Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 3 Nguyên hàm - Tích phân và ứng dụng

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Chương 3 Nguyên hàm - Tích phân và ứng dụng.

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Chọn kết luận đúng

    Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức f\left( 1 ight) + g\left( 1 ight) = 4;g\left( x ight) =  - xf'\left( x ight);f\left( x ight) =  - xg'\left( x ight). Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {g\left( x ight) =  - xf'\left( x ight)} \\   {f\left( x ight) =  - xg'\left( x ight)} \end{array}} ight. \hfill \\   \Rightarrow f\left( x ight) + g\left( x ight) =  - x\left[ {f'\left( x ight) + g'\left( x ight)} ight] \hfill \\   \Rightarrow \dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}} = \dfrac{{ - 1}}{x} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow \int\limits_1^4 {\dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}}dx = \int\limits_1^4 {\dfrac{{ - 1}}{x}dx} }  \hfill \\   \Leftrightarrow \int\limits_1^4 {\dfrac{{d\left[ {f\left( x ight) + g\left( x ight)} ight]}}{{f\left( x ight) + g\left( x ight)}} = } \left. {\ln \left| x ight|} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( x ight) + g\left( x ight)} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| - \ln \left| {f\left( 1 ight) + g\left( 1 ight)} ight| =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| = 0 \hfill \\   \Rightarrow f\left( 4 ight) + g\left( 4 ight) = 1 \hfill \\ \end{matrix}

     

  • Câu 2: Nhận biết

    Chọn đáp án đúng

    Cho hàm số f(x) = x^{3} - x^{2} + 2x -
1. Gọi F(x) là một nguyên hàm của f(x), biết rằng F(1) = 4 thì:

    Ta có:

    \int_{}^{}{f(x)dx} = \frac{x^{4}}{4} -
\frac{x^{3}}{3} + x^{2} - x + C = F(x)

    Theo bài ra ta có: F(1) = 4

    \Leftrightarrow \frac{1^{4}}{4} -
\frac{1^{3}}{3} + 1^{2} - 1 + C = 4 \Leftrightarrow C =
\frac{49}{12}

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{4}}{4} - \frac{x^{3}}{3} + x^{2} - x +
\frac{49}{12}

  • Câu 3: Vận dụng

    Chọn đáp án đúng

    Biết xe^{x} là một nguyên hàm của hàm số f( - x) trên khoảng ( - \infty; + \infty). Gọi F(x) là một nguyên hàm của f'(x)e^{x} thỏa mãn F(0) = 1. Giá trị của F( - 1) bằng:

    Ta có: f( - x) = \left( xe^{x}
ight)' = e^{x} + xe^{x};\forall x \in ( - \infty; +
\infty)

    Do đó f( - x) = e^{- ( - x)} - ( - x)e^{-
( - x)};\forall x \in ( - \infty; + \infty)

    Suy ra f(x) = e^{- x}(1 - x);\forall x
\in ( - \infty; + \infty)

    Nên f'(x) = \left\lbrack e^{- x}(1 -
x) ightbrack' = e^{- x}(x - 2)

    \Rightarrow f'(x)e^{x} = e^{- x}(x -
2)e^{x} = x - 2

    Vậy F(x) = \int_{}^{}{(x - 2)dx} =
\frac{1}{2}(x - 2)^{2} + C

    Từ đó F(0) = \frac{1}{2}(0 - 2)^{2} + C =
C + 2

    F(0) = 1 \Rightarrow C = -
1

    Vậy F(x) = \frac{1}{2}(x - 2)^{2} - 1
\Rightarrow F( - 1) = \frac{1}{2}( - 1 - 2)^{2} - 1 =
\frac{7}{2}

  • Câu 4: Nhận biết

    Xác định họ nguyên hàm

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y =
x^{5}.Phát biểu nào sau đây đúng?

    Ta có \left(
\frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}
ight)\mathbf{'}\mathbf{=}\mathbf{x}^{\mathbf{5}}

    Vậy đáp án cần tìm là: \frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}\mathbf{+
C}.

  • Câu 5: Vận dụng

    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục nhận giá trị dương trên (0; +\infty) và thỏa mãn f(1) =1; f(x) = f'(x).\sqrt{3x +1};\forall x > 0. Giá trị f(3) gần nhất với giá trị nào sau đây?

    \left\{ \begin{matrix}f(x) > 0 \\f(x) = f'(x)\sqrt{3x + 1} \\\end{matrix} ight.\  \Rightarrow \frac{f'(x)}{f(x)} =\frac{1}{\sqrt{3x + 1}}

    \Rightarrow\int_{}^{}{\frac{f'(x)}{f(x)}dx} = \int_{}^{}{\frac{1}{\sqrt{3x +1}}dx} \Rightarrow \ln f(x) = \frac{2\sqrt{3x + 1}}{3} + C

    f(1) = 1 \Rightarrow C = -\frac{4}{3}

    \Rightarrow f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}} \Rightarrow f\left( 3 ight)  \approx 2,17

  • Câu 6: Thông hiểu

    Chọn phương án thích hợp

    Nguyên hàm của hàm số f(x) =
\frac{1}{\left( \ln x \right)^{2}} - \frac{1}{\ln x}

    Ta có f(x) = \frac{1}{\left( \ln x
ight)^{2}} - \frac{1}{\ln x} = \frac{1 - \ln x}{\left( \ln x
ight)^{2}}

    = \frac{( - x)'.\ln x - ( - x).\left(
\ln x ight)'}{\left( \ln x ight)^{2}} = \left( \frac{- x}{\ln x}
ight)'

    \Rightarrow \int_{}^{}{f(x)dx = \frac{-
x}{\ln x} + C}.

  • Câu 7: Thông hiểu

    Tính giá trị của biểu thức

    Biết F(x) là một nguyên hàm của hàm số f(x) = \sin^{3}x.\cos x và F(0) = \pi. TìmF\left( \frac{\pi}{2} \right).

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =\int_{}^{}{\sin^{3}x.\cos x.dx}}

    = \int_{}^{}{\sin^{3}x.d\left( \sin x
ight) = \frac{1}{4}\sin^{4}x + C}

    F(0) \Rightarrow \pi \Rightarrow C = \pi
\Rightarrow F(x) = \frac{1}{4}\sin^{4}x + \pi

    \Rightarrow F\left( \frac{\pi}{2} ight)
= \frac{1}{4} + \pi

  • Câu 8: Thông hiểu

    Tìm đáp án đúng

    Tìm nguyên hàm F(x) của hàm số f(x) = x.\ln\left( ex^{2} \right) với x > 0.

    Ta có

    f(x) = x.\left( \ln e + 2\ln x ight) =
x(1 + 2\ln x)

    = x^{2}.\frac{1}{x} + (2x)\ln x =
x^{2}.\left( \ln x ight)' + \left( x^{2}
ight)'.\ln x

    = \left( x^{2}\ln x ight)'
\Rightarrow F(x) = x^{2}.\ln x + C

  • Câu 9: Thông hiểu

    Chọn phương án đúng

    Tìm \int_{}^{}{\sin^{5}x.\cos^{2}xdx}.

    Vì lũy thừa của \sin x là số lẻ nên ta đổi biến u = \cos x \Rightarrow du =
\left( \cos x ight)'dx.

    \int_{}^{}{\sin^{5}x.\cos^{2}xdx = -
\int_{}^{}{\left( 1 - \cos^{2}x ight)^{2}.\cos^{2}x.\left( \cos
ight)'dx}}

    = - \int_{}^{}{\left( 1 - u^{2}
ight)^{2}.u^{2}du}

    = \int_{}^{}{\left( 2u^{4} - u^{2} -
u^{6} ight)du}

    = \frac{2u^{5}}{5} - \frac{u^{3}}{3} -
\frac{u^{7}}{7} + C

    = \frac{2\cos^{5}x}{5} -
\frac{\cos^{3}x}{3} - \frac{\cos^{7}x}{7} + C.

  • Câu 10: Nhận biết

    Chọn kết luận đúng

    Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên đoạn \lbrack a;b\rbrack nếu:

    Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên đoạn \lbrack a;b\rbrack nếu với mọi x \in (a;b), ta có F^{/}(x) = f(x), ngoài ra F^{/}\left( a^{+} \right) = f(a)F^{/}\left( b^{-} \right) = f(b).

  • Câu 11: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 0,59

    Đáp án là:

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 0,59

    Gọi S là diện tích hình phẳng (H). Lúc dó S = 2S_{1} + 2S_{2}, trong đó S_{1} là diện tích phần gạch sọc ở bên phải OyS_{2} là diện tích phần gạch ca rô trong hình vẽ bên.

    GọiA,B là các giao diếm có hoành độ dương của đường thẳng y = k và đồ thị hàm sốy = \left| x^{2} - 1
ight|, trong đó A\left( \sqrt{1 -
k};k ight)B\left( \sqrt{1 +
k};k ight).

    Thco yêu cầu bài toán S = 2 \cdot 2S_{1}
\Leftrightarrow S_{1} = S_{2}.

    \Leftrightarrow \int_{0}^{\sqrt{1 -
k}}{\left( 1 - x^{2} - k ight)dx}\  = \int_{\sqrt{1 - k}}^{1}{\left( k
- 1 + x^{2} ight)dx} + \int_{1}^{\sqrt{1 + k}}{\left( k - x^{2} + 1
ight)dx}.

    \Leftrightarrow \ (1 - k)\sqrt{1 - k} -
\frac{1}{3}(1 - k)\sqrt{1 - k}

    = \frac{1}{3} - (1 - k) - \frac{1}{3}(1
- k)\sqrt{1 - k} + (1 - k)\sqrt{1 - k}

    \  + (1 + k)\sqrt{1 + k} - \frac{1}{3}(1
+ k)\sqrt{1 + k} - (1 + k) + \frac{1}{3}

    \Leftrightarrow \ \frac{2}{3}(1 +
k)\sqrt{1 + k} = \frac{4}{3}

    \Leftrightarrow \left( \sqrt{1 + k}
ight)^{3} = 2 \Leftrightarrow k = \sqrt[3]{4} - 1 \approx
0,59.

  • Câu 12: Nhận biết

    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = \frac{1}{x}, trục hoành và hai đường thẳng x = 1, x = e

    Ta có .S = \int_{0}^{e}{\left|
\frac{1}{x} ight|dx} = \ln x|_{1}^{e} = 1

  • Câu 13: Thông hiểu

    Tính tổng a và b

    Biết \int_{0}^{1}{\frac{x + 2}{x^{2} + 4x
+ 7}dx} = a\ln\sqrt{12} + b\ln\sqrt{7}, với a, b là các số nguyên. Tính tổng a + b bằng

    Ta có:

    \int_{0}^{1}{\frac{x + 2}{x^{2} + 4x +
7}dx} = \frac{1}{2}.\int_{0}^{1}{\frac{2x + 4}{x^{2} + 4x +
7}dx}

    = \frac{1}{2}.\int_{0}^{1}\frac{d\left(
x^{2} + 4x + 7 ight)}{x^{2} + 4x + 7} = \left. \ \frac{1}{2}\ln\left(
x^{2} + 4x + 7 ight) ight|_{0}^{1}

    = \frac{1}{2}ln12 - \frac{1}{2}ln7 =
\ln\sqrt{12} - \ln\sqrt{7}

    \Rightarrow a = 1;b = - 1 \Rightarrow a +
b = 0

  • Câu 14: Nhận biết

    Tính thể tích khối tròn xoay

    Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = \cos x,y = 0,x = 0,x = \pi quay xung quanh Ox.

    Thể tích vật thể bằng:

    V = \pi\int_{0}^{\pi}{\left( \cos xight)^{2}dx} = \frac{\pi}{2}\int_{0}^{\pi}{(1 + \cos2x)dx} = \pi\left.\ \left( x + \frac{1}{2}\sin2x ight) ight|_{1}^{\pi} =\frac{\pi^{2}}{2}.

  • Câu 15: Nhận biết

    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số: y = x^{2} - 3x
+ \frac{1}{x}

    \left( \frac{x^{3}}{3} -
\frac{3}{2}x^{2} + \ln|x| \right)' = \frac{3x^{2}}{3} -
\frac{3.2x}{2} + \frac{1}{x} với \forall x > 0

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{3}}{3} - \frac{3}{2}x^{2} + \ln|x| + C

  • Câu 16: Vận dụng

    Tìm giá trị tham số k

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = ax^{3} (a
> 0), trục hoành và hai đường thẳng x = - 1, x =
k (k > 0) bằng \frac{15a}{4}. Tìm k.

    Kí hiệu đồ thị hàm số như sau:

    Ta thấy hàm số y = ax^{3};(a >
0) luôn đồng biến trên \mathbb{R} và có tâm đối xứng là O(0;0). Hình vẽ minh họa ở bên ta thấy với x \in ( - 1;0) thì ax^{3} < 0, với x \in (0;k) thì ax^{3} > 0.

    Vậy S = \int_{- 1}^{k}{\left| ax^{3}
ight|dx = \frac{15a}{4}}

    \Leftrightarrow \int_{- 1}^{0}{\left(
ax^{3} ight)dx} + \int_{0}^{k}{\left( ax^{3} ight)dx} =
\frac{15a}{4}

    \Leftrightarrow \frac{- ax^{4}}{4}|_{-
1}^{0} + \frac{ax^{4}}{4}|_{0}^{k} = \frac{15a}{4};(k >
0)

    \Leftrightarrow \frac{a}{4} +
\frac{ak^{4}}{4} = \frac{15a}{414} \Leftrightarrow k^{4} = 14
\Leftrightarrow k = \sqrt[4]{14}

  • Câu 17: Thông hiểu

    Tính diện tích hình phẳng

    Cho hàm số y = x^{2} - 2x có đồ thị (P). Các tiếp tuyến với đồ thị tại O(0;0) và tại A(3;3) cắt nhau tại B. Tính diện tích hình phẳng giới hạn bởi cung OA của (P) và hai tiếp tuyến BO;BA?

    Tập xác định D\mathbb{= R}

    y' = 2x - 2

    Tiếp tuyến tại O(0; 0) là OB: y =
y'(0)(x - 0) + 0 \Leftrightarrow y = - 2x

    Tiếp tuyến tại A(3; 3) là AB: y =
y'(3)(x - 3) + 3 \Leftrightarrow y = 4x - 9

    Suy ra OA \cap OB = B\left( \frac{3}{2};
- 3 ight)

    Diện tích hình giới hạn là

    S = \int_{0}^{\frac{3}{2}}{x^{2}dx} +
\int_{\frac{3}{2}}^{3}{\left( x^{2} - 6x + 9 ight)dx} = \frac{9}{8} +
\frac{9}{8} = \frac{9}{4}

  • Câu 18: Vận dụng

    Chọn kết luận đúng

    Cho hàm số f(x) có đồ thị như hình vẽ:

    Các biểu thức E;F;G;H xác định bởi E = \int_{0}^{3}{f(x)dx};F =
\int_{3}^{5}{f(x)dx};G = \int_{2}^{4}{f(x)dx};H = f'(x). Mệnh đề nào sau đây đúng?

    Dựa vào hình vẽ và diện tích hình phẳng ta có:

    E = \int_{0}^{3}{f(x)dx} = -
\int_{0}^{3}{\left| f(x) ight|dx} < - 2

    F = \int_{3}^{5}{f(x)dx} >
3

    0 < G = \int_{2}^{4}{f(x)dx} <
2

    - 1 < H = f'(1) < 0 (hệ số góc của tiếp tuyến tại x = 1)

    Như vậy E < H < G <
F

  • Câu 19: Thông hiểu

    Giá trị của tích phân

    Giá trị của tích phân I = \int\limits_e^{{e^2}} {\left( {\frac{{1 + x + {x^2}}}{x}} ight)} dx = a. Biểu thức P = a - 1 có giá trị là:

     Giá trị của tích phân I = \int\limits_e^{{e^2}} {\left( {\frac{{1 + x + {x^2}}}{x}} ight)} dx = a. Biểu thức P = a - 1 có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_e^{{e^2}} {\left( {\dfrac{{1 + x + {x^2}}}{x}} ight)} dx \hfill \\ = \int\limits_e^{{e^2}} {\left( {\frac{1}{x} + 1 + x} ight)} dx \hfill \\ = \left. {\left( {\ln \left| x ight| + x + \dfrac{{{x^2}}}{2}} ight)} ight|_e^{{e^2}} \hfill \\ = 1 - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow a = 1 - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\\Leftrightarrow a - 1 = - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\   \Leftrightarrow P =  - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Chọn mệnh đề đúng

    Cho hàm số f(x) thỏa mãn f'(x) = 3 - 5\sin x và f(0) = 10. Mệnh đề nào dưới đây đúng?

    Ta có f(x) = \int_{}^{}{f'(x)dx =
\int_{}^{}{(3 - 5\sin x)dx = 3x + 5\cos x + C}}

    Do f(0) = 10 nên 3.0 + 5cos0 + C = 10 \Leftrightarrow C =
5.

    Vậy f(x) = 3x + 5\cos x + 5.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Nguyên hàm - Tích phân và ứng dụng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo