Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 2 Hàm số lũy thừa; hàm số mũ; hàm số Logarit

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Hàm số lũy thừa - Hàm số mũ - Hàm số Logarit Toán 12 các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Tìm m để PT vô nghiệm

    Với giá trị nào của tham số m thì phương trình {\left( {2 + \sqrt 3 } ight)^x} + {\left( {2 - \sqrt 3 } ight)^x} = m{\text{ }}vô nghiệm?

    m<2 || m nhỏ hơn 2

    Đáp án là:

    Với giá trị nào của tham số m thì phương trình {\left( {2 + \sqrt 3 } ight)^x} + {\left( {2 - \sqrt 3 } ight)^x} = m{\text{ }}vô nghiệm?

    m<2 || m nhỏ hơn 2

     Ta có nhận xét: \left( {2 + \sqrt 3 } ight)\left( {2 - \sqrt 3 } ight) = 1 \Leftrightarrow {\left( {2 + \sqrt 3 } ight)^x}{\left( {2 - \sqrt 3 } ight)^x} = 1.

    Đặt t = {\left( {2 + \sqrt 3 } ight)^x} \Rightarrow {\left( {2 - \sqrt 3 } ight)^x} = \frac{1}{t},\forall t \in \left( {0, + \infty } ight).

    Khi đó: \left( 1 ight) \Leftrightarrow t + \frac{1}{t} = m \Leftrightarrow f\left( t ight) = t + \frac{1}{t} = m{\text{  }}\left( {1'} ight),\forall t \in \left( {0, + \infty } ight).

    Xét hàm số f\left( t ight) = t + \frac{1}{t} xác định và liên tục trên \left( {0, + \infty } ight).

    Ta có: f'\left( t ight) = 1 - \frac{1}{{{t^2}}} = \frac{{{t^2} - 1}}{{{t^2}}}. Cho f'\left( t ight) = 0 \Leftrightarrow t =  \pm 1.

    Bảng biến thiên:

    Dựa vào bảng biến thiên:

    Phương trình (1') vô nghiệm khi và chỉ khi m < 2.

    Vậy Phương trình (1) vô nghiệm khi và chỉ khi Phương trình (1') vô nghiệm khi và chỉ khi m < 2.

  • Câu 2: Thông hiểu

    Viết biểu thức dưới dạng lũy thừa với một số hữu tỉ

    Viết biểu thức \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có: 

    \begin{matrix}  A = \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} = {\left( {a\sqrt {{a^{\frac{3}{2}}}} } ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} \hfill \\   = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{4}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{7}{8}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{{23}}{{24}}}} \hfill \\ \end{matrix}

  • Câu 3: Vận dụng

    Xét tính đúng sai của các khẳng định

    Một sinh viên giỏi X được một công ty trao quỹ học bổng 60 triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất 0,5\% mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền 4 triệu đồng.

    a) Quỹ học bổng còn lại sau 1 tháng là: 56,3 triệu đồng. Đúng||Sai

    b) Quỹ học bổng còn lại sau 2 tháng là:53,2 triệu đồng. Sai||Đúng

    c) Quỹ học bổng còn lại sau n tháng là:60.(1,005)^{n + 1} - 4.\frac{1 - 1,005^{n + 1}}{1
- 1,005} (triệu đồng). Sai||Đúng

    d) Tháng cuối cùng sinh viên đó rút được 2,527348056 triệu đồng thì hết quỹ học bổng trên. Sai||Đúng

    Đáp án là:

    Một sinh viên giỏi X được một công ty trao quỹ học bổng 60 triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất 0,5\% mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền 4 triệu đồng.

    a) Quỹ học bổng còn lại sau 1 tháng là: 56,3 triệu đồng. Đúng||Sai

    b) Quỹ học bổng còn lại sau 2 tháng là:53,2 triệu đồng. Sai||Đúng

    c) Quỹ học bổng còn lại sau n tháng là:60.(1,005)^{n + 1} - 4.\frac{1 - 1,005^{n + 1}}{1
- 1,005} (triệu đồng). Sai||Đúng

    d) Tháng cuối cùng sinh viên đó rút được 2,527348056 triệu đồng thì hết quỹ học bổng trên. Sai||Đúng

    a) Quỹ học bổng còn lại sau 1 tháng là:

    P_{1} = 60(1 + 0.5\%) - 4 = 60.1,005 - 4
= 56,3 triệu đồng.

    Suy ra mệnh đề đúng.

    b) Quỹ học bổng còn lại sau 2 tháng là:

    P_{2} = P_{1}.1,005 - 4 = (60.1,005 -
4).1,005 - 4

    = 60.(1,005)^{2} - 4.1,005 - 4 =
52,5815 (triệu đồng)

    Suy ra mệnh đề sai.

    c) Quỹ học bổng còn lại sau n tháng là:

    P_{n} = 60.(1,005)^{n} - 4.\left(
1,005^{n - 1} + 1,005^{n - 2} + ... + 1 ight)

    = 60.(1,005)^{n} - 4.\frac{1 - 1,005^{n}}{1 -
1,005} (triệu đồng).

    Suy ra mệnh đề sai.

    d) Quỹ học bổng còn lại sau 16 tháng là:

    P_{16} = 60.(1,005)^{16} - 4.\frac{1 -
1,005^{16}}{1 - 1,005} = - 1,472651944 < 0.

    Quỹ học bổng còn lại sau 15 tháng là.

    P_{15} = 60.(1,005)^{15} - 4.\frac{1 -
1,005^{15}}{1 - 1,005} = 2,514774185 triệu đồng.

    Suy ra tháng cuối cùng sinh viên đó rút được 2,527348056 triệu đồng thì hết quỹ học bổng trên.

    Suy ra mệnh đề sai.

  • Câu 4: Nhận biết

    Tìm n

    Biết rằng \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} = {x^n} với x > 0. Tìm n?

     Ta có:

    \begin{matrix}  \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} \hfill \\   = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^2}.{x^{\frac{1}{2}}}}} = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^{\frac{5}{2}}}}} \hfill \\   = {x^{\frac{1}{2}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{5}{6}}} = {x^{\frac{4}{3}}} \hfill \\ \end{matrix}

    Vậy n = \frac{4}{3}

  • Câu 5: Vận dụng

    Phương trình tiếp tuyến của đồ thị hàm số

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    Ta có: y = {x^{\frac{\pi }{2}}} \Rightarrow y' = \frac{\pi }{2}.{x^{\frac{\pi }{2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = 1} \\   {y'\left( 1 ight) = \dfrac{\pi }{2}} \end{array}} ight.

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    y = y'\left( 1 ight)\left( {x - 1} ight) + y\left( 1 ight) = \frac{\pi }{2}x - \frac{\pi }{2} + 1

  • Câu 6: Thông hiểu

    Rút gọn biểu thức P

    Cho số thực a dương. Rút gọn biểu thức P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}

    Ta có:

    P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{{a^{\frac{3}{2}}}}}}}}} = {\left( {a\sqrt[4]{{a.{a^{\frac{1}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a\sqrt[4]{{{a^{\frac{3}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{5}}} = {\left( {{a^{\frac{{11}}{8}}}} ight)^{\frac{1}{5}}} = {a^{\frac{{11}}{{40}}}}

  • Câu 7: Thông hiểu

    Đẳng thức nào sau đây đúng với mọi số dương x?

    Đẳng thức nào sau đây đúng với mọi số dương x?

    Ta có: \left( {\log x} ight)' = \frac{1}{{x\ln 10}};\forall x > 0

  • Câu 8: Thông hiểu

    Ghi đáp án vào ô trống

    Cho phương trình log_{\frac{1}{2}}(2x -
m) + log_{2}(3 - x) = 0, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?

    Đáp án: 5

    Đáp án là:

    Cho phương trình log_{\frac{1}{2}}(2x -
m) + log_{2}(3 - x) = 0, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?

    Đáp án: 5

    ĐKXĐ: \left\{ \begin{matrix}
2x - m > 0 \\
3 - x > 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
2x - m > 0 \\
x < 3 \\
\end{matrix} ight.\  ight.\ .

    Ta có:

    log_{\frac{1}{2}}(2x - m) + log_{2}(3 -x) = 0

    \Leftrightarrow - log_{2}(2x - m) +
log_{2}(3 - x) = 0

    \Leftrightarrow log_{2}(2x - m) =
log_{2}(3 - x)

    \Leftrightarrow 2x - m = 3 - x
\Leftrightarrow 3x = m + 3

    Để phương trình có nghiệm thì m + 3 <
9 \Leftrightarrow m < 6.

    Kết hợp điều kiện m là số nguyên dương ta có m ∈ {1;2;3;4;5}.

    Vậy có 5 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 9: Vận dụng

    Đạo hàm của hàm số trên khoảng

    Tìm đạo hàm của hàm số y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} trên khoảng \left( { - \infty ;\frac{1}{3}} ight)

    Với điều kiện x < \frac{1}{3} ta có: y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} = {\left( {1 - 3x} ight)^{\frac{5}{3}}}. Khi đó:

    => y' =  - 5{\left( {1 - 3x} ight)^{\frac{2}{3}}}

  • Câu 10: Vận dụng cao

    Khẳng định nào sau đây là đúng?

    Cho các số thực a và b thỏa mãn \sqrt[3]{{{a^{14}}}} > \sqrt[3]{{{a^7}}};{\log _b}\left( {2\sqrt {a + 1} } ight) < {\log _b}\left( {\sqrt a  + \sqrt {a + 2} } ight). Khẳng định nào sau đây là đúng?

    Điều kiện để các căn thức có nghĩa là a > 1

    Ta có: \sqrt[3]{{{a^{14}}}} > \sqrt[3]{{{a^7}}} \Leftrightarrow {a^{\frac{{14}}{3}}} > {a^{\frac{7}{4}}} \Rightarrow a > 1\left( * ight)

    Xét hiệu

    \begin{matrix}  {\left( {2\sqrt {a + 1} } ight)^2} - {\left( {\sqrt a  + \sqrt {a + 2} } ight)^2} \hfill \\   = 4a + 4 - \left( {2a + 2 + 2\sqrt {a\left( {a + 2} ight)} } ight) \hfill \\   = 2a + 2 - 2\sqrt {a\left( {a + 2} ight)}  \hfill \\ \end{matrix}

    a > 1 nên 2a + 2 = a + a + 2 \geqslant 2\sqrt {a\left( {a + 2} ight)}

    \begin{matrix}   \Leftrightarrow {\left( {2\sqrt {a + 1} } ight)^2} - {\left( {\sqrt a  + \sqrt {a + 2} } ight)^2} > 0 \hfill \\   \Leftrightarrow {\left( {2\sqrt {a + 1} } ight)^2} > {\left( {\sqrt a  + \sqrt {a + 2} } ight)^2} \hfill \\   \Leftrightarrow 2\sqrt {a + 1}  > \sqrt a  + \sqrt {a + 2}  \hfill \\ \end{matrix}

    Từ đó ta có: {\log _b}\left( {2\sqrt {a + 1} } ight) < {\log _b}\left( {\sqrt a  + \sqrt {a + 2} } ight) \Rightarrow 0 < b < 1\left( {**} ight)

    Từ (*) và (**) suy ra 0 < b < 1 < a

  • Câu 11: Vận dụng cao

    Giải BPT mũ

    Cho bất phương trình: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}}. Tìm tập nghiệm của bất phương trình.

     Ta có: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}} \Leftrightarrow \frac{{6\left( {1 - {5^x}} ight)}}{{\left( {{{5.5}^x} - 1} ight)\left( {5 - {5^x}} ight)}} \geqslant 0\,\,(1)

    Đặt t =5^x, BPT (1) \Leftrightarrow \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}} \geqslant 0.

    Đặt f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}.

    Lập bảng xét dấu f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}, ta được nghiệm:

    \left[ \begin{gathered}  5 < t \hfill \\  \frac{1}{5} < t \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  5 < {5^x} \hfill \\  \frac{1}{5} < {5^x} \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  1 < x \hfill \\   - 1 < x \leqslant 0 \hfill \\ \end{gathered}  ight..

    Vậy tập nghiệm của BPT là S = \left( { - 1;0} ight] \cup \left( {1; + \infty } ight).

  • Câu 12: Vận dụng

    Khẳng định đúng?

    Cho phương trình {\left( {7 + 4\sqrt 3 } ight)^x} + {\left( {2 + \sqrt 3 } ight)^x} = 6. Khẳng định nào sau đây là đúng?

     Ta có: {\left( {7 + 4\sqrt 3 } ight)^x} + {\left( {2 + \sqrt 3 } ight)^x} = 6

    \Leftrightarrow {\left[ {{{\left( {2 + \sqrt 3 } ight)}^2}} ight]^x} + {\left( {2 + \sqrt 3 } ight)^x} - 6 = 0

    \Leftrightarrow {\left[ {{{\left( {2 + \sqrt 3 } ight)}^x}} ight]^2} + {\left( {2 + \sqrt 3 } ight)^x} - 6 = 0{\text{   }}\left( {*} ight)

    Đặt t = {\left( {2 + \sqrt 3 } ight)^x} > 0.

    Khi đó \left( {*} ight) \Leftrightarrow {t^2} + t - 6 = 0 \Leftrightarrow \left[ \begin{gathered}  t = 2{\text{      }}\left( TM ight) \hfill \\  t =  - 3{\text{   }}\left( L ight) \hfill \\ \end{gathered}  ight.

    Với t = 2 \Rightarrow {\left( {2 + \sqrt 3 } ight)^x} = 2 \Leftrightarrow \boxed{x = {{\log }_{\left( {2 + \sqrt 3 } ight)}}2}.

  • Câu 13: Thông hiểu

    Trong các khẳng định sau khẳng định nào đúng?

    Cho một số thực \alpha tùy ý. Trong các khẳng định sau khẳng định nào đúng?

     Theo tính chất đạo hàm của hàm số lũy thừa, hàm số y = {x^\alpha } có đạo hàm với mọi x > 0 và \left( {{x^\alpha }} ight)' = \alpha {x^{\alpha  - 1}}

  • Câu 14: Thông hiểu

    Trong các khẳng định sau, khẳng định nào đúng?

    Trong các khẳng định sau, khẳng định nào đúng?

    Xét hàm số y = {e^{10x + 2017}} ta có:

    y' = 10.{e^{10x + 2017}} > 0;\forall x \in \mathbb{R}

    Vậy hàm số y = {e^{10x + 2017}} đồng biến trên tập số thực.

  • Câu 15: Nhận biết

    Chọn khẳng định sai?

    Cho hai số thực a và b với a > 0;a e 1;b e 0. Chọn khẳng định sai?

    \frac{1}{2}{\log _a}{b^2} = {\log _a}b sai vì chưa biết b > 0 hay b < 0

  • Câu 16: Vận dụng

    Tính tổng

    Hai phương trình 2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1){\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2) lần lượt có 2 nghiệm duy nhất x_1, x_2là . Tổng x_1 + x_2 là?

     Phương trình 1: 2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1)

    Phương trình \Leftrightarrow \left\{ \begin{gathered}  3x - 1 > 0 \hfill \\  2x + 1 > 0 \hfill \\  2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  {\log _5}{(3x - 1)^2} + {\log _5}5 = 3{\log _5}(2x + 1) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  {\log _5}5{(3x - 1)^2} = {\log _5}{(2x + 1)^3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  5{(3x - 1)^2} = {(2x + 1)^3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  5(9{x^2} - 6x + 1) = 8{x^3} + 12{x^2} + 6x + 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  8{x^3} - 33{x^2} + 36x - 4 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  \left[ \begin{gathered}  x = \frac{1}{8} \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow {x_1} = 2

    Phương trình 2: {\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2)

    Phương trình \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 2x - 8 > 0 \hfill \\  x + 2 > 0 \hfill \\  {\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x <  - 2 \vee x > 4 \hfill \\  x >  - 2 \hfill \\  {\log _2}({x^2} - 2x - 8) = 1 + {\log _2}(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {\log _2}({x^2} - 2x - 8) = {\log _2}2(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {x^2} - 2x - 8 = 2(x + 2) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {x^2} - 4x - 12 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  \left[ \begin{gathered}  x =  - 2 \hfill \\  x = 6 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow {x_2} = 6

    Vậy {x_1} + {x_2} = 2 + 6 = 8.

  • Câu 17: Thông hiểu

    Khẳng định nào sau đây đúng?

    Cho các số thực dương a, b với a e 1;{\log _a}b > 0. Khẳng định nào sau đây đúng?

    Trường hợp 1: 0 < a < 1 \Rightarrow {\log _a}b > 0 = {\log _a}1 \Rightarrow 0 < b < 1

    Trường hợp 2: a > 1 \Rightarrow {\log _a}b > 0 = {\log _a}1 \Rightarrow b > 1

    Vậy \left[ {\begin{array}{*{20}{c}}  {0 < a,b < 1} \\   {1 < a;b} \end{array}} ight.

  • Câu 18: Vận dụng

    Tính giá trị của hàm số tại một điểm

    Biết đồ thị hàm số y = f\left( x ight) đối xứng với đồ thị hàm số y = {\log _a}x;{\text{ }}\left( {0 < a e 1} ight) qua điểm I\left( {2;2} ight). Giá trị của f\left( {4 - {a^{2018}}} ight) là:

    Gọi M\left( {x;{{\log }_a}x} ight) là điểm thuộc đồ thị hàm số y = {\log _a}x thì điểm đối xứng với M qua IM'\left( {4 - x;4 - {{\log }_a}x} ight) thuộc đồ thị hàm số y = f\left( x ight)

    => f\left( {4 - x} ight) = 4 - {\log _a}x \Rightarrow f\left( {4 - {a^{2018}}} ight) = 4 - {\log _a}^{2018} =  - 2014

  • Câu 19: Nhận biết

    Hàm số nào sau đây đồng biến trên tập số thực

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Do \frac{{\sqrt 2  + \sqrt 3 }}{3} > 1 nên hàm số y = {\left( {\frac{{\sqrt 2  + \sqrt 3 }}{3}} ight)^x} đồng biến trên \mathbb{R} 

  • Câu 20: Vận dụng cao

    Tìm giá trị thực của tham số m để hàm số đồng biến trên khoảng

    Biết rằng tập tất cả các giá trị thực của tham số m để hàm số y = \frac{1}{3}{x^3} - \left( {m - 1} ight){x^2} - \left( {m - 3} ight) + 2017m đồng biến trên khoảng \left( { - 3; - 1} ight)\left( {0;3} ight) là đoạn T = \left[ {a;b} ight]. Tính {a^2} + {b^2}

     Tập xác định D = \mathbb{R}

    y' = {x^2} - 2\left( {m - 1} ight)x - \left( {m - 3} ight)

    Hàm số đã cho đồng biến trên \left( {0;3} ight) tức là

    \Leftrightarrow \frac{{{x^2} + 2x + 3}}{{2x + 1}} \geqslant m;\forall x \in \left( {0;3} ight)

    Xét f\left( x ight) = \frac{{{x^2} + 2x + 3}}{{2x + 1}};\forall x \in \left( {0;3} ight)

    Ta có:

    \begin{matrix}  f'\left( x ight) = \dfrac{{2{x^2} + 2x - 4}}{{{{\left( {2x + 1} ight)}^2}}} \hfill \\   \Rightarrow f'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tìm giá trị thực của tham số m để hàm số đồng biến trên khoảng

    Từ bảng biến thiên suy ra f\left( x ight) \geqslant m;\forall x \in \left( {0;3} ight) \Rightarrow m \leqslant 2

    Hàm số đã cho đồng biến trên \left( { - 3; - 1} ight) tức là y' \leqslant 0;\forall x \in \left( { - 3;1} ight)

    \Leftrightarrow \frac{{{x^2} + 2x + 3}}{{2x + 1}} \geqslant m;\forall x \in \left( { - 3;1} ight)

    Xét f\left( x ight) = \frac{{{x^2} + 2x + 3}}{{2x + 1}};\forall x \in \left( { - 3;1} ight) ta có:

    f'\left( x ight) = \frac{{2{x^2} + 2x - 4}}{{{{\left( {2x + 1} ight)}^2}}} \Rightarrow f'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( L ight)} \\   {x =  - 2} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Tìm giá trị thực của tham số m để hàm số đồng biến trên khoảng

    Từ bảng biến thiên suy ra f\left( x ight) \leqslant m \Leftrightarrow m \geqslant 1

    Kết hợp kết quả ta được - 1 \leqslant m \leqslant 2 \Rightarrow a =  - 1;b = 2

  • Câu 21: Nhận biết

    Tập xác định của hàm số y

    Tập xác định của hàm số y = {\left( {x + 3} ight)^{\frac{3}{2}}} - \sqrt[4]{{5 - x}} là:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {x + 3 > 0} \\   {5 - x \geqslant 0} \end{array}} ight. \Rightarrow  - 3 < x \leqslant 5

    => Tập xác định của hàm số là D = \left( { - 3;5} ight]

  • Câu 22: Thông hiểu

    Tìm tập xác định của hàm số

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} có tập xác định là:

    Hàm số y = {x^\alpha } có số mũ nguyên âm xác định khi

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} xác định khi 4{x^2} - 1 e 0 \Leftrightarrow x e  \pm \frac{1}{2}

    Vậy tập xác định là: D = \mathbb{R}\backslash \left\{ { - \frac{1}{2};\frac{1}{2}} ight\}

  • Câu 23: Vận dụng

    Tìm tập hợp giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m \in \left[ { - 2019;2019} ight] để hàm số y = \frac{{\ln x - 6}}{{\ln x - 3m}} đồng biến trên khoảng \left( {1;{e^6}} ight)?

    Đặt t = \ln x

    Khi đó hàm số đã cho đồng biến trên khoảng \left( {1;{e^6}} ight) khi và chỉ khi hàm số y = \frac{{t - 6}}{{t - 3m}} đồng biến trên khoảng \left( {0;6} ight)

    Hàm số f(t) đồng biến trên khoảng \left( {0;6} ight) khi và chỉ khi:

    \left\{ {\begin{array}{*{20}{c}}  { - 3m + 6 > 0} \\   {3m otin \left( {0;6} ight)} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 2} \\   {\left[ {\begin{array}{*{20}{c}}  {m \leqslant 0} \\   {m \geqslant 2} \end{array}} ight.} \end{array}} ight. \Rightarrow m \leqslant 0

    m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 2019; - 2018;...;0} ight\}

    Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.

  • Câu 24: Nhận biết

    Tìm tập nghiệm PT Logarit

    Phương trình \log _2^{}x + {\log _2}(x - 1) = 1 có tập nghiệm là:

    {2} || T={2}

    Đáp án là:

    Phương trình \log _2^{}x + {\log _2}(x - 1) = 1 có tập nghiệm là:

    {2} || T={2}

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x - 1 > 0 \hfill \\  {\log _2}\left[ {x(x - 1)} ight] = 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {x^2} - x - 2 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 2.

  • Câu 25: Thông hiểu

    Tìm tập nghiệm của PT

    Tập nghiệm của phương trình {\log _2}\frac{1}{x} = {\log _{\frac{1}{2}}}\left( {{x^2} - x - 1} ight) là:

     Điều kiện: x > 0 và {x^2} - x - 1 > 0

    Với điều kiện đó thì {\log _2}\frac{1}{x} = {\log _{\frac{1}{2}}}x.

    Khi đó, phương trình đã cho tương đương phương trình:

    {\log _{\frac{1}{2}}}x = {\log _{\frac{1}{2}}}\left( {{x^2} - x - 1} ight) \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x = {x^2} - x - 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \left[ \begin{gathered}  x = 1 + \sqrt 2  \hfill \\  x = 1 - \sqrt 2  \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 1 + \sqrt 2

  • Câu 26: Thông hiểu

    Tính giá trị của biểu thức P

    Cho {\log _a}b = 2;{\log _a}c = 3. Tính giá trị của biểu thức P = {\log _a}\left( {a{b^3}{c^3}} ight)

    Ta có:

    \begin{matrix}  P = {\log _a}\left( {a{b^3}{c^3}} ight) \hfill \\   = {\log _a}a + {\log _a}{b^3} + {\log _a}{c^3} \hfill \\   = 1 + 3{\log _a}b + 5{\log _a}c \hfill \\   = 1 + 3.2 + 5.3 = 22 \hfill \\ \end{matrix}

  • Câu 27: Thông hiểu

    Tính đạo hàm hàm số lũy thừa

    Cho hàm số y = {x^\pi }. Tính y''\left( 1 ight)

    Ta có:

    \begin{matrix}  y' = \pi .{x^{\pi  - 1}} \Rightarrow y'' = \pi \left( {\pi  - 1} ight).{x^{\pi  - 2}} \hfill \\  y''\left( 1 ight) = \pi \left( {\pi  - 1} ight) \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Tìm nghiệm nguyên MIN

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight)là:

    17 || x=17 || x bằng 17 || X=17

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight)là:

    17 || x=17 || x bằng 17 || X=17

     Điều kiện:

    {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight) \Leftrightarrow {\log _2}\left( {{{\log }_2}x} ight) > 2

    \Leftrightarrow {\log _2}x > 4 \Leftrightarrow x > 16

    Vậy nghiệm nguyên nhỏ nhất x=17.

  • Câu 29: Nhận biết

    Trong các biểu thức sau, biểu thức nào có nghĩa?

    Trong các biểu thức sau, biểu thức nào có nghĩa?

    Tập xác định của hàm số y = {x^\alpha } tùy thuộc vào \alpha

    Với \alpha nguyên dương, tập xác định \mathbb{R} 

    Với \alpha nguyên âm hoặc bằng 0, tập xác định \mathbb{R}\backslash \left\{ 0 ight\}

    Với \alpha không nguyên, tập xác định là \left( {0; + \infty } ight)

    Ta có: {\left( { - 3} ight)^{ - 6}}\alpha  =  - 6 là số nguyên âm nên cơ số x e 0

    => {\left( { - 3} ight)^{ - 6}} có nghĩa

  • Câu 30: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho phương trình e^{x} = \ln(x + a) +a, với a là tham số. Có bao nhiêu giá trị nguyên của a thuộc khoảng (0;19) để phương trình có nghiệm dương.

    Đáp án: 17

    Đáp án là:

    Cho phương trình e^{x} = \ln(x + a) +a, với a là tham số. Có bao nhiêu giá trị nguyên của a thuộc khoảng (0;19) để phương trình có nghiệm dương.

    Đáp án: 17

    Ta có:

    e^{x} = \ln(x + a) + a\Leftrightarrow e^{x} + x = \ln(x + a) + x + a\Leftrightarrow e^{x} + x = e^{\ln(x + a)}+ \ln(x + a) (1)

    Xét hàm số f(t) = e^{t} + tf^{'}(t) = e^{t} + 1 > 0,\forall
t.

    Suy ra hàm số f(t) đồng biến trên \mathbb{R}.

    Do đó: (1) \Leftrightarrow f(x) =f\lbrack \ln(x + a)brack\Leftrightarrow x = \ln(x + a) \Leftrightarrow a = e^{x} - x.

    Đặt g(x) = e^{x} - x \Rightarrow
g^{'}(x) = e^{x} - 1 = 0 \Leftrightarrow x = 0.

    Bảng biến thiên của hàm số g(x):

    Để phương trình có nghiệm dương thì a
> 1.

    Do a \in (0;19)a\mathbb{\in Z} nên a \in \{ 2;3;\ldots;18\}

    Vậy có 17 giá trị nguyên của a để phương trình có nghiệm dương.

  • Câu 31: Thông hiểu

    BPT trở thành

    Nếu đặt t = {\log _3}\frac{{x - 1}}{{x + 1}} thì bất phương trình {\log _4}{\log _3}\frac{{x - 1}}{{x + 1}} < {\log _{\frac{1}{4}}}{\log _{\frac{1}{3}}}\frac{{x + 1}}{{x - 1}} trở thành bất phương trình nào?

    Điều kiện: x \in ( - \infty ; - 1) \cup (1; + \infty )

    Sau khi đưa về cùng cơ số 4, rồi tiếp tục biến đổi về cùng cơ số 3 ta được bất phương trình  {\log _3}\frac{{x - 1}}{{x + 1}} - \frac{1}{{{{\log }_3}\frac{{x - 1}}{{x + 1}}}} < 0

    Vậy BPT trở thành: \frac{{{t^2} - 1}}{t} < 0

  • Câu 32: Thông hiểu

    Tính P = ab + 1

    Cho hai số thực dương a và b thỏa mãn {\log _9}{a^4} + {\log _3}b = 8{\log _3}a + {\log _{\sqrt[3]{3}}}b = 9. Giá trị của biểu thức P = ab + 1 là:

    Theo điều kiện ta có:

     \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{{\log }_9}{a^4} + {{\log }_3}b = 8} \\   {{{\log }_3}a + {{\log }_{\sqrt[3]{3}}}b = 9} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2{{\log }_9}a + {{\log }_3}b = 8} \\   {{{\log }_3}a + 3{{\log }_3}b = 9} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{{\log }_9}a = 3} \\   {{{\log }_3}b = 2} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 27} \\   {b = 9} \end{array}} ight. \hfill \\   \Rightarrow P = ab + 1 = 244 \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Chọn phương án thích hợp

    Dân số thế giới được tính theo công thức S = A. e \
^{nr} trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là 1,47\% một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?

    Ta có:

    S = A \cdot e^{nr} \Leftrightarrow
e^{nr} = \frac{S}{A} \Leftrightarrow nr = \ln\frac{S}{A} \Leftrightarrow
n = \frac{1}{r}\ln\frac{S}{A}

    Với S = 93713700 người; A = 80902400 người; r = \frac{1,47}{100} = 0,0147/năm.

    Suy ra n =
\frac{1}{0,0147}\ln\frac{93713000}{80902400} \approx 10.

    Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.

  • Câu 34: Nhận biết

    Đồ thị hình bên là của hàm số nào?

    Cho hình vẽ:

    Đồ thị hình bên là của hàm số nào?

    Đồ thị hình bên là của hàm số nào?

     Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hhai hàm số y = {\left( {\sqrt 2 } ight)^x};y = {\left( {\sqrt 3 } ight)^x}

    Đồ thị hàm số đi qua điểm \left( { - 1;3} ight) nên hàm số y = {\left( {\frac{1}{3}} ight)^x} thảo mãn

  • Câu 35: Nhận biết

    Giải bất phương trình

    Nghiệm của bất phương trình (0,2)^{x^{2}}
> 1

    Ta có (0,2)^{x^{2}} > 1
\Leftrightarrow x^{2} < log_{0,2}1 \Leftrightarrow x^{2} <
0 (vô nghiệm).

    Vậy tập nghiệm của bất phương trình đã cho là \varnothing.

  • Câu 36: Nhận biết

    Giá trị của biểu thức

    Giá trị của biểu thức {\log _2}5.{\log _5}64 là:

    Ta có: {\log _2}5.{\log _5}64 = {\log _2}64 = {\log _2}{2^6} = 6

  • Câu 37: Thông hiểu

    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = {\log _9}\left( {{x^2} + 1} ight)

    Ta có:

    y' = \left[ {{{\log }_9}\left( {{x^2} + 1} ight)} ight]' = \frac{{2x}}{{\left( {{x^2} + 1} ight)\ln {3^2}}} = \frac{{2x}}{{\left( {{x^2} + 1} ight).2.\ln 3}} = \frac{x}{{\left( {{x^2} + 1} ight)\ln 3}}

  • Câu 38: Vận dụng

    Tìm tập nghiệm của BPT mũ

    Tìm tập nghiệm của bất phương trình {11^{\sqrt {x + 6} }} \geqslant {11^x} sau: 

    Ta có:  {11^{\sqrt {x + 6} }} \geqslant {11^x} \Leftrightarrow \sqrt {x + 6}  \geqslant x

    \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x < 0 \hfill \\  x + 6 \geqslant 0 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x \geqslant 0 \hfill \\  x + 6 \geqslant {x^2} \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}   - 6 \leqslant x < 0 \hfill \\  \left\{ \begin{gathered}  x \geqslant 0 \hfill \\   - 2 \leqslant x \leqslant 3 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow  - 6 \leqslant x \leqslant 3

  • Câu 39: Nhận biết

    Mệnh đề nào sau đây là đúng

    Cho biểu thức P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}} với x > 0. Mệnh đề nào sau đây là đúng?

     Ta có: 

    \begin{matrix}  P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}  \hfill \\  P = \sqrt {x.\sqrt[3]{{{x^{\frac{7}{2}}}}}}  \hfill \\  P = \sqrt {x.{x^{\frac{7}{6}}}}  \hfill \\  P = \sqrt {{x^{\frac{{13}}{6}}}}  = {x^{\frac{{13}}{{12}}}} \hfill \\ \end{matrix}

  • Câu 40: Thông hiểu

    Đạo hàm bậc nhất của hàm lũy thừa

    Cho hàm số f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} . Tính f'\left( 2 ight)

    Tập xác định \left( {\frac{2}{3}; + \infty } ight)

    Ta có: f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} \Rightarrow f'\left( x ight) = \frac{5}{3}.{\left( {2x - 3} ight)^{\frac{{ - 1}}{6}}} \Rightarrow f'\left( 2 ight) = \frac{5}{3}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Hàm số lũy thừa; hàm số mũ; hàm số Logarit Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo