Tính tích phân I
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể kiểm tra bằng máy tính, dễ dàng thu được kết quả như cách trên
Mời các bạn học cùng thử sức với đề Đề thi học kì 2 môn Toán lớp 12 nha!
Tính tích phân I
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể kiểm tra bằng máy tính, dễ dàng thu được kết quả như cách trên
Tính diện tích hình bình hành
Trong không gian
, cho hình bình hành
với
. Diện tích hình bình hành
bằng:
Gọi là diện tích hình bình hành
khi đó
Mà
Vậy diện tích hình bình hành bằng 2.
Tìm nguyên hàm của hàm của hàm số
Tìm nguyên hàm của hàm của hàm số ![]()
Tìm số phức?
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Tìm giá trị nhỏ nhất của P
Cho hai số phức z, w thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức ![]()
Cách 1 :
Giả sử
(1)
Suy ra x + y = 0
Từ (1) ta có I(3; 2), bán kính r = 1. Gọi H là hình chiếu của I trên .
Đường thẳng HI có PTTS:
Vậy
Cách 2 :
điều này cho thấy M(z) đang nằm trên hình tròn tâm I(3; 2) bán kính bằng 1.
điều này cho thấy N(w) đang thuộc nửa mặt phẳng tạo bởi đường thẳng
là trung trực của đoạn AB với
(Minh hoạ như hình vẽ)

Xác định họ nguyên hàm của hàm số
Nguyên hàm của hàm số
là
Ta có
là nguyên hàm của hàm số đã cho.
Xác định vị trí điểm M
Trong không gian cho tam giác
. Tìm
sao cho giá trị của biểu thức
đạt giá trị nhỏ nhất?
Gọi G là trọng tâm tam giác ABC
Suy ra G cố định và
Dấu “=” xảy ra khi
Vậy với
là trọng tâm tam giác
.
Tìm nghiệm
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Chọn đáp án thích hợp
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Tính giá trị của tham số k
Cho hình hộp
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ ![]()
Hình vẽ minh họa
Ta có:
.
Vậy .
Căn bậc hai của số phức
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Chọn đáp án thích hợp
Trong không gian tọa độ
, cho vectơ
. Trong các vectơ dưới đây, vectơ nào không cùng phương với
?
Ta có: cùng phương với mọi vectơ
Lại có
Vậy vectơ không cùng phương với là
.
Tìm đáp án không thích hợp
Trong không gian
, cho đường thẳng
. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng
?
Đường thẳng có 1 vectơ chỉ phương là
. Do đó vectơ
không là vectơ chỉ phương của
.
Tìm số phức z
Tìm số phức
trong phương trình sau: ![]()
Ta có
Tính giá trị biểu thức
Cho tam giác
. Lấy điểm
nằm ngoài mặt phẳng
. Trên đoạn
lấy điểm
sao cho
và trên đoạn
lấy điểm
sao cho
. Biết biểu diễn
là duy nhất. Tính giá trị biểu thức
?
Hình vẽ minh họa
Theo giả thiết ta có: ;
Lấy điểm P trên cạnh AC sao cho . Khi đó:
Tìm điều kiện để hai đường thẳng song song
Trong không gian với hệ tọa độ
, cho đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương và đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương. Điều kiện để đường thẳng
song song với
là:
Điều kiện để là:
.
Xác định phần ảo của số phức
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Xác định tọa độ điểm C’
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Tìm số phức z
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Tìm số phức z
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Giá trị của hàm số
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và
. Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Chọn đáp án thích hợp
Trong không gian với hệ trục tọa độ
cho hai điểm
. Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng
là điểm nào dưới đây?
Vì I là trung điểm của đoạn AB nên .
Khi đó hình chiếu của I lên là
.
Chọn đáp án đúng
Tìm nguyên hàm của hàm số
.
Ta có: ,
Tính giá trị biểu thức 2a - 3b thỏa mãn đẳng thức
Cho tích phân
, a và b là các số hữu tỉ. Giá trị của
là:
Ta có:
, với
Tìm phần thực và phần ảo của số phức
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Chọn đáp án thích hợp
Tích phân
có giá trị là:
Tích phân có giá trị là:
Bảng xét dấu:
Ta có:
.
Đáp án đúng là .
Chọn đáp án đúng
Tích phân
bằng
Ta có:
Cách 1: Thử bằng máy tính
Cách 2:
Tính bán kính đường tròn
Xét các số phức z thỏa mãn
. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn của các số phức
là một đường tròn có bán kính bằng
Ta có
Đặt
Ta có
Tìm số phức z
Tìm số phức
trong phương trình sau: ![]()
Ta có
Ghi đáp án vào ô trống
Trong không gian
, cho điểm
. Phương trình mặt phẳng
cắt trục
lần lượt tại
(không trùng với gốc tọa độ
) sao cho
là tâm đường tròn ngoại tiếp tam giác
?
Trong không gian
, cho điểm
. Phương trình mặt phẳng
cắt trục
lần lượt tại
(không trùng với gốc tọa độ
) sao cho
là tâm đường tròn ngoại tiếp tam giác
?
Tìm điểm không thuộc mặt phẳng (Q)
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Gọi
là mặt phẳng đi qua
và song song với mặt phẳng
. Điểm nào sau đây không nằm trên mặt phẳng
?
Phương trình mặt phẳng đi qua
và song song với mặt phẳng
có dạng
Thay tọa độ các đáp án vào phương trình mặt phẳng ta có 3 điểm
thoả mãn, còn điểm
không thoả mãn.
Tính giá trị biểu thức
Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Số phức có phần thực bằng
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Xác định nguyên hàm của f(x)
Tìm nguyên hàm của hàm số
?
Ta có:
Tìm phần thực và phần ảo của số phức
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Xác định họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là:
Ta có: .
Chọn đáp án chính xác
Cho hàm số
có đạo hàm trên khoảng
thỏa mãn
và
. Giá trị tích phân
bằng:
Từ giả thiết ta có:
Lấy nguyên hàm hai vế của (*) suy ra
Vì nên
Đặt
Theo công thức tích phân từng phần ta được:
Tính giá trị biểu thức T
Gọi F(x) là một nguyên hàm của hàm số
, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Xét tính đúng sai của các nhận định
Trong không gian
, cho đường thẳng
và điểm
.
a) Điểm
không thuộc đường thẳng
. Đúng||Sai
b) Đường thẳng
có một vectơ chỉ phương
. Sai||Đúng
c) Đường thẳng
đi qua điểm
, đồng thời vuông góc và cắt đường thẳng
là
. Sai||Đúng
d)
là một điểm nằm trên đường thẳng
và cách điểm
một khoảng có độ dài bằng
. Khi
thì
. Sai||Đúng
Trong không gian
, cho đường thẳng
và điểm
.
a) Điểm
không thuộc đường thẳng
. Đúng||Sai
b) Đường thẳng
có một vectơ chỉ phương
. Sai||Đúng
c) Đường thẳng
đi qua điểm
, đồng thời vuông góc và cắt đường thẳng
là
. Sai||Đúng
d)
là một điểm nằm trên đường thẳng
và cách điểm
một khoảng có độ dài bằng
. Khi
thì
. Sai||Đúng
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Phương án a) đúng: Thay tọa độ điểm vào phương trình đường thẳng d ta được:
.
Phương án b) sai: Đường thẳng d có một vectơ chỉ phương .
Phương án c) sai: Gọi nên
.
Ta có: là một vectơ chỉ phương của đường thẳng
.
Mà
Suy ra
Phương án d) sai: Ta có nên
.
Mà . Vậy
.
Tìm khẳng định sai
Chọn khẳng định sai
Câu sai: “Nếu là một vectơ pháp tuyến của mặt phẳng
thì
cũng là một vectơ pháp tuyến của mặt phẳng
.”
Chọn khẳng định đúng
Trong không gian
, biết mặt phẳng
đi qua điểm
và cắt các tia dương
lần lượt tại ba điểm
khác gốc tọa độ
, sao cho
đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?
Vì mặt phẳng cắt các tia dương của trục
nên ta có
Ta có
Khi đó, áp dụng bất đẳng thức Bunhiacopxki ta có:
Dấu bằng xảy ra khi:
Suy ra độ dài ba cạnh theo thứ tự lập thành một cấp số cộng.
Tính
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Xác định giá trị S
Cho hình
là hình phẳng giới hạn bởi parabol
, đường cong
và trục hoành (phần tô đậm trong hình vẽ).

Tính diện tích
của hình
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Tính giá trị biểu thức
Cho hàm số
có đạo hàm với mọi
và
. Giá trị của
bằng:
Ta có:
Phương trình đường trung tuyến
Cho tam giác ABC có ![]()
Viết phương trình tham số của trung tuyến AM ?
Vì AM là trung tuyến nên M là trung điểm của BC. Gọi
Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:
Ta có 1 vecto chỉ phương của (AM) là
(AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:
Chọn đáp án đúng
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
.
Cách 1: Sử dụng tính chất của nguyên hàm .
Từ giả thiết, ta có
.
Suy ra .
Vậy .
Đặt .
.
Cách 2: Sử dụng công thức nguyên hàm từng phần.
Ta có
Từ giả thiết:
.
Vậy .
Phần thực của số phức z là?
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Tính giá trị
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Xác định nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
?
Đặt
Chọn kết luận đúng
Hàm số
được gọi là nguyên hàm của hàm số
trên đoạn
nếu:
Hàm số được gọi là nguyên hàm của hàm số
trên đoạn
nếu với mọi
, ta có
, ngoài ra
và
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: