Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Hãy cùng Luyện tập củng cố các bài tập Trắc nghiệm Hàm số lũy thừa các em nhé!
Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Cho biết năm 2018, tỉnh A có 2 triệu người và tỉ lệ dân số là 1,4%/năm. Hỏi đến năm 2025 tỉnh A có bao nhiêu người, nếu tỉ lệ tăng dân số hằng năm không đổi?
Công thức ước tính dân số
Trong đó A là dân số của nam lấy làm mốc tính, S là dân số sau n năm, i là tỉ lệ tăng dân số hằng năm.
Ta có: A = 2, n = 7; I = 0,014
Số dân tỉnh A đến năm 2025 là triệu người.
Tìm tập xác định của hàm số
Vì nên hàm số xác định khi
Đạo hàm của hàm số
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Hàm số có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có ba điểm cực trị
Tập xác định của hàm số là:
Điều kiện xác định:
=> Tập xác định của hàm số là
Tìm tập xác định D của hàm số
Điều kiện xác định
Vậy tập xác định của hàm số là
Tính đạo hàm của hàm số
Ta có:
Tính đạo hàm của hàm số
Ta có:
Cho hàm số . Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Cho hàm số . Tính
Ta có:
=>
Hàm số có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Tìm tập xác định của hàm số
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Cho biểu thức với a và b là các số thực dương. Khẳng định nào sau đây là đúng?
Thực hiện thu gọn biểu thức như sau:
Có bao nhiêu giá trị nguyên của tham số để hàm số
có tập xác định
?
Vì số mũ không phải là số nguyên nên hàm số xác định với
Do
Vậy có 2017 giá trị nguyên của tham số m thỏa mãn yêu cầu.
Tập xác định của hàm số là:
Hàm số xác định khi
Vậy tập xác định của hàm số là
Cho hàm số . Tập xác định của hàm số đã cho là:
Điều kiện xác đinh:
=> Tập xác định của hàm số là:
Tìm tập xác định của hàm số
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Tìm các giá trị của x để hàm số có nghĩa:
Điều kiện xác định
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: