Tìm họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Mời các bạn học cùng thử sức với đề Đề thi học kì 2 môn Toán lớp 12 nha!
Tìm họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Chọn phương án thích hợp
Tìm nguyên hàm của hàm số
.
Ta có
Số điểm cực trị của hàm số
Cho F(x) là một nguyên hàm của hàm số
. Hàm số
có bao nhiêu điểm cực trị?
=> có 5 nghiệm đơn
=> Hàm số có 5 điểm cực trị
Xác định nguyên hàm của hàm số
Nguyên hàm của hàm số
là:
Ta có:
Tính tổng T
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Tính giá trị biểu thức
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Tìm số phức z
Tìm số phức
trong phương trình sau: ![]()
Ta có
Tìm phần thực và phần ảo
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Tìm mệnh đề sai
Cho hàm số
là một nguyên hàm của hàm số
trên
. Các mệnh đề sau, mệnh đề nào sai.
Mệnh đề sai
Tìm vectơ pháp tuyến
Trong không gian
cho hai điểm
và
là mặt phẳng trung trực của đoạn thẳng
. Vectơ nào sau đây là một vectơ pháp tuyến của
?
Do là mặt phẳng trung trực của đoạn thẳng
nên
nhận
làm vectơ pháp tuyến.
Suy ra cũng là vectơ pháp tuyến của (α).
Tính giá trị biểu thức
Cho số phức
,
thỏa mãn
và
.
Tính
.
Ta áp dụng công thức , có:
Ta xét:
Với nên không thỏa yêu cầu bài toán.
Với thỏa yêu cầu bài toán.
Vậy
Tính giá trị biểu thức
Biết rằng
là một nguyên hàm của hàm số
trên
. Giá trị của biểu thức
bằng:
Ta có:
suy ra
Tìm nghiệm?
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Viết phương trình đường trung tuyến AM
Trong không gian với hệ tọa độ
cho tam giác ABC có
. Phương trình đường trung tuyến AM của tam giác ABC là.
M là trung điểm BC => M(1;-1;3)
AM đi qua điểm A và có vectơ chỉ phương
Vậy phương trình chính tắc của là
Tìm số phức?
Cho số phức
. Số phức
là số phức nào sau đây?
Ta có:
Suy ra
.
Phần thực của số phức z là?
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Tính giá trị tích phân
Giả sử
và
. Khi đó
bằng
Ta có:
Chọn phương án thích hợp
Tìm nguyên hàm của hàm số
.
Ta có
Ghi đáp án đúng vào ô trống
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là
và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là
và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.
Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.
Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)
Ta có
OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0
⟺13906t - 76483 = 0 ⟺
Suy ra
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
Tìm nguyên hàm của hàm số
Tìm nguyên hàm ![]()
Đặt .
Khi đó
Tính giá trị của tích phân
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ta có:
.
Xét .
Đặt .
Đổi cận .
.
Xét .
Đặt .
Đổi cận .
.
.
Vậy đáp án cần chọn là: .
Tìm tích phân I
Tích phân
có giá trị là:
Tích phân có giá trị là:
Xét
Ta có:
Đáp án đúng là .
Số phức có phần thực bằng
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Chọn khẳng định đúng
Cho hình hộp
. Gọi
là trung điểm của
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Tìm khẳng định đúng.
Chọn khẳng định đúng.
Ta có .
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
.
Ta có
Chọn khẳng định sai
Trong không gian với hệ tọa độ
, cho mặt phẳng
. Trong các mệnh đề sau, mệnh đề nào sai?
Mặt phẳng (P) có một véc-tơ pháp tuyến .
Ta có nên
không cùng phương với
.
Suy ra không là vectơ pháp tuyến của (P).
Vậy khẳng định sai là: “Vectơ là một véc-tơ pháp tuyến của
”.
Chọn đáp án đúng
Trong không gian với hệ tọa độ
. Viết phương trình đường thẳng
đi qua điểm
cắt trục tung tại
sao cho ![]()
đi qua điểm
và có vectơ chỉ phương
Vậy phương trình của là
và
Tính giá trị lớn nhất của biểu thức
Trong không gian với hệ tọa độ
, cho hai điểm
và mặt phẳng
. Biết rằng tồn tại điểm
thuộc
sao cho
đạt giá trị lớn nhất. Tính
.
Thay tọa độ điểm M và N vào vế trái phương trình mặt phẳng (P), ta có nên hai điểm M, N nằm cùng phía đối với mặt phẳng (P).
Khi đó ta có và đẳng thức xảy ra khi
Phương trình tham số của đường thẳng MN là
Tọa độ giao điểm của MN và (P) là nghiệm hệ phương trình
Vậy
Tìm giá trị nhỏ nhất của biểu thức
Gọi
là 2 nghiệm của phương trình
thỏa mãn
. Biết rằng w là số phức thỏa mãn
. Tìm GTNN của biểu thức
.
Giả sử
Ta có:
=> x = 0
=> Tập hợp điểm biểu diễn là trục tung.
Giả sử A, B lần lượt là 2 điểm biểu diễn cho , ta có
Giả sử và M là điểm biểu diễn cho số phức w, ta có
suy ra tập hợp điểm biểu diễn M cho số phức w là đường tròn tâm
bán kính R = 2
Ta có , gọi E là hình chiếu vuông góc của I lên trục tung, ta thấy P nhỏ nhất khi E là trung điểm AB suy ra
, vậy

Xác định số cực trị của hàm số
Hàm số
là nguyên hàm của
. Hỏi hàm số
có bao nhiêu điểm cực trị?
TXĐ:
Ta có:
Phương trình có 1 nghiệm đơn
và một nghiệm kép
nên hàm số
có 1 điểm cực trị.
Tìm mệnh đề sai
Mệnh đề nào sau đây sai?
Đáp án sai là: là một nguyên hàm của
trên
Ghi đáp án vào ô trống
Biết rằng trong không gian với hệ tọa độ
có hai mặt phẳng
và
cùng thỏa mãn các điều kiện sau: đi qua hai điểm
đồng thời cắt các trục tọa độ
tại hai điểm cách đều
. Giả sử
có phương trình
và
có phương trình
. Tính giá trị biểu thức
.
Biết rằng trong không gian với hệ tọa độ
có hai mặt phẳng
và
cùng thỏa mãn các điều kiện sau: đi qua hai điểm
đồng thời cắt các trục tọa độ
tại hai điểm cách đều
. Giả sử
có phương trình
và
có phương trình
. Tính giá trị biểu thức
.
Chọn khẳng định đúng
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Viết phương trình mặt phẳng
Trong không gian
, cho bốn điểm
. Mặt phẳng
chứa
và song song với
có phương trình là:
Ta có .
Mặt phẳng (P) đi qua , nhận
là vectơ pháp tuyến, có phương trình là
(Thỏa mãn song song CD nên thỏa mãn đề bài).
Ghi đáp án vào ô trống
Tích tất cả giá trị của
để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Tích tất cả giá trị của
để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Gọi là góc giữa hai đường thẳng đã cho.
Đường thẳng có vectơ chỉ phương là
.
Đường thẳng có vectơ chỉ phương là
.
Ta có:
Vậy tích tất cả các giá trị của tham số a bằng -4.
Tìm mệnh đề đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
Ta có: thỏa mãn biểu thức
(với
duy nhất) của định lí về các vectơ đồng phẳng.
Vậy đáp án đúng là: “Nếu thì bốn điểm
đồng phẳng.”
Tính mô đun số phức
Cho số phức
. Tính |z|
Ta có
Tính khoảng cách
Trong không gian
, cho mặt phẳng
. Tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm M đến mặt phẳng (P) là:
Tìm số phần tử
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn
và
. Tìm số phần tử của S.
2 || Hai || hai
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn
và
. Tìm số phần tử của S.
2 || Hai || hai
Điều kiện: .
Đặt .
Theo giả thiết .
là đường tròn tâm O(0; 0), bán kính
.
Mặt khác
là đường tròn tâm
, bán kính
.
Để tồn tại duy nhất số phức z thì và
tiếp xúc ngoài hoặc trong.
TH1: và
tiếp xúc ngoài khi và chỉ khi
.
TH2: và
tiếp xúc trong khi và chỉ khi
.
Vậy .
Tìm tọa độ vecto
Trong không gian
, cho
và
. Vectơ
có tọa độ là
Ta có:
và
khi đó:
Phương trình nào đúng?
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Xác định phương trình chính tắc
Trong không gian với hệ tọa độ
,cho đường thẳng
. Phương trình nào dưới đây là phương trình chính tắc của đường thẳng
?
Đường thẳng đi qua điểm
và nhận
làm vectơ chỉ phương.
Phương trình chính tắc của
Tìm họ nguyên hàm của hàm số f(x)
Họ nguyên hàm của hàm số
là:
Ta có:
Tính khoảng cách từ điểm đến đường thẳng
Trong không gian với hệ trục toạ độ
, cho điểm
thoả mãn
. Biết rằng khoảng cách từ
tới mặt phẳng
lần lượt là 2 và 3. Tính khoảng cách từ
đến mặt phẳng
.
Ta có:
Giả sử khi đó ta có:
Mà
Giá trị của tích phân
Giá trị của tích phân
gần nhất với giá trị nào sau đây?
Ta có:
Số phức liên hợp của số phức 3 - 2i
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Chọn đáp án đúng
Tìm
?
Ta có :
Đặt
Phần thực của số phức
Phần thực của số phức
là:
Ta có:
Tính tỉ số hai cạnh
Cho hình hộp
. Một đường thẳng
cắt các đường thẳng
lần lượt tại
sao cho
. Tính
.
Hình vẽ minh họa

Đặt .
Vì nên
,
Ta có
Do
.
Vậy .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: