Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 3 Nguyên hàm - Tích phân và ứng dụng

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Chương 3 Nguyên hàm - Tích phân và ứng dụng.

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Tính giá trị của tham số a

    Biết I = \int_{0}^{1}{\frac{\sqrt{ln^{3}x
+ 3x}\left( ln^{2}x + \frac{1}{3}x \right)}{x}dx} = \frac{2}{9}\left(
\sqrt{1 + ae + 27e^{2} + 27e^{3}} - 3\sqrt{3} \right), a là các số hữu tỉ. Giá trị của a là:

    Ta có:

    I = \int_{1}^{e}{\frac{\sqrt{ln^{3}x +
3x}\left( ln^{2}x + \frac{1}{3}x ight)}{x}dx}

    =
\frac{1}{3}\int_{1}^{e}{\frac{\sqrt{ln^{3}x + 3x}\left( 3ln^{2}x + x
ight)}{x}dx}

    Đặt t = ln^{3}x + 3x \Rightarrow dt =
\frac{3}{x}ln^{2}x + 1

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 3 \\
x = e \Rightarrow t = 1 + 3e \\
\end{matrix} ight..

    \Rightarrow I = \int_{3}^{1 +
3e}\sqrt{t}dt = \frac{2}{3}\left. \ \left( \sqrt{t^{3}} ight)
ight|_{3}^{1 + 3e} = \frac{2}{3}\left( \sqrt{(1 + 3e)^{3}} - 3\sqrt{3}
ight).

    = \frac{2}{9}\left( \sqrt{1 + 9e +
27e^{2} + 27e^{3}} - 3\sqrt{3} ight) \Rightarrow a = 9

  • Câu 2: Vận dụng

    Tính thể tích nước

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Xác định hàm số f(x)

    Cho f'(x) = 2x - cos2x. Tìm f(x) biết f(0) = 0.

    Ta có

    f(x) = \int_{}^{}{f'(x)dx} =
\int_{}^{}{(2x - cos2x)dx} = x^{2} - \frac{1}{2}sin2x + C.

    f(0) = 0 \Rightarrow C = 0. Vậy f(x) = x^{2} -
\frac{1}{2}sin2x.

  • Câu 4: Nhận biết

    Tính tích phân

    Tính tích phân I =\int_{0}^{\frac{\pi}{2}}{\left( \sin2x + \sin x ight)dx}?

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\left(\sin2x + \sin x ight)dx} = \left. \ \left( - \frac{1}{2}\cos2x - \cos xight) ight|_{0}^{\frac{\pi}{2}} = 2

  • Câu 5: Nhận biết

    Xác định nguyên hàm của f(x)

    Tìm nguyên hàm của hàm số f(x) =
e^{x}\left( 2017 - \frac{2018e^{- x}}{x^{5}} ight)?

    Ta có: \int_{}^{}\left\lbrack e^{x}\left(
2017 - \frac{2018e^{- x}}{x^{5}} ight) ightbrack dx =
\int_{}^{}\left( 2017e^{x} - \frac{2018}{x^{5}} ight)dx

    = 2017e^{x} + \frac{504,5}{x^{4}} +
C

  • Câu 6: Thông hiểu

    Chọn công thức đúng

    Diện tích hình phẳng được gạch chéo trong hình bên bằng

    Dựa và hình vẽ ta có diện tích hình phẳng được gạch chéo trong hình bên là:

    \int_{- 1}^{2}{\left\lbrack \left( -
x^{2} + 2 ight) - \left( x^{2} - 2x - 2 ight) ightbrack dx} =
\int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4 ight)dx}.

  • Câu 7: Vận dụng

    Chọn một nguyên hàm đúng

    Một nguyên hàm của f(x) =
\frac{x}{cos^{2}x} là :

    Ta có: I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}

    Đặt: \left\{ \begin{matrix}
u = x \\
dv = \frac{1}{cos^{2}x}dx \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = \tan x \\
\end{matrix} \right.

    Khi đó:

    I = uv - \int_{}^{}{vdu} = x\tan x -
\int_{}^{}{\tan xdx}

    = x\tan x + \ln\left| \cos x \right| +
C

  • Câu 8: Nhận biết

    Xác định hàm số theo yêu cầu

    Hàm số nào dưới đây là một nguyên hàm của hàm số f(x) = x + \sin(2x + 1)?

    Ta có:

    \left( \frac{1}{2}x^{2} - \cos(2x + 1)
\right)^{'} = x + 2sin(2x + 1).

    \left( \frac{1}{2}x^{2} - 2cos(2x + 1)
\right)^{'} = x + 4sin(2x + 1).

    \left( \frac{1}{2}x^{2} +
\frac{1}{2}\cos(2x + 1) \right)^{'} = x - \sin(2x + 1).

    \left( \frac{1}{2}x^{2} -
\frac{1}{2}\cos(2x + 1) \right)^{'} = x + \sin(2x + 1).

    Vậy F(x) = \frac{1}{2}x^{2} -
\frac{1}{2}\cos(2x + 1)là một nguyên hàm của hàm số f(x) = x + \sin(2x + 1).

  • Câu 9: Thông hiểu

    Tính giá trị biểu thức S

    Biết \int_{}^{}{3x^{2}(2020 +
x^{3})^{2019}dx} = a(2020 + x^{3})^{b} + C, với a \in \mathbb{Q};{\text{ }}b \in \mathbb{Z}. Tính giá trị S = \frac{1}{{{{\left( {a.b} \right)}^{2020}}}}?

    Ta có:

    \int_{}^{}{3x^{2}(2020 +
x^{3})^{2019}dx} = \int_{}^{}{(2020 + x^{3})^{2019}d\left( x^{3} + 2020
\right)} = \frac{1}{2020}(2020 + x^{3})^{2020} + C

    \Rightarrow a = \frac{1}{2020};b =
2020

    \Rightarrow S = \frac{1}{{{{\left( {\frac{1}{{2020}}.2020} \right)}^{2020}}}} = 1

  • Câu 10: Thông hiểu

    Chọn phương án đúng

    Tìm nguyên hàm I = \int_{}^{}{\frac{1}{4
- x^{2}}dx}

    Ta có

    \int_{}^{}{\frac{1}{a^{2} - x^{2}}dx =
\int_{}^{}{\frac{1}{(a + x)(a - x)}dx}}

    = \frac{1}{2a}\int_{}^{}{\left(
\frac{1}{a - x} + \frac{1}{a + x} ight)dx}

    = \frac{1}{2a}.\ln\left| \frac{x + a}{x -
a} ight| + C

    Áp dụng vào bài ta chọn I =
\frac{1}{4}\ln\left| \frac{x + 2}{x - 2} ight| + C.

  • Câu 11: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =\cos3x.

    Ta có \int_{}^{}{\cos3xdx =
\frac{1}{3}\int_{}^{}{d(\sin3x)} = \frac{\sin3x}{3}} + C

  • Câu 12: Vận dụng cao

    Chọn phương án thích hợp

    Tìm I =
\int_{}^{}\frac{cos^{4}x}{sin^{4}x + cos^{4}x}dx?

    Đặt: T =
\int_{}^{}{\frac{sin^{4}x}{sin^{4}x + cos^{4}x}dx}

    \Rightarrow I + T =
\int_{}^{}{\frac{cos^{4}x}{sin^{4}x + cos^{4}x}dx +
\int_{}^{}{\frac{sin^{4}x}{sin^{4}x + cos^{4}x}dx}}

    = \int_{}^{}\frac{sin^{4}x +
cos^{4}x}{sin^{4}x + cos^{4}x}dx = x + C_{1}(1)

    Mặt khác:

    I - T =
\int_{}^{}{\frac{cos^{4}x}{sin^{4}x + cos^{4}x}dx -
\int_{}^{}{\frac{sin^{4}x}{sin^{4}x + cos^{4}x}dx}} = \int_{}^{}\frac{cos^{4}x - sin^{4}x}{sin^{4}x +
cos^{4}x}dx

    \Leftrightarrow I - T =
\int_{}^{}{\frac{cos^{2}x - sin^{2}x}{1 -
2sin^{2}x.cos^{2}x}dx} =
\int_{}^{}\frac{cos2x}{1 - \frac{1}{2}sin^{2}x}dx

    \Leftrightarrow I - T =
\int_{}^{}{\frac{2cos2x}{2 - sin^{2}2x}dx} = \frac{1}{2\sqrt{2}}\ln\left( \frac{\sqrt{2} +
sin2x}{\sqrt{2} - sin2x} \right) + C_{2}(2)

    Từ (1);(2) ta có hệ:

    \left\{ \begin{matrix}I + T = x + C_{1} \\I - T = \dfrac{1}{2\sqrt{2}}\ln\left( \dfrac{\sqrt{2} + sin2x}{\sqrt{2} -sin2x} \right) + C_{2} \\\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}I = \dfrac{1}{2}\left( x + \dfrac{1}{2\sqrt{2}}\ln\left( \dfrac{\sqrt{2} +sin2x}{\sqrt{2} - sin2x} \right) \right) + C \\T = \dfrac{1}{2}\left( x - \dfrac{1}{2\sqrt{2}}\ln\left( \dfrac{\sqrt{2} +sin2x}{\sqrt{2} - sin2x} \right) \right) + C \\\end{matrix} \right.

  • Câu 13: Thông hiểu

    Tính giá trị biểu thức

    Cho hàm số f(x) = \left\{ \begin{matrix}
2x\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
3x^{2} - 1\ \ khi\ x < 1 \\
\end{matrix} ight. có một nguyên hàm là F(x) thỏa mãn F(0) = 1F(x) liên túc trên \mathbb{R}. Giá trị biểu thức K = F( - 1) - F(2) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{2} + C_{1}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + C_{2}\ \ khi\ x < 1 \\
\end{matrix} ight.

    F(0) = 1 \Rightarrow C_{2} =
1

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 1 tức là

    \lim_{x ightarrow 1^{+}}F(x) = \lim_{x
ightarrow 1^{-}}F(x) = F(1)

    \Leftrightarrow 1 + C_{1} = C_{2}
\Leftrightarrow C_{1} = 0

    Do đó F(x) = \left\{ \begin{matrix}
x^{2}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + 1\ \ khi\ x < 1 \\
\end{matrix} ight.

    K = F( - 1) - F(2) = ( - 1 + 1 + 1) +
\left( 2^{2} ight) = 5

  • Câu 14: Thông hiểu

    Chọn đáp án đúng

    Một ôtô đang chạy với vận tốc 10 m/s thì người lái đạp phanh; từ thời điểm đó, ôtô chuyển động chậm dần đều với vận tốc v = - 5t + 15(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ôtô còn di chuyển bao nhiêu mét?

    Quãng đường vật đi từ lúc đạp phanh cho đến lúc dừng hẳn

    - 5t + 15 = 0 \Leftrightarrow t =
3

    \Rightarrow \int_{3}^{0}{( - 5t + 15)dt}
= \left( - \frac{5t^{2}}{2} + 15t ight)|_{0}^{3}

    = - \left( - \frac{5}{2}.3^{2} + 15.3
ight) = 22,5(m)

  • Câu 15: Vận dụng

    Chọn đáp án đúng

    Theo phương pháp đổi biến số (x
\rightarrow t), nguyên hàm của I =
\int_{}^{}\frac{2sinx + 2cosx}{\sqrt[3]{1 - sin2x}}dx là:

    Ta có:

    I = \int_{}^{}\frac{2sinx +
2cosx}{\sqrt[3]{1 - sin2x}}dx = \int_{}^{}\frac{2\left( \sin x + \cos x
\right)}{\sqrt[3]{\left( \sin x - \cos x \right)^{2}}}dx.

    Đặt t = \sin x - \cos x \Rightarrow dt =
\left( \sin x + \cos x \right)dx.

    \Rightarrow I =
\int_{}^{}\frac{2}{\sqrt[3]{t^{2}}}dt = 2.\frac{1}{1 + \left( -
\frac{2}{3} \right)}t^{\frac{1}{3}} + C = 6\sqrt[3]{t} + C.

  • Câu 16: Nhận biết

    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số: y = x^{2} - 3x
+ \frac{1}{x}

    \left( \frac{x^{3}}{3} -
\frac{3}{2}x^{2} + \ln|x| \right)' = \frac{3x^{2}}{3} -
\frac{3.2x}{2} + \frac{1}{x} với \forall x > 0

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{3}}{3} - \frac{3}{2}x^{2} + \ln|x| + C

  • Câu 17: Nhận biết

    Chọn kết luận đúng

    Họ tất cả các nguyên hàm của f(x) = x^{2}
+ sin2x

    Ta có \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( x^{2} + sin2x \right)dx} = \frac{x^{3}}{3} -
\frac{1}{2}cos2x + C.

  • Câu 18: Thông hiểu

    Tính giá trị của biểu thức

    Biết \int_{}^{}{x(x + 1)^{3}dx} = a(x +
1)^{5} + b(x + 1)^{4} + C, với a,b \in \mathbb{Q}. Tính giá trị S = {\left( {\frac{{a + b}}{{a.b}}} \right)^{2020}}

    Ta có: x(x + 1)^{3} = (x + 1)^{4} - (x +
1)^{3}

    Khi đó \int_{}^{}{x(x + 1)^{3}dx} =
\frac{1}{5}(x + 1)^{5} - \frac{1}{4}(x + 1)^{4} + C

    \Rightarrow a = \frac{1}{5};b = -
\frac{1}{4} \Leftrightarrow S = \left\lbrack \frac{\frac{1}{5} -
\frac{1}{4}}{\frac{1}{5}.\left( - \frac{1}{4} \right)}
\right\rbrack^{2020} = 1

  • Câu 19: Thông hiểu

    Tính giá trị của biểu thức

    Gọi F(x) là một nguyên hàm của hàm số f(x), với f(x) = 3sinx + \frac{4}{cos^{2}x}, biết F(0) = 2. Tính F\left( \frac{\pi}{3} \right).

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
3sinx + \frac{4}{cos^{2}x} \right)dx}

    = 3\int_{}^{}{\sin xdx} +
4\int_{}^{}{\frac{1}{cos^{2}x}dx}

    = - 3cosx + 4tanx + C.

    Do đó F(x) = - 3cosx + 4tanx +
C.

    F(0) = 2 \Leftrightarrow - 3 + C = 2
\Leftrightarrow C = 5.

    Suy ra F(x) = - 3cosx + 4tanx +
5.

    Vậy F\left( \frac{\pi}{3} \right) = -
3cos\frac{\pi}{3} + 4tan\frac{\pi}{3} + 5 = \frac{7}{2} +
4\sqrt{3}.

  • Câu 20: Vận dụng

    Tính diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi y = \left| {2{x^2} - 4x} ight|;y = x + 3

     Xét phương trình hoành độ giao điểm ta có:

    \begin{matrix}  \left| {2{x^2} - 4x} ight| = x + 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\left\{ {\begin{array}{*{20}{l}}  {2{x^2} - 4x \geqslant 0} \\   {2{x^2} - 4x = x + 3} \end{array}} ight.} \\   {\left\{ {\begin{array}{*{20}{l}}  {2{x^2} - 4x \leqslant 0} \\   { - \left( {2{x^2} - 4x} ight) = x + 3} \end{array}} ight.} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - \dfrac{1}{2}} \\   {x = 3} \end{array}} ight. \hfill \\ \end{matrix}

    Diện tích hình phẳng cần tính là:

    \begin{matrix}  S = \int_{ - \dfrac{1}{2}}^3 | |2{x^2} - 4x| - x - 3|{\text{d}}x \hfill \\   = \left| {\int_{ - \dfrac{1}{2}}^0 {\left( {2{x^2} - 5x - 3} ight)} {\text{d}}x} ight| + \left| {\int_0^2 {\left( { - 2{x^2} + 3x - 3} ight)} {\text{d}}x} ight| + \left| {\int_2^3 {\left( {2{x^2} - 5x - 3} ight)} {\text{d}}x} ight| \hfill \\   = \dfrac{{19}}{{24}} + \dfrac{{16}}{3} + \dfrac{{17}}{6} = \dfrac{{215}}{{24}}({\text{dvdt}}) \hfill \\ \end{matrix}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Nguyên hàm - Tích phân và ứng dụng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo