Xác định tích vô hướng
Trong không gian hệ trục tọa độ
, cho hai vectơ
và
. Xác định tích vô hướng
?
Ta có: nên
Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!
Xác định tích vô hướng
Trong không gian hệ trục tọa độ
, cho hai vectơ
và
. Xác định tích vô hướng
?
Ta có: nên
Tìm nguyên hàm của hàm số
Nguyên hàm của hàm số
là
Ta có: .
Tính thể tích V
Cho
là hình phẳng giới hạn bởi đường cong
và đường thẳng
. Tính thể tích
của vật thể tròn xoay do hình phẳng
quay quanh trục hoành.
Phương trình hoành độ giao điểm là:
Thể tích cần tính là:
Tìm nguyên hàm của hàm số
Nguyên hàm của hàm số
là hàm số nào trong các hàm số sau?
Vì với mọi
nên
Vậy đáp án cần tìm là:
Mp qua 3 điểm
Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:
Theo đề bài, ta có được các vecto sau:
Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của và
.
Chọn làm một vectơ pháp tuyến.
Phương trình mp có dạng
là mp qua A
Vậy phương trình .
Xác định mệnh đề không chính xác
Cho tứ diện đều
. Mệnh đề nào sau đây sai?
Vì tứ diện là tứ diện đều nên có các cặp cạnh đối vuông góc
Suy ra
Vậy mệnh đề chưa chính xác là: .
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
.
Ta có
Tìm một nguyên hàm F(x) của hàm số
Một nguyên hàm F(x) của hàm số
thỏa mãn
là:
Ta có:
Vậy
Tính thể tích khối trụ
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Chọn kết luận đúng
Xét hai khẳng định sau:
(I) Mọi hàm số
liên tục trên đoạn
đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số
liên tục trên đoạn
đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên:
Trong hai khẳng định trên chỉ có khẳng định "(II) Mọi hàm số liên tục trên đoạn
đều có nguyên hàm trên đoạn đó” là khẳng định đúng."
Độ dài đường sinh
Cho hình nón đỉnh S, đường cao SO. Gọi A, B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng a và
. Độ dài đường sinh
của hình nón bằng:

Gọi I là trung điểm AB, suy ra và
.
Trong tam giác vuông SOA, ta có
Trong tam giác vuông SIA, ta có
Trong tam giác vuông OIA, ta có:
Xác định điều kiện tham số m
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Tìm một nguyên hàm F(x) của hàm số
Một nguyên hàm F(x) của hàm số
thỏa mãn
là:
Ta có:
Vậy
Tính giá trị biểu thức
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Gọi
Ta có:
Theo bài ra ta có:
Vậy điểm E có tọa độ là .
Tính giá trị biểu thức S
Cho hàm số
, ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Tính khoảng cách d(M; (P))
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và điểm
. Tính khoảng cách
từ
đến
.
Khoảng cách từ M đến mặt phẳng (P) là:
Tìm giá trị của tích phân I
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Chọn đáp án đúng
Một nguyên hàm của
là :
Ta có:
Đặt:
Khi đó:
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số ![]()
Ta có:
Tìm giá trị tham số D
Trong không gian với hệ tọa độ
, cho ba điểm
. Mặt phẳng
đi qua ba điểm
có phương trình tổng quát
. Biết
, tìm giá trị của
?
Do nên mặt phẳng
có phương trình
Do đi qua các điểm
nên ta có hệ:
Vậy .
Tính giá trị biểu thức
Cho
với
là các số hữu tỉ. Giá trị của biểu thức
bằng:
Ta có:
Suy ra
Chọn đáp án đúng
Cho
. Khi đó
là:
Ta có:
Khi đó
Tính tích phân
Tích phân
có giá trị là:
Tích phân có giá trị là:
Cách 1:.
Cách 2: Dùng máy tính cầm tay.
Đáp án đúng là
Chọn khẳng định đúng
Cho
là một nguyên hàm của hàm số
thỏa mãn
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
là một nguyên hàm của hàm số
suy ra
có dạng
Theo bài ra ta có:
Vậy .
Xác định họ nguyên hàm của hàm số f(x)
Họ nguyên hàm của hàm số
là:
Ta có:
Chọn công thức thích hợp với hình vẽ
Cho hình vẽ:

Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:
Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:
.
Tính giá trị biểu thức
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Tính đường cao
Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng
, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:
Theo giả thiết ta có tam giác OAB đều cạnh R.
Gọi E là trung điểm AB, suy ra và
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Chọn đáp án đúng
Cho
, góc giữa
bằng
. Chọn khẳng định sai trong các khẳng định sau?
Ta có:
Khi đó:
Vậy khẳng định sai là .
Chọn đáp án thích hợp
Nguyên hàm của hàm số
là
Ta có .
Đặt
Theo phương pháp nguyên hàm từng phần ta có
.
Số điểm cực trị của hàm số
Cho F(x) là một nguyên hàm của hàm số
. Hàm số
có bao nhiêu điểm cực trị?
=> có 5 nghiệm đơn
=> Hàm số có 5 điểm cực trị
Ghi đáp án vào ô trống
Trong không gian với hệ trục tọa độ
cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Trong không gian với hệ trục tọa độ
cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Tìm nguyên hàm của hàm số
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có:
Tính độ dài vectơ
Trong không gian
, cho
,
. Gọi
là trọng tâm tam giác
, vectơ
có độ dài bằng:
Vì G là trọng tâm tam giác nên tọa độ
.
Ta có:
Xác định hàm số f(x)
Biết rằng
và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Chọn đáp án đúng
Trong không gian tọa độ
cho các điểm
. Hỏi có bao nhiêu mặt phẳng cách đều 5 điểm trên?
Hình vẽ minh họa
Ta có: . Suy ra
là hình bình hành.
nên
là hình chóp đỉnh E có đáy ABCD là hình bình hành.
Gọi lần lượt là trung điểm các cạnh
.
Do đó có 5 mặt phẳng cách đều 5 điểm là:
Mặt phẳng qua 4 trung điểm của 4 cạnh bên: (GHIK)
Mặt phẳng qua 4 trung điểm lần lượt của EC, ED, AD, BC: (IKQN)
Mặt phẳng qua 4 trung điểm của EB, EA, AD, BC: (HGQN)
Mặt phẳng qua 4 trung điểm của EA, ED, CD, AB: (GKPM)
Mặt phẳng qua 4 trung điểm của EB, EC, CD, AB: (HIPM)
Tìm điều kiện của a và b
Trong hệ trục tọa độ Oxy, cho parabol
và hai đường thẳng
(mô tả như hình vẽ). Gọi
là diện tích hình phẳng giới hạn bới và đường thẳng
(phần tô màu đen);
là diện tích hình phẳng giới hạn bới parabol
và đường thẳng
(phần gạch chéo). Với điều kiện nào sau đây của
thì
?

Phương trình hoành độ giao điểm của và đường thẳng
là:
Phương trình hoành độ giao điểm của và đường thẳng
là:
Diện tích hình phẳng giới hạn bởi và
là:
Diện tích hình phẳng giới hạn bởi và
là:
Khi đó:
Tính tích phân
Tính tích phân
?
Đặt . Ta có:
suy ra
.
Tìm phương trình mặt phẳng thích hợp
Trong không gian với hệ toạ độ
, cho hình cầu
. Phương trình mặt phẳng
chứa trục
và tiếp xúc với ![]()
Mặt phẳng chứa trục
có dạng:
Ta có:
.
Chọn
Chọn khẳng định đúng
Tính tích phân
bằng cách đặt
. Công thức nào dưới đây chính xác?
Đặt
Suy ra
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: