Xác định quãng đường vật chuyển động
Một vật chuyển động chậm dần đều với vận tốc
. Hỏi trong
trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!
Xác định quãng đường vật chuyển động
Một vật chuyển động chậm dần đều với vận tốc
. Hỏi trong
trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Xác định nguyên hàm theo yêu cầu
Kết quả nào dưới đây không phải là nguyên hàm của
?
Ta có:
.
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số ![]()
Ta có:
Chọn đáp án đúng
Cho tứ diện
với
. Gọi
lần lượt là trung điểm của
và
. Góc giữa
và
là?
Ta có:
Vậy góc giữa và
là
Tìm câu sai
Cho hàm số
. Gọi
là một nguyên hàm của
. Chọn phương án sai.
Ta có
Từ đây ta thấy đúng.
Với ta thấy
, vậy
sai.
Diện tích của thiết diện
Một hình nón có bán kính đáy R, góc ở đỉnh là
. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo
. Diện tích của thiết diện là:

Vì góc ở đỉnh là nên thiết diện qua trục SAC là tam giác đều cạnh 2R.
Suy ra đường cao của hình nón là .
Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng nên IAB là tam giác vuông cân tại I, suy ra
.
Gọi M là trung điểm của AB thì và
.
Trong tam giác vuông SIM, ta có
Vậy (đvdt).
Tìm câu sai
Câu nào sau đây sai?
Câu sai cần tìm là: Nếu thì
.
Tính giá trị biểu thức
Cho hàm số
biết
,
liên tục trên
và
. Tính
?
Ta có:
Độ dài đường chéo
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Chọn kết luận đúng
Diện tích hình phẳng giới hạn bởi hai đồ thị
được cho bởi công thức nào sau đây?
Ta có:
Với
Với
Ta có:
Tìm giá trị của tích phân I
Tích phân
có giá trị là:
Thực hiện tích phân theo hai cách như sau:
Cách 1: Ta nhận thấy: .
Ta dùng đổi biến số.
Đặt .
Đổi cận .
Ta có:
.
Cách 2: Dùng máy tính cầm tay, tuy nhiên chờ máy giải cũng khá mất thời gian.
Xác định vectơ pháp tuyến
Trong không gian
cho mặt phẳng
. Một vectơ pháp tuyến của mặt phẳng
là:
Một vectơ pháp tuyến của mặt phẳng là:
.
Tính độ dài cạnh
Một hình trụ có bán kính đáy
, chiều cao hình trụ
. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.
Dựng đường sinh AA', ta có .
Suy ra A’C là đường kính đáy nên
Xét tam giác vuông AA’C, ta có
Suy ra cạnh hình vuông bằng 100 cm.
Chọn đáp án đúng
Nguyên hàm
của hàm số
thỏa mãn
là
Ta có: .
.
Vậy .
Phân tích vectơ
Cho hình hộp
. Phân tích nào sau đây đúng?
Hình vẽ minh họa
Biến đổi biểu thức
(đúng)
Vậy phân tích đúng là .
Phương trình tổng quát
Cho tứ diện
có
. Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:
Theo đề bài, ta có các vecto là
Có thể chọn làm một vectơ pháp tuyến cho mặt phẳng.
Phương trình mặt phẳng này có dạng .
Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên:
Vậy phương trình cần tìm .
Viết PT mp cắt trục tọa độ
Viết phương trình tổng quát của mặt phẳng
cắt hai trục
và
tại và tạo với mặt phẳng
một góc
.
Gọi là giao điểm của
và trục
Vecto pháp tuyến của là:
Vecto pháp tuyến của là:
Gọi là góc tạo bởi và
Vậy có hai mặt phẳng:
Chọn đáp án đúng
Tìm một nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Xác định thể tích của vật
Vật thể
giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Tính giá trị của biểu thức
Biết
là một nguyên hàm của hàm số
và
. Tìm
.
Ta có:
Tính độ dài đoạn thẳng
Trong không gian
, cho đường thẳng
và điểm
. Gọi
là hình chiếu vuông góc của
lên đường thẳng
. Độ dài đoạn thẳng
bằng
Cách 1: Phương trình tham số của đường thẳng là:
.
Một vtcp của là
.
Gọi là mặt phẳng đi qua điểm
và vuông góc với đường thẳng
. Khi đó
có vtpt là
.
Phương trình mặt phẳng :
.
là hình chiếu vuông góc của
lên đường thẳng
nên
là giao điểm của
và
.
Xét hệ phương trình:
Thay vào
ta được:
.
Suy ra .
Độ dài đoạn thẳng là:
.
Cách 2: Phương trình tham số của đường thẳng là:
.
Một vtcp của là
.
.
Ta có .
Suy ra
Độ dài đoạn thẳng là:
.
Tìm họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Chọn mệnh đề sai
Giả sử
là một hàm số bất kì và liên tục trên khoảng
và
. Mệnh đề nào sau đây sai?
Dựa vào tính chất của tích phân với là một số bất kì liên tục trên khoảng
và
ta có:
Viết phương trình tiếp tuyến của đồ thị hàm số
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Tính giá trị biểu thức
Biết rằng
là một nguyên hàm của hàm số
trên
. Giá trị của biểu thức
bằng:
Ta có:
suy ra
Tính tổng hai ẩn số a và b
Trong không gian với hệ tọa độ
, cho mặt phẳng
và hai điểm
. Điểm
sao cho tam giác
có diện tích nhỏ nhất. Tính
.
Trong không gian với hệ tọa độ
, cho mặt phẳng
và hai điểm
. Điểm
sao cho tam giác
có diện tích nhỏ nhất. Tính
.
Chọn đẳng thức đúng
Gọi
là tâm của hình lập phương
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Theo quy tắc hình hộp ta có:
Vì là trung điểm của
suy ra
Chọn đáp án đúng
Trong không gian
cho
. Viết phương trình mặt phẳng
?
Phương trình mặt phẳng là
Chọn đáp án đúng
Biết
, với a, b, c là các số nguyên dương và
là phân số tối giản. Tính
.
Ta có:
Ta có:
Tìm nguyên hàm của hàm số
Nguyên hàm của hàm số
là:
Ta có:
Chọn kết luận đúng
Xét hai khẳng định sau:
(I) Mọi hàm số
liên tục trên đoạn
đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số
liên tục trên đoạn
đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên:
Trong hai khẳng định trên chỉ có khẳng định "(II) Mọi hàm số liên tục trên đoạn
đều có nguyên hàm trên đoạn đó” là khẳng định đúng."
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
??
Đặt
Tìm tích phân I
Tích phân
có giá trị là:
Tích phân có giá trị là:
.
Đáp án đúng là .
Xác định nguyên hàm I
Nguyên hàm của
là:
Ta đặt:
.
.
Xét .
Đặt .
.
.
Tìm tọa độ điểm M
Trong không gian với hệ toạ độ
,tọa độ điểm
nằm trên trục
và cách đều hai mặt phẳng:
và
là:
Ta có
Giả thiết có
Vậy
Chọn đẳng thức đúng
Cho hình lăng trụ
có
là trung điểm của
. Đặt
. Đẳng thức nào sau đây đúng?
Ta có: M là trung điểm của BB’ khi đó
Khi đó:
Vậy đẳng thức đúng là .
Tính tích vô hướng hai vectơ
Trong không gian
, cho các điểm
. Tích
bằng:
Ta có: . Khi đó
.
Tìm nguyên hàm của hàm số
Nguyên hàm của hàm số
là:
Ta có:
Tìm nguyên hàm của hàm số
Nguyên hàm của hàm số
là hàm số nào trong các hàm số sau?
Vì với mọi
nên
Vậy đáp án cần tìm là:
Mệnh đề nào sau đây đúng?
Cho hàm số
có đạo hàm và liên tục trên
. Biết rằng đồ thị hàm số
như hình bên. Lập hàm số
. Mệnh đề nào sau đây đúng?

Hình vẽ minh họa:

Đặt
Gọi là đồ thị của hàm số
Từ đồ thị ta thấy
Ta thấy
=> sai
=> đúng
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: