Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi HK2 Toán 12 Đề 3

Mô tả thêm:

Mời các bạn học cùng thử sức với đề Đề thi học kì 2 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tính tích phân I

    Tích phân I = \int\limits_0^1 {\frac{1}{{x + 1}}dx} có giá trị là:

     Tích phân I = \int\limits_0^1 {\frac{1}{{x + 1}}dx} có giá trị là:

    I = \int\limits_0^1 {\frac{1}{{x + 1}}dx}  = \left. {\left( {\ln \left| {x + 1} ight|} ight)} ight|_0^1 = \ln 2

    Ngoài ra ta có thể kiểm tra bằng máy tính, dễ dàng thu được kết quả như cách trên

  • Câu 2: Thông hiểu

    Tính diện tích hình bình hành

    Trong không gian Oxyz, cho hình bình hành ABCD với A(1;1;0),B(1;1;2),D(1;0;2). Diện tích hình bình hành ABCD bằng:

    Gọi S là diện tích hình bình hành ABCD khi đó S = \left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack
ight|

    \overrightarrow{AB} =
(0;0;2);\overrightarrow{AD} = (0; - 1;2)

    \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack =
(2;0;0)

    \Rightarrow \left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack ight| = 2
\Rightarrow S = 2

    Vậy diện tích hình bình hành ABCD bằng 2.

  • Câu 3: Nhận biết

    Tìm nguyên hàm của hàm của hàm số

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

  • Câu 4: Nhận biết

    Tìm số phức?

    Cho số phức z = {\left( {2i} ight)^4} - \frac{{{{\left( {1 + i} ight)}^6}}}{{5i}}. Số phức \overline {5z + 3i} là số phức nào sau đây?

     Ta tính được z = \frac{{88}}{5} \Rightarrow 5z + 3i = 88 + 3i

  • Câu 5: Vận dụng cao

    Tìm giá trị nhỏ nhất của P

    Cho hai số phức z, w thỏa mãn \left\{ \begin{gathered}  \left| {z - 3 - 2i} ight| \leqslant 1 \hfill \\  \left| {w + 1 + 2i} ight| \leqslant \left| {w - 2 - i} ight| \hfill \\ \end{gathered}  ight.. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z - w} ight|

     Cách 1 :

    Giả sử z = a + bi,\left( {a,b \in \mathbb{R}} ight);w = x + yi,\left( {x,y \in \mathbb{R}} ight)

    \left| {z - 3 - 2i} ight| \leqslant 1 \Leftrightarrow {\left( {a - 3} ight)^2} + {\left( {b - 2} ight)^2} \leqslant 1(1)

    \left| {w + 1 + 2i} ight| \leqslant \left| {w - 2 - i} ight| \Leftrightarrow {\left( {x + 1} ight)^2} + {\left( {y + 2} ight)^2} \leqslant {\left( {x - 2} ight)^2} + {\left( {y - 1} ight)^2}

    Suy ra x + y = 0

    P = \left| {z - w} ight| = \sqrt {{{\left( {a - x} ight)}^2} + {{\left( {b - y} ight)}^2}}  = \sqrt {{{\left( {a - x} ight)}^2} + {{\left( {b + x} ight)}^2}}

    Từ (1) ta có I(3; 2), bán kính r = 1. Gọi H là hình chiếu của I trên d:y =  - x.

    Đường thẳng HI có PTTS: \left\{ \begin{gathered}  x = 3 + t \hfill \\  y = 2 + t \hfill \\ \end{gathered}  ight.

    \begin{matrix}  M \in HI \Rightarrow M\left( {3 + t;\,2 + t} ight) \hfill \\  M \in \left( C ight) \Leftrightarrow 2{t^2} = 1 \Leftrightarrow \left[ \begin{gathered}  t = \dfrac{1}{{\sqrt 2 }} \hfill \\  t =  - \dfrac{1}{{\sqrt 2 }} \hfill \\ \end{gathered}  ight. \hfill \\  t = 2 \Rightarrow M\left( {3 + \dfrac{1}{{\sqrt 2 }};\,2 + \dfrac{1}{{\sqrt 2 }}} ight),MH = \dfrac{{5 + \sqrt 2 }}{{\sqrt 2 }} \hfill \\  t = 3 \Rightarrow M\left( {3 - \dfrac{1}{{\sqrt 2 }};\,2 - \dfrac{1}{{\sqrt 2 }}} ight),MH = \dfrac{{5 - \sqrt 2 }}{{\sqrt 2 }} \hfill \\ \end{matrix}

    Vậy {P_{\min }} = \frac{{5\sqrt 2  - 2}}{2}

    Cách 2 :

    \left| {z - 3 - 2i} ight| \leqslant 1 điều này cho thấy M(z) đang nằm trên hình tròn tâm I(3; 2) bán kính bằng 1.

    \left| {w + 1 + 2i} ight| \leqslant \left| {w - 2 - i} ight| điều này cho thấy N(w) đang thuộc nửa mặt phẳng tạo bởi đường thẳng \Delta là trung trực của đoạn AB với A\left( { - 1; - 2} ight),B\left( {2;1} ight).

    \Delta :x + y = 0.

    (Minh hoạ như hình vẽ)

    Tìm giá trị nhỏ nhất của P

    P = \left| {z - w} ight| = MN.

    {P_{\min }} = d\left( {I,\Delta } ight) - R = \frac{{\left| {3 + 2} ight|}}{{\sqrt 2 }} - 1 = \frac{{5\sqrt 2  - 2}}{2}.

  • Câu 6: Thông hiểu

    Xác định họ nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \left( -
\frac{1}{x^{2}} - \frac{1}{x} \right)e^{- x}

    Ta có f(x) = \left( - \frac{1}{x^{2}} -
\frac{1}{x} ight)e^{- x} = \left\lbrack \left( \frac{1}{x}
ight)' - \frac{1}{x} ightbrack e^{- x}

    \Rightarrow F(x) = \frac{e^{- x}}{x} +
C là nguyên hàm của hàm số đã cho.

  • Câu 7: Vận dụng

    Xác định vị trí điểm M

    Trong không gian cho tam giác ABC. Tìm M sao cho giá trị của biểu thức P = MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất?

    Gọi G là trọng tâm tam giác ABC

    Suy ra G cố định và \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} =
\overrightarrow{0}

    P = MA^{2} + MB^{2} +
MC^{2}

    P = \left( \overrightarrow{MG} +
\overrightarrow{GA} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GB} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GC} ight)^{2}

    P = 3{\overrightarrow{MG}}^{2} +
2\overrightarrow{MG}.\left( \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} ight)^{2} + GA^{2} + GB^{2} + GC^{2}

    P = 3MG^{2} + GA^{2} + GB^{2} + GC^{2}
\geq GA^{2} + GB^{2} + GC^{2}

    Dấu “=” xảy ra khi M \equiv
G

    Vậy P_{\min} = GA^{2} + GB^{2} +
GC^{2} với M \equiv G là trọng tâm tam giác ABC.

  • Câu 8: Nhận biết

    Tìm nghiệm

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 9: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian Oxyz, đường thẳng d:\frac{x + 3}{1} = \frac{y - 1}{- 1}
= \frac{z - 5}{2} có một vectơ chỉ phương là:

    Đường thẳng (P) có một vectơ chỉ phương là: \overrightarrow{u_{4}} = ( - 1;\
1;\  - 2)

  • Câu 10: Thông hiểu

    Tính giá trị của tham số k

    Cho hình hộp ABCD.A'B'C'D'. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{AC} +\overrightarrow{BA'} + k\left( \overrightarrow{DB} +\overrightarrow{C'D} ight) = \overrightarrow{0}

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AC} + \overrightarrow{BA'} = \overrightarrow{AC} +
\overrightarrow{CD'} = \overrightarrow{AD'} \\
\overrightarrow{DB} + \overrightarrow{C'D} = \overrightarrow{DB} -
\overrightarrow{DC'} = \overrightarrow{D'A} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC} +
\overrightarrow{BA'} + k\left( \overrightarrow{DB} +
\overrightarrow{C'D} ight) = \overrightarrow{AD'} +
k.\overrightarrow{D'A} = \overrightarrow{0}

    \Leftrightarrow \overrightarrow{AD'}
+ k.\overrightarrow{D'A} = \overrightarrow{0} \Leftrightarrow (k -
1).\overrightarrow{D'A} = \overrightarrow{0} \Leftrightarrow k - 1 =
0 \Leftrightarrow k = 1.

    Vậy k = 1.

  • Câu 11: Thông hiểu

    Căn bậc hai của số phức

    Tìm các căn bậc hai của số phức z = 5 + 12i

     Giả sử m + ni (m; n \in R) là căn bậc hai của z

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 5 + 12i \Leftrightarrow {m^2} + 2mni - {n^2} = 5 + 12i

    \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5 \hfill \\  2mn = 12 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5(1) \hfill \\  m = \frac{6}{n}(2) \hfill \\ \end{gathered}  ight.

    Thay (2) vào (1) ta có: {\left( {\frac{6}{n}} ight)^2} - {n^2} = 5 \Leftrightarrow 36 - {n^4} = 5{n^2}

    \Leftrightarrow {n^4} + 5{n^2} - 36 = 0 \Leftrightarrow {n^2} = 4;{n^2} =  - 9(loai)

    \left[ \begin{gathered}  n = 2 \Rightarrow m = 3 \hfill \\  n =  - 2 \Rightarrow m =  - 3 \hfill \\ \end{gathered}  ight.

    Vậy z có hai căn bậc hai là 3+2i và -3-2i.

  • Câu 12: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian tọa độ Oxyz, cho vectơ \overrightarrow{a} = (1;0; -
2). Trong các vectơ dưới đây, vectơ nào không cùng phương với \overrightarrow{a}?

    Ta có: \overrightarrow{0} =
(0;0;0) cùng phương với mọi vectơ

    Lại có \left\{ \begin{matrix}\overrightarrow{c} = (2;0; - 4) = 2\overrightarrow{a} \\\overrightarrow{d} = \left( - \dfrac{1}{2};0;1 ight) = -\dfrac{1}{2}\overrightarrow{a} \\\end{matrix} ight.

    Vậy vectơ không cùng phương với \overrightarrow{a}\overrightarrow{b} = (1;0;2).

  • Câu 13: Nhận biết

    Tìm đáp án không thích hợp

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 2}{1} = \frac{y + 3}{- 2}
= \frac{z + 1}{1}. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng d?

    Đường thẳng d có 1 vectơ chỉ phương là \overrightarrow{u_{2}} = (1; -
2;1). Do đó vectơ \overrightarrow{u_{4}} = (1;2;1) không là vectơ chỉ phương của d.

  • Câu 14: Nhận biết

    Tìm số phức z

    Tìm số phức z trong phương trình sau: (1 + z)(2 + 3i) = 1 + i

     Ta có (1 + z)(2 + 3i) = 1 + i

    \begin{array}{l} \Leftrightarrow 1 + z = \dfrac{{1 + i}}{{2 + 3i}}\\ \Leftrightarrow 1 + z = \dfrac{{5 - i}}{{13}}\;\\ \Leftrightarrow z =  - \dfrac{8}{{13}} - \dfrac{1}{{13}}i\;\;\;\end{array}

  • Câu 15: Thông hiểu

    Tính giá trị biểu thức

    Cho tam giác ABC. Lấy điểm S nằm ngoài mặt phẳng (ABC). Trên đoạn SA lấy điểm M sao cho \overrightarrow{MS} = -
2\overrightarrow{MA} và trên đoạn BC lấy điểm N sao cho \overrightarrow{NB} = -
\frac{1}{2}\overrightarrow{NC}. Biết biểu diễn \overrightarrow{MN} = m.\overrightarrow{AB} +
n.\overrightarrow{SC} là duy nhất. Tính giá trị biểu thức T = m + n?

    Hình vẽ minh họa

    Theo giả thiết ta có: \overrightarrow{MS}
= - 2\overrightarrow{MA}; \overrightarrow{NB} = -
\frac{1}{2}\overrightarrow{NC}

    Lấy điểm P trên cạnh AC sao cho \overrightarrow{PC} = -
2\overrightarrow{PA}. Khi đó:

    \overrightarrow{MN} =
\overrightarrow{MP} + \overrightarrow{PN} =
\frac{1}{3}\overrightarrow{SC} +
\frac{2}{3}\overrightarrow{AB}

    \Rightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow T = 1

  • Câu 16: Nhận biết

    Tìm điều kiện để hai đường thẳng song song

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M, nhận vectơ \overrightarrow{a} làm vectơ chỉ phương và đường thẳng d' đi qua điểm M', nhận vectơ \overrightarrow{a'} làm vectơ chỉ phương. Điều kiện để đường thẳng d song song với d' là:

    Điều kiện để d//d' là: \left\{ \begin{matrix}
\overrightarrow{a} = k.\overrightarrow{a'};(k eq 0) \\
M otin d' \\
\end{matrix} ight..

  • Câu 17: Nhận biết

    Xác định phần ảo của số phức

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 18: Vận dụng

    Xác định tọa độ điểm C’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 19: Thông hiểu

    Tìm số phức z

    Cho số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm số phức z thỏa mãn \overline z .{z_1} + {z_2} = 0.

     Ta có: \overline z  = \frac{{ - {z_2}}}{{{z_1}}} = \frac{{ - 3 - 2i}}{{1 - i}} =  - \frac{1}{2} - \frac{5}{2}i \Rightarrow z =  - \frac{1}{2} + \frac{5}{2}i

  • Câu 20: Nhận biết

    Tìm số phức z

    Cho hai số phức {z_1} = 4 - 3i{z_2} = 7 + 3i. Tìm số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {4 - 3i} ight) - \left( {7 + 3i} ight) \hfill \\ = 4 - 3i - 7 - 3i \hfill \\ = (4 - 7) + ( - 3 - 3)i \hfill \\ =  - 3 - 6i \hfill \\ \end{matrix}

  • Câu 21: Vận dụng

    Giá trị của hàm số

    Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2}. Giá trị của f(2) là:

     Chọn f(x) = ax3 + bx2 + cx + d

    Ta có:

    \begin{matrix}  f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow a{x^3} + 2{x^2} + cx + d = x\left( {3a{x^2} + 2bx + c} ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3a - 2} \\   {b = 2b - 3} \\   {d = 0} \\   {c = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1} \\   {b = 3} \\   {c = 0} \\   {d = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy f\left( x ight) = {x^3} + 3{x^2} => f(x) = 20

  • Câu 22: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A( - 2;3;4),B(8; - 5;6). Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng (Oyz) là điểm nào dưới đây?

    Vì I là trung điểm của đoạn AB nên I(3; -
1;5).

    Khi đó hình chiếu của I lên (Oyz) là M(0; - 1;5).

  • Câu 23: Nhận biết

    Chọn đáp án đúng

    Tìm nguyên hàm của hàm số f(x) = e^{x} -
e^{- x} .

    Ta có: \int_{}^{}{f(x)dx = e^{x} + e^{-
x} + C},

  • Câu 24: Vận dụng cao

    Tính giá trị biểu thức 2a - 3b thỏa mãn đẳng thức

    Cho tích phân I = \int\limits_1^e {\left( {x + \frac{1}{x}} ight)\ln xdx}  = a{e^2} + b, a và b là các số hữu tỉ. Giá trị của 2a - 3b là:

     Ta có:

    \begin{matrix}  I = \int\limits_1^e {\left( {x + \dfrac{1}{x}} ight)\ln xdx}  \hfill \\ = \int\limits_1^e {x\ln xdx}  + \int\limits_1^e {\dfrac{1}{x}\ln xdx}  \hfill \\ \end{matrix}

    = \left. {\left( {\frac{{{x^2}}}{2}\ln x} ight)} ight|_1^e - \int\limits_1^e {\frac{x}{2}dx}  + \int\limits_0^1 {dt}  = \frac{{{e^2}}}{4} + \frac{5}{4}, với t = \ln x

    \begin{matrix}   \Rightarrow a = \dfrac{1}{4},b = \dfrac{5}{4} \hfill \\   \Rightarrow 2a - 3b =  - \dfrac{{13}}{4} \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Tìm phần thực và phần ảo của số phức

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 26: Thông hiểu

    Chọn đáp án thích hợp

    Tích phân I = \int_{- 1}^{1}\left| x^{3}
+ x^{2} - x - 1 \right|dx có giá trị là:

    Tích phân I = \int_{- 1}^{1}\left| x^{3}
+ x^{2} - x - 1 ight|dx có giá trị là:

    \underset{f(x)}{\overset{x^{3} + x^{2} -
x - 1}{︸}} = 0 \Leftrightarrow (x - 1)(x + 1)^{2} = 0 \Leftrightarrow x
= 1 \vee x = - 1

    Bảng xét dấu:

    Ta có:

    I = \int_{- 1}^{1}\left| x^{3} + x^{2} -
x - 1 ight|dx = - \int_{- 1}^{1}\left( x^{3} + x^{2} - x - 1
ight)dx

    = - \left. \ \left( \frac{1}{4}x^{4} +
\frac{1}{3}x^{3} - \frac{1}{2}x^{2} - x ight) ight|_{- 1}^{1} =
\frac{4}{3}.

    Đáp án đúng là I =
\frac{4}{3}.

  • Câu 27: Thông hiểu

    Chọn đáp án đúng

    Tích phân \int_{0}^{1}{xe^{- x^{2}}dx} bằng

    Ta có:

    Cách 1: Thử bằng máy tính

    Cách 2: I =
\int_{0}^{1}{x.e^{- x^{2}}dx} = - \frac{1}{2}\int_{0}^{1}{( - 2x)e^{-
x^{2}}dx}

    = - \frac{1}{2}\int_{0}^{1}{e^{-
x^{2}}d\left( - x^{2} ight)} = \left. \  - \frac{1}{2}e^{- x^{2}}
ight|_{0}^{1} = - \frac{1}{2}.e^{- 1} + \frac{1}{2}

    = \frac{1}{2} - \frac{1}{2e} = \frac{e -
1}{2e}

  • Câu 28: Vận dụng

    Tính bán kính đường tròn

    Xét các số phức z thỏa mãn \left| z ight| = \sqrt 2. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn của các số phức w = \frac{{4 + iz}}{{1 + z}} là một đường tròn có bán kính bằng

    Ta có

    w=\frac{4+i z}{1+z} \Rightarrow \mathrm{w}(1+z)=4+i z \Leftrightarrow z(\mathrm{w}-i)=4-\mathrm{w} \Rightarrow \sqrt{2}|\mathrm{w}-i|=|4-\mathrm{w}|

    Đặt \mathrm{w}=x+y i(x, y \in \mathbb{R})

    Ta có

    \sqrt{2} . \sqrt{x^2+(y-1)^2}=\sqrt{(x-4)^2+y^2}

    \Leftrightarrow 2\left(x^2+y^2-2 y+1ight)=x^2-8 x+16+y^2

    \Leftrightarrow x^2+y^2+8 x-4 y-14=0 \Leftrightarrow(x+4)^2+(y-2)^2=34

  • Câu 29: Nhận biết

    Tìm số phức z

    Tìm số phức z trong phương trình sau: \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

     Ta có \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

    \Leftrightarrow z = \frac{{( - 1 + 3i)(1 - i)}}{{{{(2 + i)}^2}}}

    \Leftrightarrow z = \frac{{2 + 4i}}{{3 + 4i}} \Leftrightarrow z = \frac{{(2 + 4i)(3 - 4i)}}{{25}}

    \Leftrightarrow z = \frac{{22}}{{25}} + \frac{4}{{25}}i

  • Câu 30: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Thông hiểu

    Tìm điểm không thuộc mặt phẳng (Q)

    Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 1;2;1) và mặt phẳng (P):2x - y + z - 3 = 0. Gọi (Q) là mặt phẳng đi qua A và song song với mặt phẳng (P). Điểm nào sau đây không nằm trên mặt phẳng (Q)?

    Phương trình mặt phẳng (Q)đi qua A và song song với mặt phẳng (P) có dạng

    (Q):2x - y + z + 3 = 0

    Thay tọa độ các đáp án vào phương trình mặt phẳng (Q) ta có 3 điểm K;I;M thoả mãn, còn điểm N không thoả mãn.

  • Câu 32: Thông hiểu

    Tính giá trị biểu thức

    Cho \int_{}^{}{\frac{1}{x^{2} - 1}dx} =
a\ln|x - 1| + b\ln|x + 1| + C với a;b là các số hữu tỉ. Khi đó a - b bằng:

    Ta có: \frac{1}{x^{2} - 1} = \frac{1}{(x
- 1)(x + 1)} = \frac{1}{x - 1} - \frac{1}{x + 1}

    \Rightarrow \int_{}^{}{\frac{1}{x^{2} -
1}dx} = \int_{}^{}{\left( \frac{1}{x - 1} - \frac{1}{x + 1} ight)dx} =
\frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C

    Suy ra a = \frac{1}{2};b = - \frac{1}{2}
\Rightarrow a - b = 1.

  • Câu 33: Nhận biết

    Số phức có phần thực bằng

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 34: Nhận biết

    Xác định nguyên hàm của f(x)

    Tìm nguyên hàm của hàm số f(x) =
e^{x}\left( 2017 - \frac{2018e^{- x}}{x^{5}} ight)?

    Ta có: \int_{}^{}\left\lbrack e^{x}\left(
2017 - \frac{2018e^{- x}}{x^{5}} ight) ightbrack dx =
\int_{}^{}\left( 2017e^{x} - \frac{2018}{x^{5}} ight)dx

    = 2017e^{x} + \frac{504,5}{x^{4}} +
C

  • Câu 35: Thông hiểu

    Tìm phần thực và phần ảo của số phức

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 36: Nhận biết

    Xác định họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{x} + \sin x là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( \frac{1}{x} + \sin x ight)dx} = \ln|x| - \cos x +
C.

  • Câu 37: Vận dụng

    Chọn đáp án chính xác

    Cho hàm số y = f(x) có đạo hàm trên khoảng (0; + \infty) thỏa mãn f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack và f(1) = 0. Giá trị tích phân D = \int_{1}^{5}{f(x)dx} bằng:

    Từ giả thiết ta có:

    f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack

    \Leftrightarrow \frac{f(x)}{x} =
\ln\left\lbrack \frac{x^{3}}{xf'(x) - f(x)}
ightbrack

    \Leftrightarrow e^{\frac{f(x)}{x}} =
\frac{x^{3}}{xf'(x) - f(x)}

    \Leftrightarrow \frac{xf'(x) -
f(x)}{x^{2}}.e^{\frac{f(x)}{x}} = x

    \Leftrightarrow \left\lbrack
\frac{f(x)}{x} ightbrack'.e^{\frac{f(x)}{x}} = x(*)

    Lấy nguyên hàm hai vế của (*) suy ra e^{\frac{f(x)}{x}} = \frac{x^{2}}{2} +
C

    f(1) = 0 \Rightarrow C =
\frac{1}{2} nên e^{\frac{f(x)}{x}}
= \frac{x^{2}}{2} + \frac{1}{2} \Rightarrow f(x) = x\ln\frac{x^{2} +
1}{2};\forall x \in (0; + \infty)

    D = \int_{1}^{5}{f(x)dx} =\int_{1}^{5}{x.\ln\frac{x^{2} + 1}{2}dx}(**)

    Đặt \left\{ \begin{matrix}u = \ln\dfrac{x^{2} + 1}{2} \\dv = xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{2x}{x^{2} + 1}dx \\v = \dfrac{x^{2} + 1}{2} \\\end{matrix} ight.

    Theo công thức tích phân từng phần ta được:

    D = \left. \ \left( \frac{x^{2} +1}{2}.\ln\frac{x^{2} + 1}{2} ight) ight|_{1}^{5} - \int_{1}^{5}{xdx}= 13\ln13 - \left. \ \frac{x^{2}}{2} ight|_{1}^{5} = 13\ln13 -12

  • Câu 38: Vận dụng cao

    Tính giá trị biểu thức T

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}}, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)

     Ta có: f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x + 1}} = \frac{{\left( {A + C} ight){x^2} + (A + B)x + B}}{{{x^2}\left( {x + 1} ight)}}

    => \left\{ {\begin{array}{*{20}{c}}  {A + C = 0} \\   {B = 1} \\   {A + B = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {A =  - 1} \\   {B = 1} \\   {B = 1} \end{array}} ight.

    => F\left( x ight) = \int {f\left( x ight)dx = \int {\left( { - \frac{1}{x} + \frac{1}{{{x^2}}} + \frac{1}{{x + 1}}} ight)dx} }

    => F\left( x ight) =  - \ln \left| x ight| - \frac{1}{x} + \ln \left| {x + 1} ight| + C = \ln \left| {\frac{{x + 1}}{x}} ight| - \frac{1}{x} + C

    Khi đó: F\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_1}{\text{ khi x}} \in \left( {0; + \infty } ight)} \\   {\ln \left( {\dfrac{{ - x - 1}}{x}} ight) - \dfrac{1}{x} + {C_2}{\text{ khi x}} \in \left( { - 1; + \infty } ight)} \\   {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_3}{\text{ khi x}} \in \left( { - \infty ; - 1} ight)} \end{array}} ight.

    Theo bài ra ta có: F(x) + F(-2) = 0,5

    => \left( {\ln 2 - 1 + {C_1}} ight) + \left( {\ln \frac{1}{2} + \frac{1}{2} + {C_2}} ight) = \frac{1}{2}

    => {C_1} + {C_2} = 1

    => F\left( 2 ight) + F\left( { - 3} ight) = \left( {\ln \frac{3}{2} + \frac{1}{2} + {C_1}} ight) + \left( {\ln \frac{2}{3} + \frac{1}{2} + {C_1}} ight) = \frac{5}{6}

  • Câu 39: Vận dụng

    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = - 2 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và điểm A(1;0;2).

    a) Điểm B(2;1; - 1) không thuộc đường thẳng d. Đúng||Sai

    b) Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} =
(1;0;1). Sai||Đúng

    c) Đường thẳng \Delta đi qua điểm A(1;0;2), đồng thời vuông góc và cắt đường thẳng d\frac{x + 1}{2} = \frac{y}{1} = \frac{z + 2}{-
3}. Sai||Đúng

    d) M(a;b;c)là một điểm nằm trên đường thẳng d và cách điểm A một khoảng có độ dài bằng \sqrt{26}. Khi b > 0 thì a + b + c = 3. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = - 2 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và điểm A(1;0;2).

    a) Điểm B(2;1; - 1) không thuộc đường thẳng d. Đúng||Sai

    b) Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} =
(1;0;1). Sai||Đúng

    c) Đường thẳng \Delta đi qua điểm A(1;0;2), đồng thời vuông góc và cắt đường thẳng d\frac{x + 1}{2} = \frac{y}{1} = \frac{z + 2}{-
3}. Sai||Đúng

    d) M(a;b;c)là một điểm nằm trên đường thẳng d và cách điểm A một khoảng có độ dài bằng \sqrt{26}. Khi b > 0 thì a + b + c = 3. Sai||Đúng

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

    Phương án a) đúng: Thay tọa độ điểm B(1;2; - 1) vào phương trình đường thẳng d ta được: \left\{ \begin{matrix}
2 = 2 + t \\
1 = t \\
- 1 = - 2 + t
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 0 \\
t = 0
\end{matrix} \right.\  \Rightarrow B(1;2; - 1) \notin d.

    Phương án b) sai: Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} = (1;1;1).

    Phương án c) sai: Gọi H = d \cap \Delta
\Leftrightarrow H \in d nên H(2 +
t;t; - 2 + t).

    Ta có: \overrightarrow{AH} = (1 + t;t; -
4 + t) là một vectơ chỉ phương của đường thẳng \Delta.

    \Delta\bot d \Rightarrow
\overrightarrow{AH}.\overrightarrow{u} = 0 \Leftrightarrow 1(1 + t) + 1.t + 1( - 4 + t) = 0
\Leftrightarrow t = 1

    \Rightarrow \overrightarrow{AH} = (2;1;
- 3)

    Suy ra \Delta:\frac{x - 1}{2} =
\frac{y}{1} = \frac{z - 2}{- 3}

    Phương án d) sai: Ta có M \in d
\Rightarrow M(2 + t;t;2 + t) nên \overrightarrow{AM} = (1 + t;t; - 4 +
t).

    AM = \sqrt{26} \Leftrightarrow \sqrt{(1 +
t)^{2} + t^{2} + ( - 4 + t)^{2}} = \sqrt{26}

    \Leftrightarrow 3t^{2} - 6t - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = - 1 \\
t = 3
\end{matrix} \right.

    b > 0 \Rightarrow t >
0. Vậy M(5;3;1) \Rightarrow a + b +
c = 9.

  • Câu 40: Nhận biết

    Tìm khẳng định sai

    Chọn khẳng định sai

    Câu sai: “Nếu \overrightarrow{n} là một vectơ pháp tuyến của mặt phẳng (P) thì k\overrightarrow{n}\ \ (k\mathbb{\in R}) cũng là một vectơ pháp tuyến của mặt phẳng (P).”

  • Câu 41: Vận dụng cao

    Chọn khẳng định đúng

    Trong không gian Oxyz, biết mặt phẳng (P) đi qua điểm M(1;4;9) và cắt các tia dương Ox,Oy,Oz lần lượt tại ba điểm A,B,C khác gốc tọa độ O, sao cho OA
+ OB + OC đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?

    Vì mặt phẳng (P) cắt các tia dương của trục Ox,Oy,Oz nên ta có

    \frac{x}{OA} + \frac{y}{OB} +
\frac{z}{OC} = 1

    Ta có M \in (P) \Rightarrow \frac{1}{OA}
+ \frac{4}{OB} + \frac{9}{OC} = 1

    Khi đó, áp dụng bất đẳng thức Bunhiacopxki ta có:

    (OA + OB + OC)\left( \frac{1}{OA} +
\frac{4}{OB} + \frac{9}{OC} ight)

    \geq \left(
\sqrt{OA}.\frac{1}{\sqrt{OA}} + \sqrt{OB}.\frac{2}{\sqrt{OB}} +
\sqrt{OC}.\frac{3}{\sqrt{OC}} ight)^{2} = 36

    \Rightarrow OA + OB + OC \geq
36

    Dấu bằng xảy ra khi: \left\{\begin{matrix}\dfrac{1}{OA} + \dfrac{4}{OB} + \dfrac{9}{OC} = 1 \\OA = \dfrac{OB}{2} = \dfrac{OC}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}OA = 6 \\OB = 12 \\OC = 18 \\\end{matrix} ight.

    Suy ra độ dài ba cạnh OA;OB;OC theo thứ tự lập thành một cấp số cộng.

  • Câu 42: Vận dụng cao

    Tính

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|. Tính \left| {M - mi} ight|

     Ta có P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{z^4} + {{\overline z }^4} + 4} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{{\left( {{z^2} + {{\overline z }^2}} ight)}^2} + 2} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {{z^2} + {{\overline z }^2}} ight)^2} + 2 - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {\left| {{z^2} + {{\overline z }^2}} ight| - 1} ight)^2} + 1

    Vì \left\{ \begin{array}{l}{z^2} + {\overline z ^2} \in \mathbb{R} \\ - 2 \le {z^2} + {\overline z ^2} \le 2\end{array} ight.  nên {P_{{m{max}}}} = 2; {P_{{m{min}}}} = 1.

    Suy ra  \left| {M - mi} ight| = \sqrt 5

  • Câu 43: Thông hiểu

    Xác định giá trị S

    Cho hình (H) là hình phẳng giới hạn bởi parabol y = x^{2} - 4x + 4, đường cong y = x^{3} và trục hoành (phần tô đậm trong hình vẽ).

    Tính diện tích S của hình (H)?

    Phương trình hoành độ giao điểm

    x^{3} = x^{2} - 4x + 4 \Leftrightarrow
(x - 1)\left( x^{2} + 4 ight) = 0 \Leftrightarrow x = 1

    Diện tích hình phẳng là:

    S = \int_{0}^{1}{x^{3}dx} +
\int_{1}^{2}{\left( x^{2} - 4x + 4 ight)dx}

    = \int_{0}^{1}{x^{3}dx} +
\int_{1}^{2}{(x - 2)^{2}d(x - 2)}

    = \left. \ \frac{x^{4}}{4}
ight|_{0}^{1} + \left. \ \frac{(x - 2)^{3}}{3} ight|_{1}^{2} =
\frac{7}{12}

  • Câu 44: Thông hiểu

    Tính giá trị biểu thức

    Cho hàm số f(x) có đạo hàm với mọi x\mathbb{\in R}f'(x) = 2x + 1. Giá trị của f(2) - f(1) bằng:

    Ta có:

    f'(x) = 2x + 1 \Rightarrow\int_{}^{}{f'(x)dx = \int_{}^{}{(2x + 1)dx}}

    = x^{2} + x + C \Rightarrow \existsC_{1}\mathbb{\in R}:f(x) = x^{2} + x + C

    \Rightarrow f(2) - f(1) = 2^{2} + 2 +C_{1} - \left( 1^{2} + 1 + C_{1} ight) = 4

  • Câu 45: Thông hiểu

    Phương trình đường trung tuyến

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tham số của trung tuyến AM ?

     Vì AM là trung tuyến nên M là trung điểm của BC. Gọi M\left( {{x_M},{y_M},{z_M}} ight)

    Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:

    \begin{array}{l}\left\{ \begin{array}{l}{x_M} = \frac{{2 + 3}}{2}\\{y_M} = \frac{{ - 1 - 2}}{2}\\{z_M} = \frac{{4 + 5}}{2}\end{array} ight.\\ \Rightarrow M\left( {\frac{5}{2}, - \frac{3}{2},\frac{9}{2}} ight)\end{array}

    Ta có 1 vecto chỉ phương của (AM) là \overrightarrow {AM}  = \left( {\frac{3}{2}, - \frac{7}{2},\frac{{15}}{2}} ight) = \frac{1}{2}\left( {3, - 7,15} ight)

    (AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:

    \begin{array}{l}\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 - 7t\\z = 15t - 3\end{array} ight.\\(t \in R)\end{array}  

  • Câu 46: Thông hiểu

    Chọn đáp án đúng

    Cho F(x) = (x - 1)e^{x} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}.

    Cách 1: Sử dụng tính chất của nguyên hàm \int_{}^{}{f(x)dx = F(x) \Rightarrow F'(x) =
f(x)}.

    Từ giả thiết, ta có \int_{}^{}{f(x)e^{2x}dx = F(x) \Rightarrow
f(x)e^{2x} = F'(x) = \left\lbrack (x - 1)e^{x} ightbrack' =
xe^{x}}

    \Rightarrow f(x) = \frac{xe^{x}}{\left(
e^{x} ight)^{2}} = \frac{x}{e^{x}}.

    Suy ra f'(x) = \frac{(x)'.e^{x} -
x.\left( e^{x} ight)'}{\left( e^{x} ight)^{2}} = \frac{e^{x} -
x.e^{x}}{\left( e^{x} ight)^{2}} = \frac{e^{x}(1 - x)}{\left( e^{x}
ight)^{2}} = \frac{1 - x}{e^{x}}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx =
\int_{}^{}{\frac{1 - x}{e^{x}}.e^{2x}dx = \int_{}^{}{(1 -
x)e^{x}dx}}}.

    Đặt \left\{ \begin{matrix}
u = 1 - x \\
dv = e^{x}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = - dx \\
v = e^{x} \\
\end{matrix} ight..

    \Rightarrow \int_{}^{}{(1 - x)e^{x}dx =
(1 - x)e^{x} + \int_{}^{}{e^{x}dx}}= (1 - x)e^{x} + e^{x} + C = (2 -x)e^{x} + C.

    Cách 2: Sử dụng công thức nguyên hàm từng phần.

    Ta có \int_{}^{}{e^{2x}.f'(x)dx =
e^{2x}.f(x) - \int_{}^{}{f(x).2e^{2x}dx = f(x)e^{2x} -
2\int_{}^{}{f(x)e^{2x}dx}}}

    Từ giả thiết: \int_{}^{}{f(x)e^{2x}dx =
F(x) = (x - 1)e^{x}}

    \Rightarrow f(x)e^{2x} = F'(x) =
\left\lbrack (x - 1)e^{x} ightbrack' = xe^{x}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx = xe^{x}
- 2(x - 1)e^{x} + C = (2 - x)e^{x} + C}.

  • Câu 47: Thông hiểu

    Phần thực của số phức z là?

    Cho số phức z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}}. Phần thực của số phức z là?

     Ta có: z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}} = \frac{{{{\left( {1 + i} ight)}^{27}} - 1}}{i}

    = \frac{{{{\left( {1 + i} ight)}^{26}}.\left( {1 + i} ight) - 1}}{i} = \frac{{{{(2i)}^{13}}\left( {1 + i} ight) - 1}}{i}

    = \frac{{{2^{13}}i - {2^{13}} - 1}}{i} = {2^{13}} + (1 + {2^{13}})i

    Vậy phần thực là  2^{13}.

  • Câu 48: Vận dụng

    Tính giá trị

    Cho a, b, c là các số thực và z =  - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}. Giá trị của \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight) bằng:

     Cách 1: Ta có

    z =  - \frac{1}{2} + i\frac{{\sqrt 3 }}{2} \Rightarrow {z^2} =  - \frac{1}{2} - i\frac{{\sqrt 3 }}{2}

    {z^3} = 1;{z^4} = z{z^2} + z =  - 1 .

    Ta có \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight)

    = {a^2} + {b^2}{z^3} + {c^2}{z^3} + ab\left( {{z^2} + z} ight) + bc\left( {{z^2} + z} ight) + ca\left( {{z^2} + z} ight)

    = {a^2} + {b^2} + {c^2} - ab - bc - ca

    Cách 2: Chọn a = 1;b = 2;c = 3.

    Ta có \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight)

    = \left( {1 + 2z + 3{z^2}} ight)\left( {1 + 2{z^2} + 3z} ight) = 3

    Thử lại các đáp án với a = 1;b = 2;c = 3  ta thấy chỉ có đáp án {a^2} + {b^2} + {c^2} - ab - bc - ca

    thỏa mãn.

  • Câu 49: Nhận biết

    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =\frac{e^{\tan x}}{\cos^{2}x}?

    Đặt t = \tan x \Rightarrow dt =\frac{1}{\cos^{2}x}dx

    \int_{}^{}{\frac{e^{\tan x}}{\cos^{2}x}dx} = \int_{}^{}{e^{t}dt} = e^{t} + C = e^{\tan x} +C

  • Câu 50: Nhận biết

    Chọn kết luận đúng

    Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên đoạn \lbrack a;b\rbrack nếu:

    Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên đoạn \lbrack a;b\rbrack nếu với mọi x \in (a;b), ta có F^{/}(x) = f(x), ngoài ra F^{/}\left( a^{+} \right) = f(a)F^{/}\left( b^{-} \right) = f(b).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo