8}} = \ln x có nghiệm là: 

    Ta có:  \ln \frac{{x - 1}}{{x + 8}} = \ln x \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{x - 1}}{{x + 8}} = x \hfill \\ \end{gathered}  ight.

    \Rightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \left[ \begin{gathered}  x = 4 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 4

  • Câu 27: Thông hiểu

    Biến đổi biểu thức P

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 28: Thông hiểu

    Đạo hàm bậc nhất của hàm lũy thừa

    Cho hàm số f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} . Tính f'\left( 2 ight)

    Tập xác định \left( {\frac{2}{3}; + \infty } ight)

    Ta có: f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} \Rightarrow f'\left( x ight) = \frac{5}{3}.{\left( {2x - 3} ight)^{\frac{{ - 1}}{6}}} \Rightarrow f'\left( 2 ight) = \frac{5}{3}

  • Câu 29: Vận dụng cao

    Định giá trị gần nhất với kết quả

    Cho a,b,c là ba số thực dương, a > 1 thỏa mãn:

    \log_{a}^{2}(bc) + \log_{a}\left(b^{3}c^{3} + \dfrac{bc}{4} ight)^{2} + 4 + \sqrt{9 - c^{2}} =0

    Khi đó, giá trị của biểu thức T = a + 3b
+ 2c gần với giá trị nào nhất sau đây?

    Áp dụng bất đẳng thức (x + y)^{2} \geq
4xy, ta được:

    \left( b^{3}c^{3} + \dfrac{bc}{4}ight)^{2} \geq b^{4}c^{4} \Rightarrow \log_{a}\left( b^{3}c^{3} +\dfrac{bc}{4} ight)^{2} \geq 4\log_a(bc)

    Do đó với \forall a > 1,b,c >
0

    \log _a^2(bc) + {\log _a}{\left( {{b^3}{c^3} + \frac{{bc}}{4}} ight)^2} + 4 + \sqrt {9 - {c^2}}\geqslant \log _a^2(bc) + 4{\log _a}(bc) + 4 + \sqrt {9 - {c^2}}

    \Leftrightarrow \log _a^2(bc) + {\log _a}{\left( {{b^3}{c^3} + \frac{{bc}}{4}} ight)^2} + 4 + \sqrt {9 - {c^2}}\geqslant {\left[ {{{\log }_a}(bc) + 2} ight]^2} + \sqrt {9 - {c^2}}  \geqslant 0

    Dấu “=” xảy ra khi \left\{ \begin{matrix}b^{3}c^{3} = \dfrac{bc}{4} \\\log_{a}(bc) = - 2 \\c^{2} = 9 \\a > 1 \\b > 0 \\c > 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = \sqrt{2} \\b = \dfrac{1}{6} \\c = 3 \\\end{matrix} ight.

    Khi đó T = a + 3b + 2c = \sqrt{2} +
\frac{1}{2} + 6 \approx 7,91.

    Vậy giá trị của T gần 8 nhất.

  • Câu 30: Nhận biết

    Tìm tập nghiệm của BPT logarit

    Bất phương trình \log _{0,2}^2x - 5{\log _{0,2}}x <  - 6 có tập nghiệm là:

    Điều kiện: x>0

    Ta có:

    \log _{0,2}^2 - 5{\log _{0,2}}x <  - 6 \Leftrightarrow 2 < {\log _{0,2}}x < 3 \Leftrightarrow \frac{1}{{125}} < x < \frac{1}{{25}}

    Vậy BPT đã cho có tập nghiệm là S = \left( {\frac{1}{{125}};\frac{1}{{25}}} ight).

  • Câu 31: Vận dụng cao

    Tính tổng các nghiệm

    Phương trình {3^{3 + 3x}} + {3^{3 - 3x}} + {3^{4 + x}} + {3^{4 - x}} = {10^3} có tổng các nghiệm là ?

    0 || không || Tổng các nghiệm bằng 0

    Đáp án là:

    Phương trình {3^{3 + 3x}} + {3^{3 - 3x}} + {3^{4 + x}} + {3^{4 - x}} = {10^3} có tổng các nghiệm là ?

    0 || không || Tổng các nghiệm bằng 0

    Ta có: {3^{3 + 3x}} + {3^{3 - 3x}} + {3^{4 + x}} + {3^{4 - x}} = {10^3} (*)

    Khi đó: \left( * ight) \Leftrightarrow {27.3^{3x}} + \frac{{27}}{{{3^{3x}}}} + {81.3^x} + \frac{{81}}{{{3^x}}} = {10^3}

    \Leftrightarrow 27.\left( {{3^{3x}} + \frac{1}{{{3^{3x}}}}} ight) + 81.\left( {{3^x} + \frac{1}{{{3^x}}}} ight) = {10^3}{\text{   }}\left( {**} ight)

    Đặt t = {3^x} + \frac{1}{{{3^x}}}\mathop  \geqslant \limits^{Cauchy} 2\sqrt {{3^x}.\frac{1}{{{3^x}}}}  = 2 (Áp dụng theo BĐT Cauchy cho 2 số không âm).

    \Rightarrow {t^3} = {\left( {{3^x} + \frac{1}{{{3^x}}}} ight)^3} = {3^{3x}} + {3.3^{2x}}.\frac{1}{{{3^x}}} + {3.3^x}.\frac{1}{{{3^{2x}}}} + \frac{1}{{{3^{3x}}}}

    \Leftrightarrow {3^{3x}} + \frac{1}{{{3^{3x}}}} = {t^3} - 3t

    Khi đó: \left( {**} ight) \Leftrightarrow 27\left( {{t^3} - 3t} ight) + 81t = {10^3} \Leftrightarrow {t^3} = \frac{{{{10}^3}}}{{27}} \Leftrightarrow t = \frac{{10}}{3} > 2{\text{  }}

    Với t = \frac{{10}}{3} \Rightarrow {3^x} + \frac{1}{{{3^x}}} = \frac{{10}}{3}{\text{   }}\left( {***} ight)

    Đặt y = {3^x} > 0. Khi đó: \left( {***} ight) \Leftrightarrow y + \frac{1}{y} = \frac{{10}}{3} \Leftrightarrow 3{y^2} - 10y + 3 = 0 \Leftrightarrow \left[ \begin{gathered}  y = 3{\text{  }} \hfill \\  y = \frac{1}{3}{\text{ }} \hfill \\ \end{gathered}  ight.

    Với y = 3 \Rightarrow {3^x} = 3 \Leftrightarrow \boxed{x = 1}

    Với y = \frac{1}{3} \Rightarrow {3^x} = \frac{1}{3} \Leftrightarrow \boxed{x =  - 1}.

  • Câu 32: Vận dụng cao

    Tìm mệnh đề đúng trong các mệnh đề dưới đây

    Tìm mệnh đề đúng trong các mệnh đề dưới đây:

    Giả sử M\left( {{x_0};{a^{{x_0}}}} ight) thuộc đồ thị hàm số y = {x^\alpha }

    Xét N\left( { - {x_0};{{\left( {\frac{1}{a}} ight)}^{ - {x_0}}}} ight) thuộc đồ thị hàm số y = {\left( {\frac{1}{a}} ight)^x}

    Rõ ràng {\left( {\frac{1}{a}} ight)^{ - {x_0}}} = {\left( { - {a^{ - 1}}} ight)^{ - {x_0}}} = {a^{{x_0}}}

    Khi đó N\left( { - {x_0};{a^{{x_0}}}} ight) và ta thấy rằng hai điểm M và N đối xứng với nhau qua trục Oy

    Do đó đồ thị hàm số y = {x^\alpha }y = {\left( {\frac{1}{a}} ight)^x} đối xứng nhau qua trục Oy

  • Câu 33: Thông hiểu

    Tính đạo hàm hàm số lũy thừa

    Cho hàm số y = {x^\pi }. Tính y''\left( 1 ight)

    Ta có:

    \begin{matrix}  y' = \pi .{x^{\pi  - 1}} \Rightarrow y'' = \pi \left( {\pi  - 1} ight).{x^{\pi  - 2}} \hfill \\  y''\left( 1 ight) = \pi \left( {\pi  - 1} ight) \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Tính giá trị của biểu thức P

    Cho {\log _a}b = 2;{\log _a}c = 3. Tính giá trị của biểu thức P = {\log _a}\left( {a{b^3}{c^3}} ight)

    Ta có:

    \begin{matrix}  P = {\log _a}\left( {a{b^3}{c^3}} ight) \hfill \\   = {\log _a}a + {\log _a}{b^3} + {\log _a}{c^3} \hfill \\   = 1 + 3{\log _a}b + 5{\log _a}c \hfill \\   = 1 + 3.2 + 5.3 = 22 \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Tìm tập nghiệm của BPT mũ

    Tập nghiệm của bất phương trình \frac{{{{2.3}^x} - {2^{x + 2}}}}{{{3^x} - {2^x}}} \leqslant 1 là:

     Ta có: \frac{{{{2.3}^x} - {2^{x + 2}}}}{{{3^x} - {2^x}}} \leqslant 1 \Leftrightarrow \frac{{2.{{\left( {\frac{3}{2}} ight)}^x} - 4}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} \leqslant 1\Leftrightarrow \frac{{2.{{\left( {\frac{3}{2}} ight)}^x} - 4}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} - 1 \leqslant 0

    \Leftrightarrow \frac{{{{\left( {\frac{3}{2}} ight)}^x} - 3}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} \leqslant 0 \Leftrightarrow 1 < {\left( {\frac{3}{2}} ight)^x} \leqslant 3 \Leftrightarrow 0 < x \leqslant {\log _{\frac{3}{2}}}3.

  • Câu 36: Vận dụng

    Chọn khẳng định đúng?

    Anh T đã làm hợp đồng xin vay vốn ngân hàng để kinh doanh với số tiền 200 triệu đồng với lãi suất a% trên một năm. Điều kiện hợp đồng là số tiền lại tháng trước sẽ được tính làm vốn để sinh lãi cho tháng sau. Sau hai năm kinh doanh, anh T dã thanh toán hợp đồng ngân hàng với số tiền làm tròn là 245512000 đồng. Chọn khẳng định đúng?

    Lãi suất mỗi tháng là \frac{a}{{12}}\%. Theo công thức lãi kép ta có:

    \begin{matrix}  200.{\left( {1 + \dfrac{a}{{12}}\% } ight)^{24}} = 245,512 \hfill \\   \Rightarrow \dfrac{a}{{12}}\%  = \sqrt[{24}]{{\dfrac{{245,512}}{{200}}}} - 1 \hfill \\   \Rightarrow a \approx 10 \hfill \\ \end{matrix}

  • Câu 37: Nhận biết

    Tính giá trị biểu thức

    Cho a = {\log _3}2;b = {\log _3}5. Khi đó \log 60 có giá trị là:

    Ta có:

    \begin{matrix}  \log 60 = \dfrac{{{{\log }_3}60}}{{{{\log }_3}10}} \hfill \\   = \dfrac{{{{\log }_3}{2^2} + {{\log }_3}3 + {{\log }_3}5}}{{{{\log }_3}2 + {{\log }_3}5}} \hfill \\   = \dfrac{{{{\log }_3}{2^2} + 1 + {{\log }_3}5}}{{{{\log }_3}2 + {{\log }_3}5}} = \dfrac{{2a + b + 1}}{{a + b}} \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Mệnh đề nào dưới đây đúng?

    Với a, b là các số thực dương tùy ý và a khác 1, đặt P = {\log _a}{b^3} + {\log _{{a^2}}}{b^6}. Mệnh đề nào dưới đây đúng?

    Ta có:

    \begin{matrix}  P = {\log _a}{b^3} + {\log _{{a^2}}}{b^6} \hfill \\  P = 3{\log _a}b + \dfrac{6}{2}{\log _a}b \hfill \\  P = 3{\log _a}b + 3{\log _a} \hfill \\  P = 6{\log _a}b \hfill \\ \end{matrix}

  • Câu 39: Nhận biết

    Giải PT Logarit

    Phương trình {\log _2}(x + 3) + {\log _2}(x - 1) = {\log _2}5 có nghiệm là:

    2 || hai || x=2 || Hai

    Đáp án là:

    Phương trình {\log _2}(x + 3) + {\log _2}(x - 1) = {\log _2}5 có nghiệm là:

    2 || hai || x=2 || Hai

     PT \Leftrightarrow \left\{ \begin{gathered}  x - 1 > 0 \hfill \\  (x + 3)(x - 1) = 5 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {x^2} + 2x - 8 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \left[ \begin{gathered}  x =  - 8 \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow x = 2

  • Câu 40: Vận dụng

    Khẳng định nào sau đây là đúng?

    Cho biểu thức P = {\left\{ {{a^{\frac{1}{3}}}.{{\left[ {{a^{\frac{{ - 1}}{2}}}.{b^{\frac{{ - 1}}{3}}}.{{\left( {{a^2}{b^2}} ight)}^{\frac{2}{3}}}} ight]}^{\frac{{ - 1}}{2}}}} ight\}^6} với a và b là các số thực dương. Khẳng định nào sau đây là đúng?

     Thực hiện thu gọn biểu thức như sau:

    \begin{matrix}  P = {\left\{ {{a^{\frac{1}{3}}}.{{\left[ {{a^{\frac{{ - 1}}{2}}}.{b^{\frac{{ - 1}}{3}}}.{{\left( {{a^2}{b^2}} ight)}^{\frac{2}{3}}}} ight]}^{\frac{{ - 1}}{2}}}} ight\}^6} \hfill \\  P = {\left\{ {{a^{\frac{1}{3}}}.{{\left[ {{a^{\frac{{ - 1}}{2}}}.{b^{\frac{{ - 1}}{3}}}.\left( {{a^{\frac{4}{3}}}{b^{\frac{4}{3}}}} ight)} ight]}^{\frac{{ - 1}}{2}}}} ight\}^6} \hfill \\  P = {\left\{ {{a^{\frac{1}{3}}}.{{\left[ {{a^{\frac{5}{6}}}.b} ight]}^{\frac{{ - 1}}{2}}}} ight\}^6} \hfill \\  P = {\left\{ {{a^{\frac{1}{3}}}.{a^{\frac{{ - 5}}{{12}}}}.{b^{\frac{{ - 1}}{2}}}} ight\}^6} \hfill \\  P = {\left\{ {{a^{\frac{{ - 1}}{{12}}}}.{b^{\frac{{ - 1}}{2}}}} ight\}^6} \hfill \\  P = {a^{\frac{{ - 1}}{2}}}.{b^{ - 3}} = \dfrac{1}{{{b^3}\sqrt a }} = \dfrac{{\sqrt a }}{{a{b^3}}} \hfill \\ \end{matrix}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Hàm số lũy thừa; hàm số mũ; hàm số Logarit Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo