Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa học kì 2 Toán 12 - Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Xác định quãng đường vật chuyển động

    Một vật chuyển động chậm dần đều với vận tốc v(t) = 30 - 2t(m/s). Hỏi trong 5s trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?

    Khi dừng hẳn v(t) = 30 - 2t = 0
\Rightarrow t = 15(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{10}^{15}{v(t)dt} =
\int_{10}^{15}{(30 - 2t)dt} = 25m.

  • Câu 2: Thông hiểu

    Xác định nguyên hàm theo yêu cầu

    Kết quả nào dưới đây không phải là nguyên hàm của \int_{}^{}{\left( sin^{3}x + cos^{3}x
\right)dx}?

    Ta có:

    \int_{}^{}{\left( sin^{3}x + cos^{3}x
\right)dx}

    = 3cosx.sin^{2}x - 3sinx.cos^{2}x +
C

    = \frac{3}{2}sin2x\left( \sin x - \cos x
\right) + C

    = \frac{3\sqrt{2}}{2}sin2x\sin\left( x -
\frac{\pi}{4} \right) + C.

  • Câu 3: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f\left( x ight) = 3x + \cos 3x

     Ta có: \int {\left( {3x + \cos 3x} ight)dx = \frac{{3{x^2}}}{2} + \frac{{\sin 3x}}{3} + C}

  • Câu 4: Nhận biết

    Chọn đáp án đúng

    Cho tứ diện ABCD với AB\bot AC,\ \ AB\bot BD. Gọi P,\ \ Q lần lượt là trung điểm của ABCD. Góc giữa PQAB là?

    Ta có: \overrightarrow{AB}.\overrightarrow{PQ}
\Rightarrow AB\bot PQ

    Vậy góc giữa PQAB90^{0}.

  • Câu 5: Thông hiểu

    Tìm câu sai

    Cho hàm số f(x) = \frac{1}{2x -
3} . Gọi F(x) là một nguyên hàm của f(x). Chọn phương án sai.

    Ta có F(x) = \int_{}^{}\frac{1}{2x - 3}dx
= \int_{}^{}{\frac{1}{2}.\frac{1}{(2x - 3)}d(2x - 3)}

    = \frac{\ln|2x - 3|}{2} + C

    Từ đây ta thấy F(x) = \frac{\ln|2x -
3|}{2} + 10 đúng.

    Với F(x) = \frac{\ln|4x - 6|}{4} +
10 ta thấy

    \frac{\ln|4x - 6|}{4} + 10 = \frac{ln2 +
\ln|2x - 3|}{4} + 10 eq F(x), vậy F(x) = \frac{\ln|4x - 6|}{4} + 10 sai.

  • Câu 6: Vận dụng

    Diện tích của thiết diện

    Một hình nón có bán kính đáy R, góc ở đỉnh là 60^0. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo 90^0 . Diện tích của thiết diện là:

     Diện tích của thiết diện

    Vì góc ở đỉnh là 60^0nên thiết diện qua trục SAC là tam giác đều cạnh 2R.

    Suy ra đường cao của hình nón là SI = R\sqrt 3.

    Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng 90^0 nên IAB là tam giác vuông cân tại I, suy ra AB = R\sqrt 2.

    Gọi M là trung điểm của AB thì \left\{ \begin{array}{l}IM \bot AB\\SM \bot AB\end{array} ight.IM = \frac{{R\sqrt 2 }}{2}.

    Trong tam giác vuông SIM, ta có SM = \sqrt {S{I^2} + I{M^2}}  = \frac{{R\sqrt {14} }}{2}

    Vậy {S_{\Delta SAB}} = \frac{1}{2}AB.SM = \frac{{{R^2}\sqrt 7 }}{2} (đvdt).

  • Câu 7: Nhận biết

    Tìm câu sai

    Câu nào sau đây sai?

    Câu sai cần tìm là: Nếu F'(t) =
f(t) thì F^{/}\left( u(x) \right) =
f\left( u(x) \right).

  • Câu 8: Nhận biết

    Tính giá trị biểu thức

    Cho hàm số f(x) biết f(0) = 1, f'(x) liên tục trên \lbrack 0;3brack\int_{0}^{3}{f'(x)dx} = 9. Tính f(3)?

    Ta có:

    \int_{0}^{3}{f'(x)dx} = 9
\Leftrightarrow \left. \ f(x) ight|_{0}^{3} = 9 \Rightarrow f(3) -
f(0) = 9

    \Rightarrow f(3) = 9 + f(0) = 9 + 1 =
10

  • Câu 9: Thông hiểu

    Độ dài đường chéo

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 10: Thông hiểu

    Chọn kết luận đúng

    Diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} + |x|;y = x^{2} + 1 được cho bởi công thức nào sau đây?

    Ta có: y = x^{2} + |x| = \left\{\begin{matrix}x^{2} + x;\ \ x \geq 0 \\x^{2} - x;\ \ x \leq 0 \\\end{matrix} ight.

    Với x \geq 0 \Rightarrow x^{2} + x =x^{2} + 1 \Leftrightarrow x = 1

    Với x \leq 0 \Rightarrow x^{2} - x =x^{2} + 1 \Leftrightarrow x = - 1

    Ta có:

    S = \left| \int_{- 1}^{0}{( - x - 1)dx}ight| + \left| \int_{0}^{1}{(x - 1)dx} ight|

  • Câu 11: Thông hiểu

    Tìm giá trị của tích phân I

    Tích phân I =
\int_{0}^{\sqrt[3]{7}}{\frac{3x^{5}}{\sqrt[3]{8 - x^{3}}}dx} có giá trị là:

    Thực hiện tích phân I =
\int_{0}^{\sqrt[3]{7}}{\frac{3x^{5}}{\sqrt[3]{8 - x^{3}}}dx} theo hai cách như sau:

    Cách 1: Ta nhận thấy: \left( 8 - x^{3}ight)' = - 3x^{2}.

    Ta dùng đổi biến số.

    Đặt t = 8 - x^{3} \Rightarrow dt = -
3x^{2}dx.

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 8 \\
x = \sqrt[3]{7} \Rightarrow t = 1 \\
\end{matrix} ight..

    Ta có:

    I =
\int_{0}^{\sqrt[3]{7}}{\frac{3x^{5}}{\sqrt[3]{8 - x^{3}}}dx} = -
\int_{0}^{\sqrt[3]{7}}{\frac{- 3x^{2}.x^{3}}{\sqrt[3]{8 - x^{3}}}dx}

    = -
\int_{0}^{\sqrt[3]{7}}{\frac{- 3x^{2}(8 - t)}{\sqrt[3]{8 -
x^{3}}}dx}

    \Rightarrow I = \int_{8}^{1}\frac{t -
8}{\sqrt[3]{t}}dt = \int_{8}^{1}\left( t^{\frac{2}{3}} - 8.t^{-
\frac{1}{3}} ight)dt= \left. \ \left( \frac{3}{5}t^{\frac{5}{3}} -
12t^{\frac{2}{3}} ight) ight|_{8}^{1} = \frac{87}{5}.

    Cách 2: Dùng máy tính cầm tay, tuy nhiên chờ máy giải cũng khá mất thời gian.

  • Câu 12: Nhận biết

    Xác định vectơ pháp tuyến

    Trong không gian Oxyz cho mặt phẳng (P):x + y - 2z + 4 = 0. Một vectơ pháp tuyến của mặt phẳng (P) là:

    Một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n} = (1;1; - 2).

  • Câu 13: Thông hiểu

    Tính độ dài cạnh

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 14: Thông hiểu

    Chọn đáp án đúng

    Nguyên hàm F(x) của hàm số f(x) = 2sinx - \cos x thỏa mãn F\left( \frac{\pi}{3} \right) = -
\frac{\sqrt{3}}{2}

    Ta có: F(x) = \int_{}^{}\left( 2sinx -
\cos x \right)dx = - 2cosx - \sin x + C.

    F\left( \frac{\pi}{3} \right) = -
2cos\frac{\pi}{3} - \sin\frac{\pi}{3} + C = - \frac{\sqrt{3}}{2}
\Rightarrow C = 1.

    Vậy F(x) = - 2cosx - \sin x +
1.

  • Câu 15: Thông hiểu

    Phân tích vectơ

    Cho hình hộp ABCD.EFFH. Phân tích nào sau đây đúng?

    Hình vẽ minh họa

    Biến đổi biểu thức

    \overrightarrow{AE} = \frac{1}{2}\left(
\overrightarrow{AF} + \overrightarrow{AH} - \overrightarrow{AC}
ight)

    \Leftrightarrow 2\overrightarrow{AE} =
\overrightarrow{AF} + \overrightarrow{CH}

    \Leftrightarrow \overrightarrow{AE} +
\left( \overrightarrow{AE} - \overrightarrow{AF} ight) =
\overrightarrow{CH}

    \Leftrightarrow \overrightarrow{BA} +
\overrightarrow{AE} = \overrightarrow{CH}

    \Leftrightarrow \overrightarrow{BE} =
\overrightarrow{CH} (đúng)

    Vậy phân tích đúng là \overrightarrow{AE}
= \frac{1}{2}\left( \overrightarrow{AF} + \overrightarrow{AH} -
\overrightarrow{AC} ight).

  • Câu 16: Nhận biết

    Phương trình tổng quát

    Cho tứ diện ABCDA(3, -2,1), B\left( { - 4,0,3} ight),C\left( {1,4, - 3} ight),D\left( {2,3,5} ight). Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:

    Theo đề bài, ta có các vecto là

    \begin{array}{l}\overrightarrow {AC}  = \left( { - 2,6, - 4} ight);\overrightarrow {BD}  = \left( {6,3,2} ight)\\ \Rightarrow \left[ {\overrightarrow {AC} ,\overrightarrow {BD} } ight] = \left( {24, - 20, - 42} ight).\end{array}

    Có thể chọn \overrightarrow n  = \left( {12, - 10, - 21} ight) làm một vectơ pháp tuyến cho mặt phẳng.

    Phương trình mặt phẳng này có dạng 12x - 10y - 21z + D = 0.

    Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên: 12.3 - 10( - 2) - 21.1 + D = 0 \Leftrightarrow D =  - 35

    Vậy phương trình cần tìm 12x - 10y - 21z - 35 = 0.

  • Câu 17: Vận dụng cao

    Viết PT mp cắt trục tọa độ

    Viết phương trình tổng quát của mặt phẳng (P) cắt hai trục y’Oyz’Oz tại và tạo với mặt phẳng (yOz) một góc 45^{\circ} .

     Gọi C\left( {a,0,0} ight) là giao điểm của (P) và trục x’Ox

    \Rightarrow \overrightarrow {BA}  = \left( {0, - 1, - 1} ight);\overrightarrow {BC}  = \left( {a,0, - 1} ight)

    Vecto pháp tuyến của (P) là: \overrightarrow n  = \left[ {\overrightarrow {BA} ,\overrightarrow {BC} } ight] = \left( {1, - a,a} ight)

    Vecto pháp tuyến của (yOz) là: \overrightarrow {{e_1}}  = \left( {1,0,0} ight)

    Gọi là góc tạo bởi (P)\left( {yOz} ight) \Rightarrow \cos {45^o} = \frac{1}{{\sqrt {1 + 2{a^2}} }} = \frac{{\sqrt 2 }}{2}

    \Rightarrow 4{a^2} + 2 \Leftrightarrow a =  \pm \frac{1}{{\sqrt 2 }}

    Vậy có hai mặt phẳng:

    \begin{array}{l}\left( P ight): \pm \sqrt 2 x - y + z = 1\\ \Leftrightarrow \sqrt 2 x - y + z - 1 = 0;\,\,\sqrt 2 x + y - z + 1 = 0\end{array}

  • Câu 18: Thông hiểu

    Chọn đáp án đúng

    Tìm một nguyên hàm F(x) của hàm số f(x) = x.e^{- x} thỏa mãn F(0) = 1?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = e^{- x}dx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - e^{- x} \\
\end{matrix} ight.

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
x.e^{- x} ight)dx}

    = - xe^{- x} + \int_{}^{}{e^{- x}dx} +
C

    = - xe^{- x} - e^{- x} + C. Theo bài ra ta có: F(0) = 1 \Leftrightarrow - 1 -
1 + C = 1 \Rightarrow C = 2

    Vậy - (x + 1)e^{- x} + 2 là đáp án cần tìm.

  • Câu 19: Nhận biết

    Xác định thể tích của vật

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 20: Thông hiểu

    Tính giá trị của biểu thức

    Biết F(x) là một nguyên hàm của hàm số f(x) = \sin^{3}x.\cos x và F(0) = \pi. TìmF\left( \frac{\pi}{2} \right).

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =\int_{}^{}{\sin^{3}x.\cos x.dx}}

    = \int_{}^{}{\sin^{3}x.d\left( \sin x
ight) = \frac{1}{4}\sin^{4}x + C}

    F(0) \Rightarrow \pi \Rightarrow C = \pi
\Rightarrow F(x) = \frac{1}{4}\sin^{4}x + \pi

    \Rightarrow F\left( \frac{\pi}{2} ight)
= \frac{1}{4} + \pi

  • Câu 21: Vận dụng

    Tính độ dài đoạn thẳng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 3}{2} = \frac{y + 1}{1} =
\frac{z - 1}{2} và điểm M(1\ ;2\
;\  - 3). Gọi M_{1} là hình chiếu vuông góc của M lên đường thẳng d. Độ dài đoạn thẳng OM_{1} bằng

    Cách 1: Phương trình tham số của đường thẳng d là: \left\{
\begin{matrix}
x = 3 + 2t \\
y = - 1 + t \\
z = 1 + 2t \\
\end{matrix} ight..

    Một vtcp của d\overrightarrow{u} = (2\ ;\ 1\ ;\ 2).

    Gọi (\alpha) là mặt phẳng đi qua điểm M(1\ ;2\ ;\  - 3) và vuông góc với đường thẳng d. Khi đó (\alpha) có vtpt là \overrightarrow{n} = \overrightarrow{u} = (2\ ;\
1\ ;\ 2).

    Phương trình mặt phẳng (\alpha): 2(x - 1) + 1(y - 2) + 2(z + 3) = 0 \Leftrightarrow 2x + y + 2z + 2 =
0.

    M_{1} là hình chiếu vuông góc của M lên đường thẳng d nên M_{1} là giao điểm của d(\alpha).

    Xét hệ phương trình: \left\{
\begin{matrix}
x = 3 + 2t\ \ \ \ \ (1) \\
y = - 1 + t\ \ \ \ \ (2) \\
z = 1 + 2t\ \ \ \ \ \ (3) \\
2x + y + 2z + 2 = 0\ (4) \\
\end{matrix} ight.

    Thay (1),(2),(3) vào (4) ta được: 2(3 + 2t) - 1 + t + 2(1 + 2t) + 2 = 0

    \Leftrightarrow 9t + 9 = 0 \Leftrightarrow t = - 1.

    Suy ra \left\{ \begin{matrix}
x = 1 \\
y = - 2 \\
z = - 1 \\
\end{matrix} ight.\  \Rightarrow M_{1}(1\ ;\  - 2\ ;\  -1).

    Độ dài đoạn thẳng OM_{1} là: OM_{1} = \sqrt{1^{2} + ( - 2)^{2} + ( -1)^{2}} = \sqrt{6}.

    Cách 2: Phương trình tham số của đường thẳng d là: \left\{
\begin{matrix}
x = 3 + 2t \\
y = - 1 + t \\
z = 1 + 2t \\
\end{matrix} ight..

    Một vtcp của d\overrightarrow{u} = (2\ ;\ 1\ ;\ 2).

    M_{1} \in d \Rightarrow M_{1}(3 + 2t\
;\  - 1 + t\ ;\ 1 + 2t)

    \Rightarrow \overrightarrow{MM_{1}} = (2
+ 2t\ ;\  - 3 + t\ ;\ 4 + 2t).

    Ta có \overrightarrow{MM_{1}}\bot\overrightarrow{u}
\Leftrightarrow \overrightarrow{MM_{1}}.\overrightarrow{u} = 0\Leftrightarrow 4 + 4t - 3 + t + 8 + 4t = 0 \Leftrightarrow t = -
1.

    Suy ra M_{1}(1\ ;\  - 2\ ;\  -
1)

    Độ dài đoạn thẳng OM_{1} là: OM_{1} = \sqrt{1^{2} + ( - 2)^{2} + ( -1)^{2}} = \sqrt{6}.

  • Câu 22: Nhận biết

    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 23: Nhận biết

    Chọn mệnh đề sai

    Giả sử f(x) là một hàm số bất kì và liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta). Mệnh đề nào sau đây sai?

    Dựa vào tính chất của tích phân với f(x) là một số bất kì liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta) ta có:

    \int_{a}^{b}{f(x)dx} =
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{b}^{c}{f(x)dx}

    = \int_{a}^{b + c}{f(x)dx} + \int_{b +
c}^{b}{f(x)dx}

  • Câu 24: Vận dụng cao

    Viết phương trình tiếp tuyến của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn 2xf\left( x ight) + {x^2}f'\left( x ight) = 1;f\left( 1 ight) = 0. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có:

    \begin{matrix}  2xf\left( x ight) + {x^2}f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left( {{x^2}} ight)'.f\left( x ight) + {x^2}.f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left[ {{x^2}f\left( x ight)} ight]' = 1 \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {{x^2}f\left( x ight)} ight]'dx}  = \int {1.dx}  \hfill \\   \Leftrightarrow {x^2}f\left( x ight) = x + C \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  f\left( 1 ight) = 0 \Rightarrow 1.f\left( 1 ight) = 1 + C \Rightarrow C =  - 1 \hfill \\   \Rightarrow {x^2}f\left( x ight) = x - 1 \Rightarrow f\left( x ight) = \dfrac{{x - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    Xét phương trình hoành độ giao điểm với trục hoành ta có:

    \frac{{x - 1}}{{{x^2}}} = 0 \Rightarrow x = 1\left( {tm} ight)

    Ta lại có: f'\left( x ight) = \frac{{2 - x}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( 1 ight) = 1} \\   {f\left( 1 ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( 1 ight)\left( {x - 1} ight) + f\left( 1 ight) \Rightarrow y = x - 1

  • Câu 25: Thông hiểu

    Tính giá trị biểu thức

    Biết rằng F(x) = \left( ax^{2} + bx + c
ight)e^{- x} là một nguyên hàm của hàm số f(x) = \left( 2x^{2} - 5x + 2 ight)e^{-
x} trên \mathbb{R}. Giá trị của biểu thức f\left( F(0)
ight) bằng:

    Ta có: \left( F(x) ight)' =
\left\lbrack \left( ax^{2} + bx + c ight)e^{- x}
ightbrack'

    = \left\lbrack - ax^{2} + (2a - b)x + b
- c ightbrack e^{- x}

    = \left( 2x^{2} - 5x + 2 ight)e^{-
x} suy ra \left\{ \begin{matrix}a = - 2 \\2a - b = - 5 \\b - c = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - 2 \\b = 1 \\c = - 1 \\\end{matrix} ight.\Rightarrow F(x) = \left( 2x^{2} + x - 1ight)e^{- x}

    \Rightarrow F(0) = - 1 \Rightarrow
f\left( F(0) ight) = f( - 1) = 9e

  • Câu 26: Thông hiểu

    Tính tổng hai ẩn số a và b

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - y + 2 = 0 và hai điểm A(1;2;3),B(1;0;1). Điểm C(a;\ b; - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - y + 2 = 0 và hai điểm A(1;2;3),B(1;0;1). Điểm C(a;\ b; - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Nhận biết

    Chọn đẳng thức đúng

    Gọi O là tâm của hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Theo quy tắc hình hộp ta có: \overrightarrow{AC'} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'}

    O là trung điểm của AC' suy ra \overrightarrow{AO} =
\frac{1}{2}\overrightarrow{AC'} = \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}
ight)

  • Câu 28: Nhận biết

    Chọn đáp án đúng

    Trong không gian Oxyz cho A(2;0;0),B(0; - 2;0),C(0;0; - 1). Viết phương trình mặt phẳng (ABC)?

    Phương trình mặt phẳng (ABC)\frac{x}{2} + \frac{y}{- 2} + \frac{z}{-
1} = 1

  • Câu 29: Thông hiểu

    Chọn đáp án đúng

    Biết \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{\sin
x.sin\left( x + \frac{\pi}{6} \right)} = a\ln\frac{b}{c}, với a, b, c là các số nguyên dương và \frac{b}{c} là phân số tối giản. Tính S = a + b + c.

    Ta có:

    I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{\sin x.sin\left( x +
\frac{\pi}{6} ight)}

    Ta có:

    I = \frac{\sin\left\lbrack \left( x +
\frac{\pi}{6} ight) - x ightbrack}{\sin\frac{\pi}{6}} =
\frac{\sin\left( x + \frac{\pi}{6} ight).cosx - \cos\left( x +
\frac{\pi}{6} ight).sinx}{\sin\frac{\pi}{6}}

    \Rightarrow \frac{1}{\sin x.sin\left( x +
\frac{\pi}{6} ight)} = \frac{1}{\sin\frac{\pi}{6}}.\left( \frac{\cos
x}{\sin x} - \frac{\cos\left( x + \frac{\pi}{6} ight)}{\sin\left( x +
\frac{\pi}{6} ight)} ight)

    I =
2\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}{\frac{\cos x}{\sin x}dx} -
2\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\cos\left( x + \frac{\pi}{6}
ight)}{\sin\left( x + \frac{\pi}{6} ight)}dx

    = 2.ln\left( \frac{\sqrt{3}}{2} ight) -
2ln\frac{1}{2} - 2ln1 + 2ln\frac{\sqrt{3}}{2}

    = 4ln\left( \frac{\sqrt{3}}{2} ight) -
2ln2 = 2ln\frac{3}{4} + 2ln2 = 2ln\frac{3}{2}

    \Rightarrow S = 2 + 3 + 2 =
7

  • Câu 30: Nhận biết

    Tìm nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \sqrt{3x +
2} là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\sqrt{3x
+ 2}dx} = \int_{}^{}{(3x + 2)^{\frac{1}{2}}dx}

    = \frac{(3x + 2)^{1 + \frac{1}{2}}}{1 +\dfrac{1}{2}}.\frac{1}{3} + C = \frac{2}{9}.(2x + 3).\sqrt{3x + 2} +C

  • Câu 31: Nhận biết

    Chọn kết luận đúng

    Xét hai khẳng định sau:

    (I) Mọi hàm số f(x) liên tục trên đoạn \lbrack a;b\rbrack đều có đạo hàm trên đoạn đó.

    (II) Mọi hàm số f(x) liên tục trên đoạn \lbrack a;b\rbrack đều có nguyên hàm trên đoạn đó.

    Trong hai khẳng định trên:

    Trong hai khẳng định trên chỉ có khẳng định "(II) Mọi hàm số f(x) liên tục trên đoạn \lbrack a;b\rbrack đều có nguyên hàm trên đoạn đó” là khẳng định đúng."

  • Câu 32: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =\sin^{4}x\cos x??

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    \int_{}^{}{\left( \sin^{4}x\cos xight)dx} = \int_{}^{}{t^{4}dt} = \frac{t^{5}}{5} + C =\frac{1}{5}\sin^{5}x + C

  • Câu 33: Nhận biết

    Tìm tích phân I

    Tích phân I = \int_{1}^{2}{\left( ax^{2}
+ \frac{b}{x} \right)dx} có giá trị là:

    Tích phân I = \int_{1}^{2}{\left( ax^{2}
+ \frac{b}{x} ight)dx} có giá trị là:

    I = \int_{1}^{2}{\left( ax^{2} +
\frac{b}{x} ight)dx} = \left. \ \left( \frac{a}{3}x^{3} + b\ln|x|
ight) ight|_{1}^{2} = \frac{7a}{3} + bln2.

    Đáp án đúng là I = \frac{7}{3}a +
bln2.

  • Câu 34: Vận dụng

    Xác định nguyên hàm I

    Nguyên hàm của I = \int_{}^{}{x\sin
xcos^{2}x}dx là:

    Ta đặt:

    \left\{ \begin{matrix}u = x \\du = \sin xcos^{2}x \\\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}du = dx \\u = - cos^{3}xdx \\\end{matrix} \right..

    \Rightarrow I = \int_{}^{}{x\sin
xcos^{2}x}dx = - xcos^{3}x +
\underset{I_{1}}{\overset{\int_{}^{}{cos^{3}xdx}}{︸}} +
C_{1}.

    Xét I_{1} = \int_{}^{}{cos^{3}x}dx =
\int_{}^{}{\cos x\left( 1 - sin^{2}x \right)dx}.

    Đặt t = \sin x \Rightarrow dt = \cos
xdx.

    \Rightarrow I_{1} = \int_{}^{}{\left( 1 -
t^{2} \right)dt = t - \frac{1}{3}t^{3} + C_{2}}.

    \Rightarrow I = - xcos^{3}x + I_{1} = -
xcos^{3}x + t - \frac{1}{3}t^{3} + C.

  • Câu 35: Thông hiểu

    Tìm tọa độ điểm M

    Trong không gian với hệ toạ độ Oxyz,tọa độ điểm M nằm trên trục Oy và cách đều hai mặt phẳng: (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0 là:

    Ta có M \in Oy \Rightarrow
M(0;m;0)

    Giả thiết có d\left( M,(P) \right) =
d\left( M,(Q) \right)

    \Leftrightarrow \frac{|m + 1|}{\sqrt{3}}
= \frac{| - m - 5|}{\sqrt{3}} \Leftrightarrow m = - 3

    Vậy M(0; - 3;0)

  • Câu 36: Thông hiểu

    Chọn đẳng thức đúng

    Cho hình lăng trụ ABC.A'B'C'M là trung điểm của BB'. Đặt \overrightarrow{CA} =
\overrightarrow{a};\overrightarrow{CB} =
\overrightarrow{b};\overrightarrow{AA'} =
\overrightarrow{c}. Đẳng thức nào sau đây đúng?

    Ta có: M là trung điểm của BB’ khi đó \overrightarrow{AM} =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB'}

    Khi đó:

    \overrightarrow{AM} =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB'}

    = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BB'}

    = \overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AA'} = \overrightarrow{AC} +
\overrightarrow{CB} + \frac{1}{2}\overrightarrow{AA'}

    = - \overrightarrow{a} +
\overrightarrow{b} + \frac{1}{2}\overrightarrow{c}

    Vậy đẳng thức đúng là \overrightarrow{AM}
= \overrightarrow{b} - \overrightarrow{a} +
\frac{1}{2}\overrightarrow{c}.

  • Câu 37: Nhận biết

    Tính tích vô hướng hai vectơ

    Trong không gian Oxyz, cho các điểm A(2;1;4),B( - 2;2;6),C(6;0; -
1). Tích \overrightarrow{AB}.\overrightarrow{AC} bằng:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 4;1; - 10) \\
\overrightarrow{AC} = (4; - 1; - 5) \\
\end{matrix} ight.. Khi đó \overrightarrow{AB}.\overrightarrow{AC} =
33.

  • Câu 38: Nhận biết

    Tìm nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) =
2^{2x}.3^{x}.7^{x} là:

    Ta có: \int_{}^{}{\left(2^{2x}.3^{x}.7^{x} ight)dx =}\int_{}^{}{\left( 84^{x} ight)dx}=\frac{84^{x}}{\ln84} + C

  • Câu 39: Nhận biết

    Tìm nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = x^{3} + 3x +
2 là hàm số nào trong các hàm số sau?

    \left( \frac{x^{4}}{4} +
\frac{3x^{2}}{2} + 2x \right)' = \frac{4x^{3}}{4} + \frac{3.2x}{2} +
2 = x^{3} + 3x + 2 với mọi x\mathbb{\in R}nên \int_{}^{}{f(x)dx} = F(x)

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{4}}{4} + \frac{3x^{2}}{2} + 2x + C

  • Câu 40: Vận dụng cao

    Mệnh đề nào sau đây đúng?

    Cho hàm số y = f\left( x ight) có đạo hàm và liên tục trên \mathbb{R}. Biết rằng đồ thị hàm số y = f'\left( x ight) như hình bên. Lập hàm số g\left( x ight) = f\left( x ight) - {x^2} - x. Mệnh đề nào sau đây đúng?

    Mệnh đề nào sau đây đúng

    Hình vẽ minh họa:

    Mệnh đề nào sau đây đúng

    Đặt h\left( x ight) = {x^2} + x

    Gọi \left( \Delta  ight) là đồ thị của hàm số h'\left( x ight) = 2x + 1

    Từ đồ thị ta thấy f'\left( x ight) = h'\left( x ight) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \\   {x = 2} \end{array}} ight.

    Ta thấy \int\limits_{ - 1}^1 {\left[ {f'\left( x ight) - h'\left( x ight)} ight]} dx = g\left( 1 ight) - g\left( { - 1} ight) > 0\left( * ight)

    => g\left( { - 1} ight) > g\left( 1 ight) sai

    \int\limits_1^2 {\left[ {f'\left( x ight) - h'\left( x ight)} ight]} dx = g\left( 2 ight) - g\left( 1 ight) < 0\left( {**} ight)

    => g\left( 1 ight) > g\left( 2 ight) đúng

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo