Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa học kì 2 Toán 12 - Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho hai véc tơ \overrightarrow{u} = ( - 3;0;1)\overrightarrow{v} = (0;2; - 2). Tọa độ của véc tơ \overrightarrow{w} =
2\overrightarrow{u} - \overrightarrow{v} tương ứng là:

    Ta có: 2\overrightarrow{u} = ( -
6;0;2).

    \overrightarrow{v} = (0;2; -
2).

    Suy ra \overrightarrow{w} = ( - 6 - 0;0 -
2;2 + 2) = ( - 6; - 2;4).

  • Câu 2: Thông hiểu

    Tính giá trị biểu thức S

    Cho hàm số f(x) = 2x^{2}.e^{x^{3} + 2} +
2xe^{2x}, ta có: \int_{}^{}{f(x)dx}
= me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C. Tính giá trị biểu thức S = m + n + p?

    Ta có:

    \int_{}^{}{f(x)dx} = me^{x^{3} + 2} +
nxe^{2x} - pe^{2x} + C nên \left(
me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C ight)' = f(x)

    \Rightarrow 3mx^{2}e^{x^{3} + 2} +
2nxe^{2x} + (n - 2p)e^{2x} = 2x^{2}.e^{x^{3} + 2} + 2xe^{2x} đồng nhất 2 biểu thức ta được hệ phương trình \left\{ \begin{matrix}3m = 2 \\2n = 2 \ - 2p = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = 1 \\p = \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{13}{6}

  • Câu 3: Nhận biết

    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (2; - 3;3);\overrightarrow{b}
= (0;2; - 1);\overrightarrow{c} = (3; - 1;5). Tìm tọa độ vectơ \overrightarrow{u} = 2\overrightarrow{a} +
3\overrightarrow{b} - 2\overrightarrow{c}?

    Ta có: \left\{ \begin{matrix}
2\overrightarrow{a} = (4; - 6;6) \\
3\overrightarrow{b} = (0;6; - 3) \\
- 2\overrightarrow{c} = ( - 6;2; - 10) \\
\end{matrix} ight.. Khi đó \overrightarrow{u} = 2\overrightarrow{a} +
3\overrightarrow{b} - 2\overrightarrow{c} = ( - 2;2; - 7)

    Vậy \overrightarrow{u} = ( - 2;2; -
7)

  • Câu 4: Nhận biết

    Tìm họ nguyên hàm F(x) của hàm số

    Họ nguyên hàm F(x) của hàm số f(x) = cot^{2}x là :

    Ta có: \int_{}^{}{cot^{2}xdx =
\int_{}^{}{\left( cot^{2}x + 1 - 1 \right)dx =} - \cot x - x +
C}.

  • Câu 5: Thông hiểu

    Tìm cosin góc giữa hai đường thẳng

    Cho tứ diện đều ABCD với I;J lần lượt là trung điểm của AB;CD. Tính cosin của góc giữa hai đường thẳng CI;AJ?

    Hình vẽ minh họa

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    \overrightarrow{AB}.\overrightarrow{AC}
= \overrightarrow{AC}.\overrightarrow{AD} =
\overrightarrow{AD}.\overrightarrow{AB} = \frac{a^{2}}{2}

    Ta có: \overrightarrow{AJ} =
\frac{1}{2}\overrightarrow{AD} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CI} =
\overrightarrow{AI} - \overrightarrow{AC} =
\frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}

    Do đó: \overrightarrow{CI}.\overrightarrow{AJ} =
\frac{1}{4}\left( \overrightarrow{AB} - 2\overrightarrow{AC}
ight)\left( \overrightarrow{AC} + \overrightarrow{AD} ight) = -
\frac{1}{2}a^{2}

    Ta lại có AJ = CI =
\frac{a\sqrt{3}}{2} suy ra \cos\left( \overrightarrow{CI};\overrightarrow{AJ}
ight) = - \frac{2}{3}

    Vậy đáp án cần tìm là \frac{2}{3}.

  • Câu 6: Nhận biết

    Xác định mệnh đề sai

    Trong các mệnh đề sau, mệnh đề nào sai?

    Bằng quy tắc 3 điểm ta nhận thấy rằng: \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0} đúng với mọi điểm A;B;C;D nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.

  • Câu 7: Thông hiểu

    Tính thể tích khối trụ

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 8: Thông hiểu

    Tính giá trị biểu thức

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f\left( x ight) = \left\{ \begin{gathered}
  \frac{1}{{\sqrt {2x + 1} }}{\text{   khi }}x \geqslant 0 \hfill \\
  {\left( {2x + 1} ight)^3}{\text{   khi }}x < 0 \hfill \\ 
\end{gathered}  ight.F(4) + F(
- 1) = 8. Giá trị biểu thức Q = F(
- 2) + F(12) bằng:

    Ta có: F\left( x ight) = \int {f\left( x ight)dx}  = \left\{ \begin{gathered}
  \sqrt {2x + 1}  + {C_1}{\text{   khi }}x \geqslant 0 \hfill \\
  \frac{{{{\left( {2x + 1} ight)}^4}}}{8}{\text{ + }}{{\text{C}}_2}{\text{   khi }}x < 0 \hfill \\ 
\end{gathered}  ight.

    F(4) + F( - 1) = 8\Rightarrow \sqrt{8 +1} + C_{1} + \frac{( - 2 + 1)^{4}}{8} + C_{2} = 8\Rightarrow C_{1} +C_{2} = \frac{39}{8}(*)

    Do đó: Q = F( - 2) + F(12) = \sqrt{2.12 +
1} + \frac{( - 4 + 1)^{4}}{8} + C_{1} + C_{2} = 20

  • Câu 9: Nhận biết

    Tính tích phân I

    Cho \int_{1}^{2}{f(x)dx} = - 3. Tính I = \int_{2}^{4}{f\left( \frac{x}{2}
\right)dx}.

    Ta có:

    Đặt \frac{x}{2} = t \Rightarrow dx =
2dt

    \Rightarrow I = \int_{1}^{2}{2f(t)dt} =
2\int_{1}^{2}{f(t)dt} = 2.( - 3) = - 6

  • Câu 10: Nhận biết

    Tính tích phân

    Tích phân I =
\int_{0}^{\frac{\pi}{2}}{\sin xdx} có giá trị là:

    Tích phân I =
\int_{0}^{\frac{\pi}{2}}{\sin xdx} có giá trị là:

    Cách 1:I = \int_{0}^{\frac{\pi}{2}}{\sin
xdx} = \left. \ \left( - \cos x ight) ight|_{0}^{\frac{\pi}{2}} =
1.

    Cách 2: Dùng máy tính cầm tay.

    Đáp án đúng là I = 1

  • Câu 11: Vận dụng cao

    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCDA(1;1;1),B(2;0;2), C( - 1; - 1;0),D(0;3;4). Trên các cạnh AB,AC,AD lần lượt lấy các điểm B';C';D' sao cho \frac{AB}{AB'} + \frac{AC}{AC'} +\frac{AD}{AD'} = 4. Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCDA(1;1;1),B(2;0;2), C( - 1; - 1;0),D(0;3;4). Trên các cạnh AB,AC,AD lần lượt lấy các điểm B';C';D' sao cho \frac{AB}{AB'} + \frac{AC}{AC'} +\frac{AD}{AD'} = 4. Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Nhận biết

    Tính giá trị của biểu thức

    Biết hàm số f(x) = (x - 1)^{2} có nguyên hàm là F(x) = \frac{x^{3}}{a} +
bx^{2} + cx + C với a,b,c\mathbb{\in Z}. Tính giá trị biểu thức T = a + b + c.

    Ta có:

    f(x) = (x - 1)^{2} = x^{2} - 2x +
1

    \int_{}^{}{f(x)dx} = \frac{x^{3}}{3} -
x^{2} + x + C = F(x)\ \

    Theo bài ra ta có: F(x) = \frac{x^{3}}{a}
+ bx^{2} + cx + C khi đó:

    \left\{ \begin{matrix}
\frac{1}{a} = \frac{1}{3} \\
b = - 1 \\
c = 1 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = - 1 \\
c = 1 \\
\end{matrix} \right.\  \Rightarrow T = 3 - 1 + 1 = 3

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{4}}{4} - \frac{x^{3}}{3} + x^{2} - x +
\frac{49}{12}

  • Câu 13: Thông hiểu

    Xác định nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x)thỏa mãn điều kiện: f(x) = 2x - 3cosx,\ F\left( \frac{\pi}{2} \right)
= 3

    Ta có: F(x) = \int_{}^{}{(2x - 3cosx)dx =
x^{2} - 3sinx + C}

    F\left( \frac{\pi}{2} \right) = 3
\Leftrightarrow \left( \frac{\pi}{2} \right)^{2} - 3sin\frac{\pi}{2} + C
= 3

    \Leftrightarrow C = 6 -\dfrac{\pi^{2}}{4}

    Vậy F(x) = x^{2} - 3sinx + 6 -
\frac{\pi^{2}}{4}

  • Câu 14: Vận dụng cao

    Chọn phương án thích hợp

    Tích phân I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{\left( \cos x +
\sqrt{3}\sin x \right)^{2}}dx} có giá trị là:

    Tích phân I = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{\left( \cos x +
\sqrt{3}\sin x ight)^{2}}dx} có gái trị là:

    Ta có:

    I = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{\left( \cos x +
\sqrt{3}\sin x ight)^{2}}dx} = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{4\left( \frac{1}{2}\cos x +
\frac{\sqrt{3}}{2}\sin x ight)^{2}}dx}

    Suy ra I = \int_{-
\frac{\pi}{3}}^{\frac{\pi}{3}}{\frac{\sin x}{4\left\lbrack \sin\left( x
+ \frac{\pi}{6} ight) ightbrack^{2}}dx}.

    Đặt u = x + \frac{\pi}{6} \Rightarrow x =
u - \frac{\pi}{6} \Rightarrow dx = du.

    Đổi cận\left\{ \begin{matrix}
x = - \frac{\pi}{3} \Rightarrow u = - \frac{\pi}{6} \\
x = \frac{\pi}{3} \Rightarrow u = \frac{\pi}{2} \\
\end{matrix} ight.

    I = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sin\left( u - \frac{\pi}{6}
ight)}{4sin^{2}u}du} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sin u.cos\frac{\pi}{6} -
\sin\frac{\pi}{6}\cos u}{4sin^{2}u}du}

    = \frac{1}{8}\int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sqrt{3}.sinu - \cos
u}{sin^{2}u}du} = \frac{1}{8}\left( \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sqrt{3}\sin u}{1 - cos^{2}u}du -
\int_{- \frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\cos u}{sin^{2}u}du}}
ight)

    Xét I_{1} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\sqrt{3}\sin u}{1 -
cos^{2}u}du}.

    Đặt t = \cos u,u \in \lbrack 0;\pibrack
\Rightarrow dt = - \sin udu.

    Đổi cận \left\{ \begin{matrix}u = - \dfrac{\pi}{6} \Rightarrow t = \dfrac{\sqrt{3}}{2} \\u = \dfrac{\pi}{2} \Rightarrow t = 0 \\\end{matrix} ight..

    \Rightarrow I_{1} =
\int_{\frac{\sqrt{3}}{2}}^{0}\frac{\sqrt{3}dt}{1 - t^{2}} =
\frac{\sqrt{3}}{2}\int_{\frac{\sqrt{3}}{2}}^{0}\left( \frac{1}{1 - t} +
\frac{1}{1 + t} ight)dt

    = \frac{\sqrt{3}}{2}\left. \ \left(
ln\left| \frac{t + 1}{t - 1} ight| ight)
ight|_{\frac{\sqrt{3}}{2}}^{0} = - \frac{\sqrt{3}}{2}\ln\left(
\frac{\sqrt{3} + 2}{- \sqrt{3} + 2} ight).

    Xét I_{2} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{\cos u}{sin^{2}u}du}.

    Đặt t = \sin u,u \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dt = \cos
udu.

    Đổi cận \left\{ \begin{matrix}
u = - \frac{\pi}{6} \Rightarrow t = - \frac{1}{2} \\
u = \frac{\pi}{2} \Rightarrow t = 1 \\
\end{matrix} ight..

    I_{2} = \int_{-
\frac{1}{2}}^{1}{\frac{1}{t^{2}}du} = \left. \ \left( - \frac{1}{t}
ight) ight|_{- \frac{1}{2}}^{1} = - 3.

    \Rightarrow I = \frac{1}{8}\left( I_{1} -
I_{2} ight) = - \frac{\sqrt{3}}{16}\ln\left( \frac{\sqrt{3} + 2}{-
\sqrt{3} + 2} ight) + \frac{3}{8}.

    Đáp án đúng là I = -
\frac{\sqrt{3}}{16}\ln\left( \frac{\sqrt{3} + 2}{- \sqrt{3} + 2} ight)
+ \frac{3}{8}

  • Câu 15: Vận dụng

    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) thỏa mãn f'(x).f^{2}(x) = x^{2}f(2) = 2. Phương trình tiếp tuyến của đồ thị hàm số g(x) = f(x) + x^{2} tại điểm có hoành độ bằng 3 là:

    Ta có: f'(x).f^{2}(x) =
x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{f'(x).f^{2}(x)dx} =
\int_{}^{}{x^{2}dx}

    \Leftrightarrow
\int_{}^{}{f^{2}(x)df(x)} = \frac{x^{3}}{3} + C

    \Leftrightarrow \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} + C. Theo bài ra ta có: f(2) = 2 \Rightarrow \frac{f^{3}(2)}{3} =
\frac{2^{3}}{3} + C \Rightarrow C = 0

    Suy ra \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} \Leftrightarrow f(x) = x

    Vậy g(x) = x^{2} + x \Rightarrow
g'(x) = 2x + 1

    Ta có: g'(3) = 7;g(3) =
12

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:

    y = g'(3)(x - 3) + g(3)

    \Leftrightarrow y = 7(x - 3) + 12
\Leftrightarrow y = 7x - 9

  • Câu 16: Vận dụng cao

    Tìm nguyên hàm của hàm số

    Cho F\left( x ight) = \left( {x - 1} ight).{e^x} là một nguyên hàm của hàm số f\left( x ight).{e^{2x}}. Tìm nguyên hàm của hàm số f'\left( x ight).{e^{2x}}

    Ta có: F(x) là một nguyên hàm của hàm số f\left( x ight).{e^{2x}} nên:

    \begin{matrix}  F'\left( x ight) = f\left( x ight).{e^{2x}} \hfill \\   \Leftrightarrow \left[ {\left( {x - 1} ight).{e^x}} ight]' = f\left( x ight).{e^{2x}} \hfill \\ \end{matrix}

    Hay f\left( x ight).{e^{2x}} = {e^x} + \left( {x - 1} ight).{e^x} = x.{e^x}

    Xét I = \int {f'\left( x ight).{e^{2x}}dx}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {u = {e^{2x}}} \\   {dv = f'\left( x ight)dx} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {du = 2{e^{2x}}dx} \\   {v = f\left( x ight)} \end{array}} ight.

    Khi đó

    I = f\left( x ight).{e^{2x}} - \int {2f\left( x ight).{e^{2x}}dx}  = x.{e^x} - 2\left( {x - 1} ight){e^x} + C = \left( {2 - x} ight).{e^x} + C

     

  • Câu 17: Nhận biết

    Tìm giá trị của tích phân I

    Cho hai tích phân \int_{- a}^{a}{f(x)dx =
m}\int_{- a}^{a}{g(x)dx =
n}. Giá trị của tích phân \int_{-
a}^{a}\left\lbrack f(x) - g(x) \right\rbrack dx là:

    Ta có ngay kết quả:

    \int_{-
a}^{a}\left\lbrack f(x) - g(x) ightbrack dx = \int_{- a}^{a}{f(x)dx
-}\int_{- a}^{a}{g(x)dx =}m - n.

    Đáp án đúng là m - n.

  • Câu 18: Thông hiểu

    Xác định họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) = \frac{x +
2}{\sqrt{x + 1}} là:

    Đặt t = \sqrt{x + 1} \Rightarrow t^{2} =
x + 1 \Rightarrow 2tdt = dx

    \Rightarrow \int_{}^{}{\left( \frac{x +
2}{\sqrt{x + 1}} ight)dx} = \int_{}^{}{\left( \frac{t^{2} + 1}{t}
ight)2tdt} = \int_{}^{}{\left( 2t^{2} + 2 ight)dt} =
\frac{2t^{3}}{3} + 2t + C

    = \frac{2(x + 1)\sqrt{x + 1}}{3} +
2\sqrt{x + 1} + C = \frac{2}{3}(x + 4)\sqrt{x + 1} + C

  • Câu 19: Nhận biết

    Chọn đáp án đúng

    Tìm nguyên hàm của hàm số f(x) = e^{x} -
e^{- x} .

    Ta có: \int_{}^{}{f(x)dx = e^{x} + e^{-
x} + C},

  • Câu 20: Thông hiểu

    Tỉ số diện tích

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 21: Nhận biết

    Xác định nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) =e^{x} là:

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{e^{x}dx} = e^{x} + C

  • Câu 22: Nhận biết

    Tìm vecto pháp tuyến của mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) có phương trình - 2x + 2y - z - 3 = 0. Mặt phẳng (P) có một vectơ pháp tuyến là:

    Mặt phẳng (P) có phương trình - 2x + 2y -
z - 3 = 0 có một vectơ pháp tuyến \overrightarrow{n}(4; - 4;2)

  • Câu 23: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)(x + 3)?

    Ta có:

    f(x) = (x + 1)(x + 2)(x + 3) = x^{3} +
6x^{2} + 11x + 6

    \Rightarrow F(x) = \frac{x^{4}}{4} +
2x^{3} + \frac{11}{2}x^{2} + 6x + C

  • Câu 24: Nhận biết

    Tìm câu sai

    Cho f(x),g(x) là các hàm số liên tục trên \mathbb{R} . Tìm khẳng định sai trong các khẳng định sau?

    Đáp án sai là: \int_{}^{}{\left\lbrack
f(x).g(x) ightbrack dx =
\int_{}^{}{f(x)dx.}\int_{}^{}{g(x)dx}}.

  • Câu 25: Thông hiểu

    Tính giá trị biểu thức S

    Biết \int_{}^{}{3x^{2}(2020 +
x^{3})^{2019}dx} = a(2020 + x^{3})^{b} + C, với a \in \mathbb{Q};{\text{ }}b \in \mathbb{Z}. Tính giá trị S = \frac{1}{{{{\left( {a.b} \right)}^{2020}}}}?

    Ta có:

    \int_{}^{}{3x^{2}(2020 +
x^{3})^{2019}dx} = \int_{}^{}{(2020 + x^{3})^{2019}d\left( x^{3} + 2020
\right)} = \frac{1}{2020}(2020 + x^{3})^{2020} + C

    \Rightarrow a = \frac{1}{2020};b =
2020

    \Rightarrow S = \frac{1}{{{{\left( {\frac{1}{{2020}}.2020} \right)}^{2020}}}} = 1

  • Câu 26: Thông hiểu

    Chọn phương án thích hợp

    Một tàu lửa đang chạy với vận tốc 200 m/s thì người lái tàu đạp phanh; từ thời điểm đó, tàu chuyển động chậm dần đều với vận tốc v(t) = 200 - 20t(m/s). Trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi thời gian khi tàu đi được quãng đường 750 m (kể từ lúc bắt đầu đạp phanh) ít hơn bao nhiêu giây so với lúc tàu dừng hẳn?

    Khi tàu dừng hẳn: v = 0 \Rightarrow t =
10(s)

    S = \int_{}^{}{v(t)}dt = \int_{}^{}(200 -
2t)dt \Rightarrow s = 200t - t^{2}

    S = 750 \Rightarrow 200t - t^{2} = 750
\Leftrightarrow \left\lbrack \begin{matrix}
t = 15 > 0(ktm) \\
t = 5 \\
\end{matrix} ight.

    \Delta t = 10 - 5 = 5(s)

  • Câu 27: Nhận biết

    Chọn đáp án đúng

    Cho \int_{}^{}{f(x)dx} = \frac{x^{4}}{4}
- \frac{x^{3}}{3} + 2020 + C. Khi đó \int_{}^{}{f(3x)dx} là:

    Ta có: \int_{}^{}{f(x)dx} =
\frac{x^{4}}{4} - \frac{x^{3}}{3} + 2020 + C

    Khi đó \int_{}^{}{f(3x)dx} =
\frac{27x^{4}}{4} - 3x^{3} + \frac{2020}{3} + C

  • Câu 28: Thông hiểu

    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(2; - 1; - 3) và mặt phẳng (P):3x - 2y + 4z - 5 = 0. Mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) có phương trình là:

    Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là \overrightarrow{n} = (3; -
2;4)

    Phương trình mặt phẳng (Q) là:

    3(x - 2) - 2(y - 1) + 4(z - 3) =
0

    \Leftrightarrow 3x - 2y + 4z + 4 =
0

  • Câu 29: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s).Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s.Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s).Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s.Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Mệnh đề đúng

    b) Cho v = 0 \Leftrightarrow - 5t + 20 =
0 \Leftrightarrow t\  = \ 4\ (s). Mệnh đề sai

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Mệnh đề đúng

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là S = \int_{0}^{4}{( - 5t + 20)dt} = 40\
(m). Mệnh đề sai

  • Câu 30: Vận dụng

    Diện tích của thiết diện

    Một hình nón có bán kính đáy R, góc ở đỉnh là 60^0. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo 90^0 . Diện tích của thiết diện là:

     Diện tích của thiết diện

    Vì góc ở đỉnh là 60^0nên thiết diện qua trục SAC là tam giác đều cạnh 2R.

    Suy ra đường cao của hình nón là SI = R\sqrt 3.

    Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng 90^0 nên IAB là tam giác vuông cân tại I, suy ra AB = R\sqrt 2.

    Gọi M là trung điểm của AB thì \left\{ \begin{array}{l}IM \bot AB\\SM \bot AB\end{array} ight.IM = \frac{{R\sqrt 2 }}{2}.

    Trong tam giác vuông SIM, ta có SM = \sqrt {S{I^2} + I{M^2}}  = \frac{{R\sqrt {14} }}{2}

    Vậy {S_{\Delta SAB}} = \frac{1}{2}AB.SM = \frac{{{R^2}\sqrt 7 }}{2} (đvdt).

  • Câu 31: Nhận biết

    Tính thể tích khối tròn xoay

    Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = \sqrt{x}, trục Ox và hai đường thẳng x = 1; x =
4 khi quay quanh trục hoành được tính bởi công thức nào?

    Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số y = \sqrt{x}, trục Ox, x =
1x = 4 được tính bởi công thức

    V = \pi\int_{1}^{4}{\left( \sqrt{x}
\right)^{2}dx} = \pi\int_{1}^{4}{xdx}.

  • Câu 32: Nhận biết

    Chọn khẳng định đúng

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (\alpha):3x - z = 0. Tìm khẳng định đúng trong các mệnh đề sau:

    Khẳng định đúng là: “(\alpha) \supset
Oy

  • Câu 33: Thông hiểu

    Tìm câu sai

    Cho hàm số f(x) = \frac{1}{2x -
3} . Gọi F(x) là một nguyên hàm của f(x). Chọn phương án sai.

    Ta có F(x) = \int_{}^{}\frac{1}{2x - 3}dx
= \int_{}^{}{\frac{1}{2}.\frac{1}{(2x - 3)}d(2x - 3)}

    = \frac{\ln|2x - 3|}{2} + C

    Từ đây ta thấy F(x) = \frac{\ln|2x -
3|}{2} + 10 đúng.

    Với F(x) = \frac{\ln|4x - 6|}{4} +
10 ta thấy

    \frac{\ln|4x - 6|}{4} + 10 = \frac{ln2 +
\ln|2x - 3|}{4} + 10 eq F(x), vậy F(x) = \frac{\ln|4x - 6|}{4} + 10 sai.

  • Câu 34: Nhận biết

    Tính diện tích hình bình hành

    Trong không gian với hệ trục tọa độ Oxyz, cho hình bình hành ABCD. Biết A(2;1; - 3),B(0; - 2;5)C(1;1;3). Diện tích hình bình hành ABCD là:

    Ta có: \overrightarrow{AB} = ( - 2; -
3;8),\overrightarrow{AC} = ( - 1;0;6)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 18;4; -
3)

    Suy ra diện tích ABCD là:

    S_{ABCD} = \left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\sqrt{349}

  • Câu 35: Thông hiểu

    Tìm câu sai

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b}. Xác định kết luận sai?

    Nhận thấy \vec a.\overrightarrow b  = \frac{1}{2}\left( {{{\left| {\vec a + \overrightarrow b } ight|}^2} - {{\left| {\vec a - \overrightarrow b } ight|}^2}} ight)\vec a.\overrightarrow b  = \frac{1}{4}\left( {{{\left| {\vec a + \overrightarrow b } ight|}^2} - {{\left| {\vec a - \overrightarrow b } ight|}^2}} ight) chỉ khác nhau về hệ số \frac{1}{2}\Rightarrow \overrightarrow{a}.\overrightarrow{b}
= \frac{1}{2}\left( \left| \overrightarrow{a} + \overrightarrow{b}
ight|^{2} - \left| \overrightarrow{a} ight|^{2} - \left|
\overrightarrow{b} ight|^{2} ight).\frac{1}{4}

    Ta có \left| \overrightarrow{a} +
\overrightarrow{b} ight|^{2} - \left| \overrightarrow{a} -
\overrightarrow{b} ight|^{2}= \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} - \left( \overrightarrow{a} -
\overrightarrow{b} ight)^{2}= 4\overrightarrow{a}\overrightarrow{b}
\Rightarrow \overrightarrow{a}.\overrightarrow{b}= \frac{1}{4}\left(
\left| \overrightarrow{a} + \overrightarrow{b} ight|^{2} - \left|
\overrightarrow{a} - \overrightarrow{b} ight|^{2} ight)

    \vec a.\overrightarrow b  = \frac{1}{2}\left( {{{\left| {\vec a + \overrightarrow b } ight|}^2} - {{\left| {\vec a} ight|}^2} - {{\left| {\overrightarrow b } ight|}^2}} ight) đúng, vì \left| \overrightarrow{a} + \overrightarrow{b}
ight|^{2} = \left( \overrightarrow{a} + \overrightarrow{b} ight)^{2}= \left( \overrightarrow{a} + \overrightarrow{b} ight).\left(
\overrightarrow{a} + \overrightarrow{b} ight)=
\overrightarrow{a}.\overrightarrow{a} +
\overrightarrow{a}.\overrightarrow{b} +
\overrightarrow{b}.\overrightarrow{a} +
\overrightarrow{b}.\overrightarrow{b}= \left| \overrightarrow{a}
ight|^{2} + \left| \overrightarrow{b} ight|^{2} +
2\overrightarrow{a}.\overrightarrow{b}

    \vec a.\overrightarrow b  = \frac{1}{2}\left( {{{\left| {\vec a} ight|}^2} + {{\left| {\overrightarrow b } ight|}^2} - {{\left| {\vec a - \overrightarrow b } ight|}^2}} ight) đúng, vì \left| \overrightarrow{a} - \overrightarrow{b}
ight|^{2} = \left( \overrightarrow{a} - \overrightarrow{b} ight)^{2}= \left( \overrightarrow{a} - \overrightarrow{b} ight).\left(
\overrightarrow{a} - \overrightarrow{b} ight)=
\overrightarrow{a}.\overrightarrow{a} -
\overrightarrow{a}.\overrightarrow{b} -
\overrightarrow{b}.\overrightarrow{a} +
\overrightarrow{b}.\overrightarrow{b}= \left| \overrightarrow{a}
ight|^{2} + \left| \overrightarrow{b} ight|^{2} -
2\overrightarrow{a}.\overrightarrow{b}

    \Rightarrow \vec a.\overrightarrow b  = \frac{1}{2}\left( {{{\left| {\vec a} ight|}^2} + {{\left| {\overrightarrow b } ight|}^2} - {{\left| {\vec a - \overrightarrow b } ight|}^2}} ight)

  • Câu 36: Nhận biết

    Tính nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = x^{3} -x

    Ta có: \int_{}^{}{(x^{3} - x)dx =\frac{x^{4}}{4}} - \frac{x^{2}}{2} + C

  • Câu 37: Vận dụng

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3)B(5;0;1). Điểm M thỏa mãn MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB} có tọa độ là:

    Từ giả thiết MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB} \Rightarrow \overrightarrow{MA} = -
4\frac{MB}{MA}.\overrightarrow{MB} nên ba điểm M;B;A thẳng hàng và A;B nằm khác phía so với điểm M do - 4\frac{MB}{MA} âm.

    Lại có MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB}

    \Rightarrow \left(
MA.\overrightarrow{MA} \right)^{2} = \left( 4MB.\overrightarrow{MB}
\right)^{2}

    \Rightarrow MA^{4} = 16MB^{4} \Rightarrow
MA = 2MB.

    \Rightarrow \overrightarrow{MA} = -
2\overrightarrow{MB}.

    Gọi tọa độ M(x;y;z), khi đó

    \left\{ \begin{matrix}
1 - x = - 2(5 - x) \\
2 - y = - 2(0 - y) \\
3 - z = - 2(1 - z) \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = \frac{11}{3} \\
y = \frac{2}{3} \\
z = \frac{5}{3} \\
\end{matrix} \right.

  • Câu 38: Thông hiểu

    Tìm nguyên hàm của hàm số

    Xác định nguyên hàm F(x) của hàm số f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1}?

    Ta có:

    f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1} = \frac{(x + 1)^{3} - 2}{(x + 1)^{2}} = x + 1 -
\frac{2}{(x + 1)^{2}}

    \Rightarrow F(x) = \frac{x^{2}}{2} + x +
\frac{2}{x + 1} + C

  • Câu 39: Nhận biết

    Xác định thể tích của vật

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 40: Thông hiểu

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - y + 3z - 7 = 0 và điểm A( - 1;2;5). Viết phương trình mặt phẳng (Q) đi qua A và song song với (P)?

    Mặt phẳng (Q) và song song với (P) nên (Q) có dạng 2x − y + 3z + D = 0, với D eq - 7

    A ∈ (Q) nên 2 .(−1) − 2 + 3 . 5 + D = 0 ⇔ D = −11.

    Vậy (Q): 2x − y + 3z − 11 = 0.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo