Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa học kì 2 Toán 12 - Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Xác định tích vô hướng

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

  • Câu 2: Nhận biết

    Tìm nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = 2^{x} +
x

    Ta có: \int_{}^{}f(x)dx =
\int_{}^{}\left( 2^{x} + x ight)dx = \frac{2^{x}}{ln2} +
\frac{x^{2}}{2} + C.

  • Câu 3: Nhận biết

    Tính thể tích V

    Cho (H) là hình phẳng giới hạn bởi đường cong \left( C ight):y = {x^2} + 4x và đường thẳng d:y = x. Tính thể tích V của vật thể tròn xoay do hình phẳng (H) quay quanh trục hoành.

    Phương trình hoành độ giao điểm là: - {x^2} + 4x = x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 3} \end{array}} ight.

    Thể tích cần tính là:

    V = \pi \int\limits_0^3 {\left| {{{\left( {4x - {x^2}} ight)}^2} - {x^2}} ight|dx}  = \frac{{108\pi }}{3}

  • Câu 4: Nhận biết

    Tìm nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = x^{3} + 3x +
2 là hàm số nào trong các hàm số sau?

    \left( \frac{x^{4}}{4} +
\frac{3x^{2}}{2} + 2x \right)' = \frac{4x^{3}}{4} + \frac{3.2x}{2} +
2 = x^{3} + 3x + 2 với mọi x\mathbb{\in R}nên \int_{}^{}{f(x)dx} = F(x)

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{4}}{4} + \frac{3x^{2}}{2} + 2x + C

  • Câu 5: Nhận biết

    Mp qua 3 điểm

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 6: Nhận biết

    Xác định mệnh đề không chính xác

    Cho tứ diện đều ABCD. Mệnh đề nào sau đây sai?

    Vì tứ diện ABCD là tứ diện đều nên có các cặp cạnh đối vuông góc

    Suy ra \overrightarrow{AC}.\overrightarrow{BD} =
\overrightarrow{AD}.\overrightarrow{BC} =
\overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{0}

    Vậy mệnh đề chưa chính xác là: \overrightarrow{AD}.\overrightarrow{CD} =
\overrightarrow{AC}.\overrightarrow{DC} =
\overrightarrow{0}.

  • Câu 7: Thông hiểu

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =
\frac{x^{4} + 5}{x + 1} .

    Ta có \int_{}^{}{\frac{x^{4} + 5}{x +
1}dx = \int_{}^{}{\frac{\left( x^{4} - 1 ight) + 6}{x +
1}dx}}

    = \int_{}^{}{\left\lbrack (x - 1)\left(
x^{2} + 1 ight) + \frac{6}{x + 1} ightbrack dx}

    = \int_{}^{}{\left( x^{3} - x^{2} + x - 1
ight)dx + 6\int_{}^{}\frac{d(x + 1)}{x + 1}}

    = \frac{1}{4}x^{4} - \frac{1}{3}x^{3} +
\frac{1}{2}x^{2} - x + 6ln|x + 1| + C

  • Câu 8: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số

    Một nguyên hàm F(x) của hàm số f(x) = 2x+ \frac{1}{\sin^2x} thỏa mãn F(\frac{\pi}{4}) = - 1 là:

    Ta có:

    F(x) = \int_{}^{}{\left( 2x +\frac{1}{sin^{2}x} \right)dx = x^2- \cot x} + C

    F\left( \frac{\pi}{4} \right) = - 1
\Leftrightarrow \left( \frac{\pi}{4} \right)^{2} - \cot\frac{\pi}{4} + C
= - 1

    \Leftrightarrow C =
\frac{\pi^{2}}{16}

    Vậy F(x) = - cotx + x^{2} -
\frac{\pi^{2}}{16}

  • Câu 9: Thông hiểu

    Tính thể tích khối trụ

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 10: Nhận biết

    Chọn kết luận đúng

    Xét hai khẳng định sau:

    (I) Mọi hàm số f(x) liên tục trên đoạn \lbrack a;b\rbrack đều có đạo hàm trên đoạn đó.

    (II) Mọi hàm số f(x) liên tục trên đoạn \lbrack a;b\rbrack đều có nguyên hàm trên đoạn đó.

    Trong hai khẳng định trên:

    Trong hai khẳng định trên chỉ có khẳng định "(II) Mọi hàm số f(x) liên tục trên đoạn \lbrack a;b\rbrack đều có nguyên hàm trên đoạn đó” là khẳng định đúng."

  • Câu 11: Vận dụng

    Độ dài đường sinh

    Cho hình nón đỉnh S, đường cao SO. Gọi A, B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng a và \widehat {SAO} = {30^0},\widehat {SAB} = {60^0}. Độ dài đường sinh \ell của hình nón bằng:

     Độ dài đường sinh

    Gọi I là trung điểm AB, suy ra OI \bot AB,{m{ }}SI \bot ABOI = a.

    Trong tam giác vuông SOA, ta có OA = SA.\cos \widehat {SAO} = \frac{{SA\sqrt 3 }}{2}

    Trong tam giác vuông SIA, ta có IA = SA.\cos \widehat {SAB} = \frac{{SA}}{2}

    Trong tam giác vuông OIA, ta có:

    O{A^2} = O{I^2} + I{A^2} \Leftrightarrow \frac{3}{4}S{A^2} = {a^2} + \frac{1}{4}S{A^2} \Rightarrow SA = a\sqrt 2 .

  • Câu 12: Nhận biết

    Xác định điều kiện tham số m

    Trong không gian Oxyz, cho hai mặt phẳng (P):2x + 4y + 3z - 5 = 0(Q):mx - ny - 6z + 2\  = \ 0. Giá trị của m, n sao cho (P)//(Q)

    Ta có: (P) có vectơ chỉ phương \overrightarrow{u_{(P)}} = (2;4;3), (Q) có vectơ chỉ phương \overrightarrow{u_{(Q)}} = (m; - n; -
6)

    Để hai mặt phẳng song song thì \overrightarrow{u_{(P)}} =
k\overrightarrow{u_{(Q)}} \Leftrightarrow \left\{ \begin{matrix}
m = 2k \\
- n = 4k \\
- 6 = 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = - 2 \\
m = - 4 \\
n = 8 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: m = - 4;n =
8.

  • Câu 13: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số

    Một nguyên hàm F(x) của hàm số f(x) = 2x+ \frac{1}{\sin^2x} thỏa mãn F(\frac{\pi}{4}) = - 1 là:

    Ta có:

    F(x) = \int_{}^{}{\left( 2x +\frac{1}{sin^{2}x} \right)dx = x^2- \cot x} + C

    F\left( \frac{\pi}{4} \right) = - 1
\Leftrightarrow \left( \frac{\pi}{4} \right)^{2} - \cot\frac{\pi}{4} + C
= - 1

    \Leftrightarrow C =
\frac{\pi^{2}}{16}

    Vậy F(x) = - cotx + x^{2} -
\frac{\pi^{2}}{16}

  • Câu 14: Thông hiểu

    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm B(1;2; - 3),C(7;4 - 2). Tìm tọa độ điểm E thỏa mãn đẳng thức \overrightarrow{CE} =
2\overrightarrow{EB}?

    Gọi E(x;y;z)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CE} = (x - 7;y - 4;z + 2) \\
2\overrightarrow{EB} = (2 - 2x;4 - 2y; - 6 - 2z) \\
\end{matrix} ight.

    Theo bài ra ta có:

    \overrightarrow{CE} =2\overrightarrow{EB} \Leftrightarrow \left\{ \begin{matrix}x - 7 = 2 - 2x \\y - 4 = 4 - 2y \\z + 2 = - 6 - 2z \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = \dfrac{8}{3} \\z = - \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow E\left( 3;\frac{8}{3}; - \dfrac{8}{3}ight)

    Vậy điểm E có tọa độ là E\left(
3;\frac{8}{3}; - \frac{8}{3} ight).

  • Câu 15: Thông hiểu

    Tính giá trị biểu thức S

    Cho hàm số f(x) = 2x^{2}.e^{x^{3} + 2} +
2xe^{2x}, ta có: \int_{}^{}{f(x)dx}
= me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C. Tính giá trị biểu thức S = m + n + p?

    Ta có:

    \int_{}^{}{f(x)dx} = me^{x^{3} + 2} +
nxe^{2x} - pe^{2x} + C nên \left(
me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C ight)' = f(x)

    \Rightarrow 3mx^{2}e^{x^{3} + 2} +
2nxe^{2x} + (n - 2p)e^{2x} = 2x^{2}.e^{x^{3} + 2} + 2xe^{2x} đồng nhất 2 biểu thức ta được hệ phương trình \left\{ \begin{matrix}3m = 2 \\2n = 2 \ - 2p = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = 1 \\p = \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{13}{6}

  • Câu 16: Nhận biết

    Tính khoảng cách d(M; (P))

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x + 4y + 2z + 4 = 0 và điểm M(1; - 2;3). Tính khoảng cách d từ M đến (P).

    Khoảng cách từ M đến mặt phẳng (P) là:

    d\left( M;(P) ight) = \frac{|3.1 - 4.2
+ 2.3 + 4|}{\sqrt{3^{2} + 4^{2} + 2^{2}}} =
\frac{5}{\sqrt{29}}

  • Câu 17: Nhận biết

    Tìm giá trị của tích phân I

    Tích phân I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} có giá trị là:

    Tích phân I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} có giá trị là:

    I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx}  = \left. {\left( { - \cos x} ight)} ight|_0^{\dfrac{\pi }{2}} = 1

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 18: Vận dụng

    Chọn đáp án đúng

    Một nguyên hàm của f(x) =
\frac{x}{sin^{2}x} là :

    Ta có: I =\int_{}^{}{\frac{x}{sin^2x}dx}

    Đặt: \left\{ \begin{matrix}
u = x \\
dv = \frac{1}{sin^{2}x}dx \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cot x \\
\end{matrix} \right.

    Khi đó: I = uv - \int_{}^{}{vdu} = -x\cot x + \int_{}^{}{\cot xdx}= - x\cot x + \ln\left| \sin x \right| +C

  • Câu 19: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f\left( x ight) = 3x + \cos 3x

     Ta có: \int {\left( {3x + \cos 3x} ight)dx = \frac{{3{x^2}}}{2} + \frac{{\sin 3x}}{3} + C}

  • Câu 20: Thông hiểu

    Tìm giá trị tham số D

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(4;9;8),N(1; - 3;4),P(2;5; - 1). Mặt phẳng (\alpha) đi qua ba điểm M,N,P có phương trình tổng quát Ax + By + Cz + D = 0. Biết A = 92, tìm giá trị của D?

    Do A = 92 nên mặt phẳng (P) có phương trình 92x + By + Cz + D = 0

    Do (P) đi qua các điểm A;B;C nên ta có hệ:

    \left\{ \begin{matrix}
92.4 + B.9 + C.8 + D = 0 \\
92.1 + B.( - 3) + C.4 + D = 0 \\
92.2 + B.5 + C.( - 1) + D = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
B = - 19 \\
C = - 12 \\
D = - 101 \\
\end{matrix} ight.

    Vậy D = - 101.

  • Câu 21: Thông hiểu

    Tính giá trị biểu thức

    Cho \int_{0}^{1}{\frac{x}{(x + 2)^{2}}dx}
= a + ln2 + cln3 với a;b;c là các số hữu tỉ. Giá trị của biểu thức K =
3a + b + c bằng:

    Ta có: \int_{0}^{1}{\frac{x}{(x +
2)^{2}}dx} = \int_{0}^{1}{\frac{x + 2 - 2}{(x + 2)^{2}}dx}

    = \int_{0}^{1}{\frac{x + 2}{(x +
2)^{2}}dx} - \int_{0}^{1}{\frac{2}{(x + 2)^{2}}dx}

    = \int_{0}^{1}{\frac{1}{x + 2}dx} -
\int_{0}^{1}{\frac{2}{(x + 2)^{2}}dx}

    = \left. \ \ln|x + 2| ight|_{0}^{1} -\left. \ \frac{2}{x + 2} ight|_{0}^{1} = \ln3 - \ln2 -\frac{1}{3}

    Suy ra a = - \frac{1}{3};b = - 1;c = 1
\Rightarrow K = - 1

  • Câu 22: Nhận biết

    Chọn đáp án đúng

    Cho \int_{}^{}{f(x)dx} = \frac{x^{4}}{4}
- \frac{x^{3}}{3} + 2020 + C. Khi đó \int_{}^{}{f(3x)dx} là:

    Ta có: \int_{}^{}{f(x)dx} =
\frac{x^{4}}{4} - \frac{x^{3}}{3} + 2020 + C

    Khi đó \int_{}^{}{f(3x)dx} =
\frac{27x^{4}}{4} - 3x^{3} + \frac{2020}{3} + C

  • Câu 23: Nhận biết

    Tính tích phân

    Tích phân I =
\int_{0}^{\frac{\pi}{2}}{\sin xdx} có giá trị là:

    Tích phân I =
\int_{0}^{\frac{\pi}{2}}{\sin xdx} có giá trị là:

    Cách 1:I = \int_{0}^{\frac{\pi}{2}}{\sin
xdx} = \left. \ \left( - \cos x ight) ight|_{0}^{\frac{\pi}{2}} =
1.

    Cách 2: Dùng máy tính cầm tay.

    Đáp án đúng là I = 1

  • Câu 24: Thông hiểu

    Chọn khẳng định đúng

    Cho F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x thỏa mãn F(0) = \frac{3}{2}. Chọn khẳng định đúng trong các khẳng định sau?

    Ta có: \int_{}^{}{\left( e^{x} + 2x
ight)dx} = e^{x} + x^{2} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x suy ra F(x) có dạng e^{x} + x^{2} + C

    Theo bài ra ta có: F(0) = \frac{3}{2}
\Leftrightarrow e^{0} + 0^{2} + C = \frac{3}{2} \Rightarrow C =
\frac{1}{2}

    Vậy F(x) = e^{x} + x^{2} +
\frac{1}{2}.

  • Câu 25: Nhận biết

    Xác định họ nguyên hàm của hàm số f(x)

    Họ nguyên hàm của hàm sốf(x) = \tan
x là:

    Ta có: \int_{}^{}{\tan x.dx =
\int_{}^{}{\frac{\sin x.dx}{\cos x} = - \int_{}^{}{\frac{d(cosx)}{\cos
x} = - \ln\left| \cos x \right| + C}}}

  • Câu 26: Nhận biết

    Chọn công thức thích hợp với hình vẽ

    Cho hình vẽ:

    Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:

    Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{2}{\left( - x^{2} + 3 -
x^{2} + 2x + 1 ight)dx} = \int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4
ight)dx}.

  • Câu 27: Nhận biết

    Tính giá trị biểu thức

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 28: Thông hiểu

    Tính đường cao

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 29: Thông hiểu

    Chọn đáp án đúng

    Cho \left| \overrightarrow{a} ight| =
3;\left| \overrightarrow{b} ight| = 5, góc giữa \overrightarrow{a};\overrightarrow{b} bằng 120^{0}. Chọn khẳng định sai trong các khẳng định sau?

    Ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|\cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = 3.5.cos120^{0} = -
\frac{15}{2}

    Khi đó:

    \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 -
15 + 25 = 19

    \left( \overrightarrow{a} -
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 +
15 + 25 = 49

    \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 +
30 + 100 = 139

    \left( \overrightarrow{a} +
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 -
30 + 100 = 79

    Vậy khẳng định sai là \left| \overrightarrow{a} +
2\overrightarrow{b} ight| = 9.

  • Câu 30: Thông hiểu

    Chọn đáp án thích hợp

    Nguyên hàm của hàm số x.lnx

    Ta có \int_{}^{}{x.lnx}dx.

    Đặt \left\{ \begin{matrix}
\ln x = u \Rightarrow \dfrac{1}{x}dx = du \\
dv = xdx \Rightarrow v = \dfrac{x^{2}}{2} \\
\end{matrix} ight.

    Theo phương pháp nguyên hàm từng phần ta có

    \int_{}^{}{x.\ln x}dx = \int_{}^{}{udv = uv
- \int_{}^{}{vdu} = \frac{x^{2}}{2}.\ln x -
\int_{}^{}{\frac{x^{2}}{2}.\frac{1}{x}dx}}

    = \frac{x^{2}.lnx}{2} -
\int_{}^{}{\frac{x}{2}dx = \frac{x^{2}.\ln x}{2} - \frac{x^{2}}{4} +
C}.

  • Câu 31: Vận dụng cao

    Số điểm cực trị của hàm số

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 32: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Nhận biết

    Tìm nguyên hàm của hàm số

    Hàm số f(x) = x^{3} + \sin x là một nguyên hàm của hàm số nào sau đây?

    Ta có: F'(x) = 3x^{2} + \cos
x

  • Câu 34: Nhận biết

    Tính độ dài vectơ

    Trong không gian Oxyz, cho A(1;1; - 3), B(3; - 1;1). Gọi G là trọng tâm tam giác OAB, vectơ \overrightarrow{OG} có độ dài bằng:

    Vì G là trọng tâm tam giác OAB nên tọa độ G\left( \frac{4}{3};0;\frac{-
2}{3} ight).

    Ta có: \Leftrightarrow \left\{ \begin{matrix}
2 = k \\
m - 1 = 3k \\
3 = k( - 2n) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = 2 \\
m = 7 \\
n = - \dfrac{3}{4} \\
\end{matrix} ight.

  • Câu 35: Thông hiểu

    Xác định hàm số f(x)

    Biết rằng f'(x) = x\sqrt{1 +
x^{2}}3f(0) = 4. Tìm hàm số f(x)?

    Ta có: f(x) = \int_{}^{}{f'(x)dx} =
\int_{}^{}{x\sqrt{1 + x^{2}}dx}

    = \frac{1}{2}\int_{}^{}{\left( 1 + x^{2}
ight)^{\frac{1}{2}}d\left( 1 + x^{2} ight)} = \frac{\left( \sqrt{1 +
x^{2}} ight)^{3}}{3} + C

    3f(0) = 4 \Leftrightarrow
3\frac{\left( \sqrt{1 + 0^{2}} ight)^{3}}{3} + 3C = 4 \Leftrightarrow
C = 1

    Vậy f(x) = \frac{\left( \sqrt{1 + x^{2}}
ight)^{3}}{3} + 1

  • Câu 36: Vận dụng cao

    Chọn đáp án đúng

    Trong không gian tọa độ Oxyz cho các điểm A(1;2;3),B(2;1;0),C(4; - 3; -
2), D(3; - 2;1),E(1;1; -
1). Hỏi có bao nhiêu mặt phẳng cách đều 5 điểm trên?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1; - 3) \\
\overrightarrow{DC} = (1; - 1; - 3) \\
\overrightarrow{AD} = (2; - 4; - 2) \\
\end{matrix} ight.. Suy ra ABCD là hình bình hành.

    \left\{ \begin{matrix}
\overrightarrow{AE} = (0; - 1; - 4) \\
\left\lbrack \overrightarrow{AB},\overrightarrow{AD} ightbrack = ( -
10; - 4; - 2) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AE}.\left\lbrack
\overrightarrow{AB},\overrightarrow{AD} ightbrack = 12 eq
0nên E.ABCD là hình chóp đỉnh E có đáy ABCD là hình bình hành.

    Gọi G,H,I,K,M,N,P,Q lần lượt là trung điểm các cạnh EA,EB,EC,ED,AB,BC,CD,AD.

    Do đó có 5 mặt phẳng cách đều 5 điểm là:

    Mặt phẳng qua 4 trung điểm của 4 cạnh bên: (GHIK)

    Mặt phẳng qua 4 trung điểm lần lượt của EC, ED, AD, BC: (IKQN)

    Mặt phẳng qua 4 trung điểm của EB, EA, AD, BC: (HGQN)

    Mặt phẳng qua 4 trung điểm của EA, ED, CD, AB: (GKPM)

    Mặt phẳng qua 4 trung điểm của EB, EC, CD, AB: (HIPM)

  • Câu 37: Vận dụng cao

    Tìm điều kiện của a và b

    Trong hệ trục tọa độ Oxy, cho parabol \left( P ight):y = {x^2} và hai đường thẳng y = a;y = b;\left( {0 < a < b} ight) (mô tả như hình vẽ). Gọi {S_1} là diện tích hình phẳng giới hạn bới và đường thẳng y=a (phần tô màu đen); S_2 là diện tích hình phẳng giới hạn bới parabol \left( P ight) và đường thẳng y=b (phần gạch chéo). Với điều kiện nào sau đây của a,b thì {S_1} = 2{S_2}?

    Tìm điều kiện của a và b

    Phương trình hoành độ giao điểm của \left( P ight) và đường thẳng y=b là:

    {x^2} = b \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \sqrt b } \\   {x =  - \sqrt b } \end{array}} ight.

    Phương trình hoành độ giao điểm của \left( P ight) và đường thẳng y=a là:

    {x^2} = a \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \sqrt a } \\   {x =  - \sqrt a } \end{array}} ight.

    Diện tích hình phẳng giới hạn bởi \left( P ight)y=b là:

    \begin{matrix}  S = 2\int\limits_0^{\sqrt b } {{{\left( {b - x} ight)}^2}dx}  = \left. {2\left( {bx - \dfrac{{{x^3}}}{3}} ight)} ight|_0^{\sqrt b } \hfill \\   = 2\left( {b\sqrt b  - \dfrac{{b\sqrt b }}{3}} ight) = \dfrac{{4b\sqrt b }}{3} \hfill \\ \end{matrix}

    Diện tích hình phẳng giới hạn bởi \left( P ight)y=a là:

    \begin{matrix}  S = 2\int\limits_0^{\sqrt a } {{{\left( {a - x} ight)}^2}dx}  = \left. {2\left( {ax - \dfrac{{{x^3}}}{3}} ight)} ight|_0^{\sqrt a } \hfill \\   = 2\left( {a\sqrt a  - \dfrac{{a\sqrt a }}{3}} ight) = \dfrac{{4a\sqrt a }}{3} \hfill \\ \end{matrix}

    Khi đó: {S_1} = 2{S_2} \Leftrightarrow \frac{{4b\sqrt b }}{3} = 2\frac{{4a\sqrt a }}{3} \Rightarrow b = \sqrt[3]{4}a

     

  • Câu 38: Thông hiểu

    Tính tích phân

    Tính tích phân I =\int_{0}^{\pi}{\cos^{3}x.\sin xdx}?

    Đặt x = \pi - t. Ta có:

    I = - \int_{\pi}^{0}{\cos^{3}(\pi -t).\sin(\pi - t)dt} = - \int_{0}^{\pi}{\cos^{3}t.\sin tdt} suy ra 2I = 0 \Rightarrow I = 0.

  • Câu 39: Thông hiểu

    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho hình cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
1. Phương trình mặt phẳng (\alpha) chứa trục Oz và tiếp xúc với (S)

    Mặt phẳng (\alpha) chứa trục Oz có dạng: Ax + By = 0\left( A^{2} + B^{2} \neq 0
\right)

    Ta có: d\left( I,(\alpha) \right) = 3
\Leftrightarrow \frac{|A + 2B|}{\sqrt{A^{2} + B^{2}}} = 1

    \Leftrightarrow 4AB + B^{2} = 0
\Leftrightarrow 4A + B = 0.

    Chọn A = 3,B = - 4 \Rightarrow
(\alpha):3x - 4y = 0

  • Câu 40: Nhận biết

    Chọn khẳng định đúng

    Tính tích phân I = \int_{0}^{1}{(2x +
1)e^{x}dx} bằng cách đặt u = 2x +
1;dv = e^{x}dx. Công thức nào dưới đây chính xác?

    Đặt \left\{ \begin{matrix}
u = 2x + 1 \\
dv = e^{x}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2dx \\
v = e^{x} \\
\end{matrix} ight.

    Suy ra I =
\int_{0}^{1}{(2x + 1)e^{x}dx} = \left. \ \left\lbrack (2x + 1)e^{x}
ightbrack ight|_{0}^{1} - 2\int_{0}^{1}{e^{x}dx}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo