Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 3 Nguyên hàm - Tích phân và ứng dụng

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Chương 3 Nguyên hàm - Tích phân và ứng dụng.

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tính tích phân

    Tính tích phân I =\int_{0}^{\frac{\pi}{2}}{\left( \sin2x + \sin x ight)dx}?

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\left(\sin2x + \sin x ight)dx} = \left. \ \left( - \frac{1}{2}\cos2x - \cos xight) ight|_{0}^{\frac{\pi}{2}} = 2

  • Câu 2: Vận dụng

    Tìm nguyên hàm của hàm số

    Cho F(x) = x^{2} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}?

    Cách 1: Sử dụng tính chất của nguyên hàm

    \int_{}^{}{f(x)dx = F(x) \Rightarrow
F'(x) = f(x)}.

    Từ giả thiết, ta có:

    \int_{}^{}{f(x)}e^{2x}dx = F(x)
\Rightarrow f(x)e^{2x} = F'(x) = \left( x^{2} ight)' = 2x
\Rightarrow f(x) = \frac{2x}{e^{2x}}

    Suy ra f'(x) = \frac{(2x)'.e^{2x}
- 2x.\left( e^{2x} ight)'}{\left( e^{2x} ight)^{2}} = \frac{(2 -
4x)e^{2x}}{\left( e^{2x} ight)^{2}} = \frac{2 -
4x}{e^{2x}}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx
=}\int_{}^{}{\frac{2 - 4x}{e^{2x}}.e^{2x}dx = (2 - 4x)dx = 2x - 2x^{2}}
+ C

    Cách 2: Sử dụng công thức nguyên hàm từng phần.

    Nếu u, v là hai hàm số có đạo hàm liên tục trên K thì:

    \int_{}^{}{u(x)}v'(x)dx = u(x).v(x) -
\int_{}^{}{v(x).u'(x)}dx.

    Ta có \int_{}^{}{e^{2x}.f'(x)dx =
e^{2x}.f(x) - \int_{}^{}{f(x).2e^{2x}dx = f(x)e^{2x} -
2\int_{}^{}{f(x)e^{2x}dx}}}

    Từ giả thiết: \int_{}^{}{f(x)e^{2x}dx} =
F(x) = x^{2} \Rightarrow f(x)e^{2x} = F'(x) = \left( x^{2}
ight)' = 2x.

    Vậy \int_{}^{}{f'(x)e^{2x}dx = 2x -
2x^{2} + C}.

  • Câu 3: Nhận biết

    Tìm câu sai

    Cho f(x),g(x) là các hàm số liên tục trên \mathbb{R} . Tìm khẳng định sai trong các khẳng định sau?

    Đáp án sai là: \int_{}^{}{\left\lbrack
f(x).g(x) ightbrack dx =
\int_{}^{}{f(x)dx.}\int_{}^{}{g(x)dx}}.

  • Câu 4: Vận dụng

    Tích phân của biểu thức I có giá trị là?

    Tích phân I = \int\limits_{\frac{5}{2}}^3 {\sqrt {\left( {x - 1} ight)\left( {3 - x} ight)} dx} có giá trị là:

    Ta có:

    I = \int\limits_{\frac{5}{2}}^3 {\sqrt {\left( {x - 1} ight)\left( {3 - x} ight)} dx}  = \int\limits_{\frac{5}{2}}^3 {\sqrt { - 3 - {x^2} + 2x} dx}  = \int\limits_{\frac{5}{2}}^3 {\sqrt {1 - {{\left( {x - 2} ight)}^2}} dx}

    Đặt x - 2 = \sin t,t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight] \Rightarrow dx = \cos tdt

    Đổi cận \left\{ \begin{gathered}  x = \frac{5}{2} \Rightarrow t = \frac{\pi }{6} \hfill \\  x = 3 \Rightarrow t = \frac{\pi }{2} \hfill \\ \end{gathered}  ight.

    \Rightarrow I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sqrt {1 - {{\sin }^2}t} .\cos tdt}  = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {{{\cos }^2}tdt}

    = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{1 + \cos 2t}}{2}dt = \frac{1}{2}\left. {\left( {x + \frac{1}{2}\sin 2t} ight)} ight|_{\frac{\pi }{6}}^{\frac{\pi }{2}}}  = \frac{\pi }{6} - \frac{{\sqrt 3 }}{8}

  • Câu 5: Thông hiểu

    Quãng đường từ lúc xuất phát đến lúc dừng lại của ô tô

    Một ô tô xuất phát với vận tốc {v_1}\left( t ight) = 2t + 12\left( {m/s} ight) sau khi đi được một khoảng thời gian {t_1} thì bất ngờ phanh gấp với vận tốc {v_2}\left( t ight) = 24 - 6t\left( {m/s} ight) và đi thêm được một khoảng thời gian {t_2} nữa thì dừng lại. Hỏi từ khi xuất phát đến lúc dừng lại thì ô tô đã đi được bao nhiêu mét?

     Ta có: {v_2}\left( 0 ight) = 24\left( {m/s} ight) do đó khi gặp chướng ngại vật vật có vận tốc là 24\left( {m/s} ight)

    => {v_1}\left( t ight) = 2t + 12 = 24 \Rightarrow t = 6\left( s ight)

    Vật dừng lại khi {v_2}\left( t ight) = 24 - 6t = 0 \Rightarrow {t_2} = 4\left( s ight)

    Quãng đường vật đi được là

    S = \int\limits_0^6 {{v_1}\left( t ight)d\left( t ight) + } \int\limits_0^4 {{v_2}\left( t ight)d\left( t ight)}  = \int\limits_0^6 {\left( {2t + 12} ight)d\left( t ight) + } \int\limits_0^4 {\left( {24 - 6t} ight)d\left( t ight)}  = 156\left( m ight)

  • Câu 6: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) cắt trục Ox tại ba điểm có hoành độ a;b;c với c\in (a;b) như hình bên. Đặt m =\int_{a}^{c}{f(x)dx;n} = \int_{c}^{b}{f(x)dx}. Diện tích của hình phẳng giới hạn bởi đồ thị (C) và trục hoành (phần tô đậm) bằng bao nhiêu?

    Diện tích hình phẳng

    Diện tích hình phẳng phần tô đậm được tính như sau:

    S = \int_{a}^{b}{\left| f(x) ight|dx}= \int_{a}^{c}{\left| f(x) ight|dx} + \int_{c}^{b}{\left| f(x)ight|dx}

    = \int_{a}^{c}{f(x)dx} -\int_{c}^{b}{f(x)dx} = m - n

  • Câu 7: Nhận biết

    Chọn kết luận đúng

    Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên đoạn \lbrack a;b\rbrack nếu:

    Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên đoạn \lbrack a;b\rbrack nếu với mọi x \in (a;b), ta có F^{/}(x) = f(x), ngoài ra F^{/}\left( a^{+} \right) = f(a)F^{/}\left( b^{-} \right) = f(b).

  • Câu 8: Nhận biết

    Chọn công thức đúng

    Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y =
g(x) liên tục trên đoạn \lbrack
a;bbrack và hai đường thẳng x =
a, x = b (a < b)

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y =
g(x) liên tục trên đoạn \lbrack
a;bbrack và hai đường thẳng x =
a, x = b (a < b)S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 9: Thông hiểu

    Chọn mệnh đề đúng

    Cho \int_{1}^{e}{\left( 1 + x\ln x
\right)dx = ae^{2} + be + c.} với a, b, c là các số hữu tỉ. Mệnh đề nào sau đây đúng.

    Ta có \int_{1}^{e}{\left( 1 + x\ln x
ight)dx = ae^{2} + be + c}

    = \int_{1}^{e}{1dx} + \int_{1}^{e}{x\ln
xdx} = e - 1 + \int_{1}^{e}{x\ln xdx}

    Tính J = \int_{1}^{e}{x\ln
xdx}

    Đặt \left\{ \begin{matrix}
u = \ln x \\
dv = xdx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = \frac{1}{x}dx \\
v = \frac{x^{2}}{2}dx \\
\end{matrix} ight.

    Suy ra J = \left. \ \frac{x^{2}}{2}\ln x
ight|_{1}^{e} - \int_{1}^{e}{\frac{x}{2}dx = \frac{e^{2}}{2} - \left.
\ \frac{x^{2}}{4} ight|_{1}^{e}}

    = \frac{e^{2}}{2} - \frac{e^{2}}{4} + \frac{1}{4}
= \frac{e^{2}}{4} + \frac{1}{4}

    Vậy \int_{1}^{e}{\left( 1 + x\ln x
ight)dx =}e - 1 + \int_{1}^{e}{x\ln xdx} = e - 1 + \frac{e^{2}}{4} + \frac{1}{4} =
\frac{e^{2}}{4} + e - \frac{3}{4}

  • Câu 10: Thông hiểu

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f\left( x ight) = \frac{{x + 2}}{{\sqrt {x + 1} }}

     Đặt t = \sqrt {x + 1}  \Rightarrow {t^2} = x + 1 \Rightarrow 2tdt = dx

    F\left( x ight) = \int {\frac{{x + 2}}{{\sqrt {x + 1} }}dx = \int {\left( {\frac{{{t^2} + 1}}{2}} ight).2tdt = \int {\left( {2{t^2} + 2} ight)dt = \frac{{2{t^3}}}{3} + 2t + C} } }

    = \frac{{2\left( {x + 1} ight)\sqrt {x + 1} }}{3} + 2\sqrt {x + 1}  + C = \frac{2}{3}\left( {x + 4} ight)\sqrt {x + 1}  + C

  • Câu 11: Thông hiểu

    Tính F(x)

    Cho F(x) là một nguyên hàm của hàm số f(x) = 4\cos^{2}x - 5 thỏa mãn F(\pi) = 0. Tìm F(x)?

    Ta có: F(x) = \int_{}^{}{\left( 4\cos^{2}x- 5 ight)dx} \Leftrightarrow F(x) = \int_{}^{}{(2\cos2x -3)dx}

    \Leftrightarrow F(x) = \sin2x - 3x +C

    Lại có F(\pi) = 0 \Leftrightarrow - 3\pi
+ C = 0 \Leftrightarrow C = 3\pi

    Vậy F(x) = - 3x + \sin2x +3\pi.

  • Câu 12: Thông hiểu

    Chọn phương án đúng

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{e^{x} + 3}.

    Ta có

    \int_{}^{}{\frac{dx}{e^{x} + 3} =
\int_{}^{}{\frac{e^{x}dx}{e^{x}\left( e^{x} + 3 ight)} =
\int_{}^{}\frac{d\left( e^{x} ight)}{e^{x}\left( e^{x} + 3
ight)}}}

    = \frac{1}{3}\int_{}^{}{\left\lbrack
\frac{1}{e^{x}} - \frac{1}{e^{x} + 3} ightbrack d\left( e^{x}
ight) = \frac{1}{3}\ln\left| \frac{e^{x}}{e^{x} + 3} ight| +
C}

  • Câu 13: Vận dụng

    Tính giá trị biểu thức

    Cho hai hàm số y = f(x) có đạo hàm trên \lbrack 1;2brack thỏa mãn f(1) = 4f(x) = x.f'(x) - 2x^{3} - 3x^{2}. Giá trị f(2) bằng:

    Chọn f(x) = ax^{3} + bx^{2} + cx +
d

    f(x) = xf'(x) - 2x^{3} -
3x^{2}

    \Leftrightarrow ax^{3} + bx^{2} + cx + d
= x\left( 3ax^{2} + 2bx + c ight) - 2x^{3} - 3x^{2}

    Từ đó suy ra \left\{ \begin{matrix}
a = 3a - 2 \\
b = 2b - 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.

    Vậy f(x) = x^{3} + 3x^{2} \Rightarrow
f(2) = 20

  • Câu 14: Vận dụng

    Tính giá trị biểu thức

    Cho (H) là hình phẳng giới hạn bởi parabol y =
\frac{\sqrt{3}}{2}x^{2} và nửa elip có phương trình y = \frac{1}{2}\sqrt{4 - x^{2}} (với - 2 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Gọi S là diện tích của, biết S = \frac{a\pi + b\sqrt{3}}{c} (với a;b;c\mathbb{\in R}). Tính P = a + b + c?

    Hoành độ giao điểm của hai đồ thị: \frac{\sqrt{3}}{2}x^{2} = \frac{1}{2}\sqrt{4 -
x^{2}} \Leftrightarrow x = \pm 1

    Do tính chất đối xứng của đồ thị nên

    S = 2\left(
\frac{\sqrt{3}}{2}\int_{0}^{1}{x^{2}dx} +
\frac{1}{2}\int_{1}^{2}{\sqrt{4 - x^{2}}dx} ight) = 2\left( S_{1} +
S_{2} ight)

    S_{1} =
\frac{\sqrt{3}}{2}\int_{0}^{1}{x^{2}dx} =
\frac{\sqrt{3}}{6}

    S_{2} = \frac{1}{2}\int_{1}^{2}{\sqrt{4 -
x^{2}}dx}. Đặt x = 2\sin t\Rightarrow dx = 2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 1 \Rightarrow t = \dfrac{\pi}{6} \\x = 2 \Rightarrow t = \dfrac{\pi}{2} \\\end{matrix} ight.

    Với t \in \left\lbrack\frac{\pi}{6};\frac{\pi}{2} ightbrack \Rightarrow \cos t \geq 0\Rightarrow \sqrt{4 - x^{2}} = 2\sqrt{\cos^{2}t} = 2\cos t

    S_{2} =\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{4\cos^{2}tdt} =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{2\cos^{2}tdt}

    =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{(1 + \cos2t)dt} = \left. \ \left( t+ \frac{1}{2}\sin2t ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}} =\frac{\pi}{3} - \frac{\sqrt{3}}{4}

    Suy ra S = \frac{4\pi - \sqrt{3}}{6}
\Rightarrow a = 4;b = - 1;c = 6

    Vậy P = a + b + c = 9

  • Câu 15: Vận dụng cao

    Tính giá trị của biểu thức M

    Cho a, b là các số hữu tỉ thỏa mãn

    \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = a\left( {x + 2} ight)\sqrt {x + 2}  + b\left( {x + 1} ight)\sqrt {x + 1}  + C}

    Tính giá trị biểu thức M = a + b.

     I = \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = \int {\frac{{\sqrt {x + 2}  - \sqrt {x + 1} }}{{\left( {x + 2} ight) - \left( {x + 1} ight)}}dx}  = \int {\left( {\sqrt {x + 2}  - \sqrt {x + 1} } ight)dx} }

    => I = \frac{2}{3}.\left( {x + 2} ight)\sqrt {x + 2}  - \frac{2}{3}\left( {x + 1} ight)\sqrt {x + 1}  + C

    => \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{2}{3}} \\   {b = \dfrac{{ - 2}}{3}} \end{array}} ight. \Rightarrow M = a + b = 0

  • Câu 16: Nhận biết

    Xác định thể tích của vật

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 17: Thông hiểu

    Chọn đáp án chính xác

    Biết rằng \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = a\ln|x + 1| + b\ln|x - 2| + C. Mệnh đề nào sau đây đúng?

    Ta có: \frac{2x - 13}{(x + 1)(x - 2)} =
\frac{A}{x + 1} + \frac{B}{x - 2}

    = \frac{A(x - 2) + B(x + 1)}{(x + 1)(x -
2)} = \frac{(A + B)x + ( - 2A + B)}{(x + 1)(x - 2)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 2 \\
- 2A + B = - 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 5 \\
B = - 3 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = \int_{}^{}{\left( \frac{5}{x + 1} - \frac{3}{x - 2}
ight)dx}

    = 5\ln|x + 1|  - 3\ln|x - 2| +C

    Suy ra a = 5;b = - 3 suy ra a - b = 8.

  • Câu 18: Thông hiểu

    Chọn đáp án đúng

    Tính\int_{}^{}{\cos
x.sin^{2}x.dx}

    Ta có: \int_{}^{}{\cos x.sin^{2}x.dx =
\int_{}^{}{sin^{2}x.d\left( \sin x \right) = \frac{sin^{3}x}{3} +
C}}

  • Câu 19: Vận dụng cao

    Xác định nguyên hàm I

    Tìm I = \int_{}^{}\frac{\sin x}{\sin x +
\cos x}dx?

    Đặt: T = \int_{}^{}{\frac{\cos x}{\sin x
+ \cos x}dx}

    \Rightarrow I + T =
\int_{}^{}{\frac{\sin x}{\sin x + \cos x}dx + \int_{}^{}{\frac{\cos
x}{\sin x + \cos x}dx}}

    = \int_{}^{}{\frac{\sin x + \cos x}{\sin
x + \cos x}dx = x + C_{1}}(1)

    Ta lại có :

    I - T = \int_{}^{}{\frac{\sin x}{\sin x
+ \cos x}dx - \int_{}^{}{\frac{\cos x}{\sin x + \cos x}dx
=}}\int_{}^{}{\frac{\sin x - \cos x}{\sin x + \cos x}dx}

    \Leftrightarrow I - T = -\int_{}^{}{\frac{d\left( \sin x + \cos x \right)}{\sin x + \cos x}}= -\ln\left| \sin x + \cos x \right| + C_{2}(2)

    Từ (1);(2) ta có hệ: \left\{ \begin{matrix}
I + T = x + C_{1} \\
I - T = - \ln\left| \sin x + \cos x \right| + C_{2} \\
\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}I = \dfrac{1}{2}\left( x - \ln\left| \sin x + \cos x \right| \right) + C\\T = \dfrac{1}{2}\left( x + \ln\left| \sin x + \cos x \right| \right) + C\\\end{matrix} \right.

  • Câu 20: Nhận biết

    Tìm câu sai

    Các khẳng định nào sau đây là sai?

    Dáp án sai là : \int_{}^{}{f(x)\ dx} =
F(x) + C \Rightarrow \int_{}^{}{f(u)\ dx} = F(u) + C

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Nguyên hàm - Tích phân và ứng dụng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo