Tìm tọa độ vectơ
Trong không gian với hệ trục tọa độ
, cho hai véc tơ
và
. Tọa độ của véc tơ
tương ứng là:
Ta có: .
.
Suy ra .
Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!
Tìm tọa độ vectơ
Trong không gian với hệ trục tọa độ
, cho hai véc tơ
và
. Tọa độ của véc tơ
tương ứng là:
Ta có: .
.
Suy ra .
Tính giá trị biểu thức S
Cho hàm số
, ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Tìm tọa độ vectơ
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
Vậy
Tìm họ nguyên hàm F(x) của hàm số
Họ nguyên hàm
của hàm số
là :
Ta có: .
Tìm cosin góc giữa hai đường thẳng
Cho tứ diện đều
với
lần lượt là trung điểm của
. Tính cosin của góc giữa hai đường thẳng
?
Hình vẽ minh họa
Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Do đó:
Ta lại có suy ra
Vậy đáp án cần tìm là .
Xác định mệnh đề sai
Trong các mệnh đề sau, mệnh đề nào sai?
Bằng quy tắc 3 điểm ta nhận thấy rằng: đúng với mọi điểm
nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.
Tính thể tích khối trụ
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Tính giá trị biểu thức
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Do đó:
Tính tích phân I
Cho
. Tính
.
Ta có:
Đặt
Tính tích phân
Tích phân
có giá trị là:
Tích phân có giá trị là:
Cách 1:.
Cách 2: Dùng máy tính cầm tay.
Đáp án đúng là
Ghi đáp án vào ô trống
Trong không gian với hệ trục tọa độ
, cho tứ diện
có
. Trên các cạnh
lần lượt lấy các điểm
sao cho
. Viết phương trình mặt phẳng
biết tứ diện
có thể tích nhỏ nhất.
Trong không gian với hệ trục tọa độ
, cho tứ diện
có
. Trên các cạnh
lần lượt lấy các điểm
sao cho
. Viết phương trình mặt phẳng
biết tứ diện
có thể tích nhỏ nhất.
Tính giá trị của biểu thức
Biết hàm số
có nguyên hàm là
với
. Tính giá trị biểu thức
.
Ta có:
Theo bài ra ta có: khi đó:
Vậy đáp án cần tìm là:
Xác định nguyên hàm của hàm số f(x)
Tìm nguyên hàm của hàm số
thỏa mãn điều kiện: ![]()
Ta có:
Vậy
Chọn phương án thích hợp
Tích phân
có giá trị là:
Tích phân có gái trị là:
Ta có:
Suy ra .
Đặt .
Đổi cận
Xét .
Đặt .
Đổi cận .
.
Xét .
Đặt .
Đổi cận .
.
.
Đáp án đúng là
Viết phương trình tiếp tuyến
Cho hàm số
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Tìm nguyên hàm của hàm số
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số ![]()
Ta có: F(x) là một nguyên hàm của hàm số nên:
Hay
Xét
Đặt
Khi đó
Tìm giá trị của tích phân I
Cho hai tích phân
và
. Giá trị của tích phân
là:
Ta có ngay kết quả:
.
Đáp án đúng là .
Xác định họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là:
Đặt
Chọn đáp án đúng
Tìm nguyên hàm của hàm số
.
Ta có: ,
Tỉ số diện tích
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao
và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Xác định nguyên hàm của hàm số
Nguyên hàm của hàm số
là:
Ta có:
Tìm vecto pháp tuyến của mặt phẳng
Trong không gian với hệ toạ độ
, cho mặt phẳng (P) có phương trình
. Mặt phẳng (P) có một vectơ pháp tuyến là:
Mặt phẳng (P) có phương trình có một vectơ pháp tuyến
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
?
Ta có:
Tìm câu sai
Cho
là các hàm số liên tục trên
. Tìm khẳng định sai trong các khẳng định sau?
Đáp án sai là: .
Tính giá trị biểu thức S
Biết
, với
. Tính giá trị
?
Ta có:
Chọn phương án thích hợp
Một tàu lửa đang chạy với vận tốc 200 m/s thì người lái tàu đạp phanh; từ thời điểm đó, tàu chuyển động chậm dần đều với vận tốc
. Trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi thời gian khi tàu đi được quãng đường 750 m (kể từ lúc bắt đầu đạp phanh) ít hơn bao nhiêu giây so với lúc tàu dừng hẳn?
Khi tàu dừng hẳn:
Chọn đáp án đúng
Cho
. Khi đó
là:
Ta có:
Khi đó
Xác định phương trình mặt phẳng
Trong không gian
, cho điểm
và mặt phẳng
. Mặt phẳng
đi qua
và song song với mặt phẳng
có phương trình là:
Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là
Phương trình mặt phẳng (Q) là:
Xét tính đúng sai của các khẳng định
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
.Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
.Sai||Đúng
c)
. Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là
. Sai||Đúng
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
.Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
.Sai||Đúng
c)
. Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là
. Sai||Đúng
a) Khi xe dừng hẳn thì vận tốc bằng . Mệnh đề đúng
b) Cho . Mệnh đề sai
c) . Mệnh đề đúng
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là . Mệnh đề sai
Diện tích của thiết diện
Một hình nón có bán kính đáy R, góc ở đỉnh là
. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo
. Diện tích của thiết diện là:

Vì góc ở đỉnh là nên thiết diện qua trục SAC là tam giác đều cạnh 2R.
Suy ra đường cao của hình nón là .
Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng nên IAB là tam giác vuông cân tại I, suy ra
.
Gọi M là trung điểm của AB thì và
.
Trong tam giác vuông SIM, ta có
Vậy (đvdt).
Tính thể tích khối tròn xoay
Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường
, trục
và hai đường thẳng
;
khi quay quanh trục hoành được tính bởi công thức nào?
Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số , trục
,
và
được tính bởi công thức
.
Chọn khẳng định đúng
Trong không gian với hệ toạ độ
, cho mặt phẳng
. Tìm khẳng định đúng trong các mệnh đề sau:
Khẳng định đúng là: “”
Tìm câu sai
Cho hàm số
. Gọi
là một nguyên hàm của
. Chọn phương án sai.
Ta có
Từ đây ta thấy đúng.
Với ta thấy
, vậy
sai.
Tính diện tích hình bình hành
Trong không gian với hệ trục tọa độ
, cho hình bình hành
. Biết
và
. Diện tích hình bình hành
là:
Ta có:
Suy ra diện tích ABCD là:
Tìm câu sai
Cho hai vectơ
và
. Xác định kết luận sai?
Nhận thấy và
chỉ khác nhau về hệ số
và
Ta có
đúng, vì
đúng, vì
Tính nguyên hàm của hàm số
Nguyên hàm của hàm số
là
Ta có:
Chọn đáp án đúng
Trong không gian với hệ tọa độ Oxyz, cho hai điểm
và
. Điểm
thỏa mãn
có tọa độ là:
Từ giả thiết nên ba điểm
thẳng hàng và
nằm khác phía so với điểm M do
âm.
Lại có
.
.
Gọi tọa độ , khi đó
Tìm nguyên hàm của hàm số
Xác định nguyên hàm
của hàm số
?
Ta có:
Xác định thể tích của vật
Vật thể
giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Chọn đáp án đúng
Trong không gian với hệ tọa độ
, cho mặt phẳng
và điểm
. Viết phương trình mặt phẳng (Q) đi qua A và song song với (P)?
Mặt phẳng (Q) và song song với (P) nên (Q) có dạng , với
Vì nên
.
Vậy .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: