Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Số phức (Dễ)

Hãy cùng Luyện tập củng cố các vấn đề Tổng quan về số phức ngay các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn hàm số thỏa mãn điều kiện đề bài

    Trong các hàm số sau, hàm số nào nghịch biến trên tập xác định của nó?

    Hướng dẫn:

    Hàm trùng phương không nghịch biến trên tập xác định của nó

    Với y = \frac{{x + 1}}{{ - x + 3}} \Rightarrow y' = \frac{4}{{{{\left( { - x + 3} ight)}^2}}} > 0,\forall x e 3

    Hàm số đã cho đồng biến trên từng khoảng xác định

    Với y =  - 2{x^3} - 3x + 5 \Rightarrow y' =  - 6{x^2} - 3 < 0,\forall x \in \mathbb{R}

    => Hàm số nghịch biến trên \mathbb{R}

  • Câu 2: Nhận biết
    Phần thực và phần ảo của số phức liên hợp của số phức

    Phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i là:

    Gợi ý:

    Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 3: Vận dụng
    Tính tổng P

    Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m - 2} ight){x^2} + 12x + 1 đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:

    Hướng dẫn:

    Ta có: y' = 3{x^2} - 6\left( {m - 2} ight)x + 12

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 9{{\left( {m - 2} ight)}^2} - 36 \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    => m \in \left\{ {0;1;2;3;4} ight\}

    => Tổng P bằng 10

  • Câu 4: Nhận biết
    Tìm số phức liên hợp của số phức z

    Số phức liên hợp của số phức 3 - 4i là:

    Gợi ý:

    Cho số phức z = a + bi. Số phức \overline z = a – bi gọi là số phức liên hợp với số phức trên hay \overline z = \overline {a + bi} = a - bi

    Hướng dẫn:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 5: Vận dụng
    Tìm m để hàm số nghịch biến trên khoảng

    Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)

    Hướng dẫn:

    Ta có: y' = 2mx - \left( {m + 6} ight). Theo yêu cầu bài toán ta có:

    y' \leqslant 0;\forall x \in \left( { - 1; + \infty } ight)

    => 2mx - \left( {m + 6} ight) \leqslant 0 \Leftrightarrow m \leqslant \frac{6}{{2x - 1}}

    Xét hàm số g\left( x ight) = \frac{6}{{2x - 1}},x \in \left( { - 1; + \infty } ight)

    Ta có bảng biến thiên như sau:

    Tìm m để hàm số nghịch biến trên khoảng

    Vậy - 2 \leqslant m \leqslant 0

  • Câu 6: Nhận biết
    Xác định phần ảo của số phức

    Xác định phần ảo của số phức z = 18 - 12i.

    Gợi ý:

     Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 7: Nhận biết
    Số phức 5 + 6i có phần thực bằng

    Số phức 5 + 6i có phần thực bằng 

    Gợi ý:

    Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 8: Nhận biết
    Số phức nào dưới đây là số thuần ảo?

    Số phức nào dưới đây là số thuần ảo?

    Gợi ý:

    Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.

  • Câu 9: Thông hiểu
    Tìm khoảng đồng biến của hàm số

    Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?

    Hướng dẫn:

     Ta có bảng biến thiên như sau:

    Tìm khoảng đồng biến của hàm số

    Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Hàm số nào sau đây nghịch biến trên khoảng (1; 3)?

    Hướng dẫn:

    Xét hàm số y = \frac{1}{3}{x^3} - 2{x^2} + 3x + 1y' = {x^2} - 4x + 3

    => y’ = 0 => \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 3} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Chọn đáp án đúng

    Do đó hàm số nghịch biến trên khoảng (1; 3)

  • Câu 11: Thông hiểu
    Tìm giá trị của tham số để hàm số nghịch biến trên R

    Xác định giá trị của a để hàm số f\left( x ight) = \sin x - ax + b nghịch biến trên trục số.

    Hướng dẫn:

     Ta có: y' = \cos x - a

    Hàm số nghịch biến trên \mathbb{R}

    \begin{matrix}   \Rightarrow \cos x - a \leqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant \cos x,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant 1 \hfill \\ \end{matrix}

  • Câu 12: Vận dụng
    Tìm m nguyên thỏa mãn điều kiện

    Số giá trị nguyên của tham số m \in \left[ { - 20;20} ight] để hàm số y = \frac{1}{3}{x^3} + 2{x^2} + \left( {m + 3} ight)x + 2 đồng biến trên \mathbb{R} là:

    Hướng dẫn:

    Ta có: y' = {x^2} + 4x + m + 3

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 4 - \left( {m + 3} ight) < 0} \end{array}} ight. \Leftrightarrow m \geqslant 1 \hfill \\ \end{matrix}

    Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \left[ { - 20;20} ight]} \\   {m \in \mathbb{Z}} \end{array}} ight.

    => Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 13: Thông hiểu
    Xác định hàm số đồng biến trên R

    Trong các hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có: y = {x^3} + {x^2} + 2x + 1 \Rightarrow y' = 3{x^2} - 6x + 3 \geqslant 0,\forall x \in \mathbb{R}

    Ta có: y’ = 0 chỉ tại x = 1

    Vậy y = {x^3} + {x^2} + 2x + 1 đồng biến trên

  • Câu 14: Vận dụng
    Tìm m nguyên để hàm số đồng biến trên R

    Số giá trị nguyên của tham số m để hàm số y = 2{x^3} - 3m{x^2} + 6mx + 2 đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có: y' = 6{x^2} - 6mx + 6m

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 6 > 0} \\   {\Delta ' = 9{m^2} - 36m \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Kết luận nào sau đây về tính đơn điệu của hàm số y = \frac{{3x - 1}}{{x - 2}} là đúng?

    Hướng dẫn:

    Ta có: y' = \frac{{ - 5}}{{{{\left( {x - 2} ight)}^2}}} < 0,\forall x e 2

    Do đó hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞)

  • Câu 16: Thông hiểu
    Tìm khoảng nghịch biến của hàm số

    Hàm số y = x3 – 3x2 nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 6x = 3x\left( {x - 2} ight) \hfill \\   \Rightarrow y' < 0 \Rightarrow 0 < x < 2 \hfill \\ \end{matrix}

    Theo dấu hiệu nhận biết tính đơn điệu của hàm số, hàm số nghịch biến trên (0; 2)

  • Câu 17: Thông hiểu
    Xác định khoảng đồng biến của hàm số

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số y = -2f(x) đồng biến trên khoảng

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' =  - 2f'\left( x ight) =  - 2{x^2} + 4x \hfill \\  y' > 0 \Rightarrow x \in \left( {0;2} ight) \hfill \\ \end{matrix}

    => Hàm số y = -2f(x) đồng biến trên khoảng (0; 2)

  • Câu 18: Vận dụng
    Tìm m để hàm số đồng biến trên R

    Tìm giá trị của tham số m để hàm số y = \sin 2x + mx + c đồng biến trên \mathbb{R}

    Hướng dẫn:

    Ta có: y' = 2\cos 2x + m

    Hàm số đồng biến trên \mathbb{R}

    \begin{matrix}   \Leftrightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \mathop {\min }\limits_\mathbb{R} y' =  - 2 + m \geqslant 0 \Leftrightarrow m \geqslant 2 \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu
    Tìm hàm số đồng biến trên khoảng cho trước

    Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?

    Hướng dẫn:

    Ta có hàm số y = ax, y = log­ax đồng biến trên tập xác định nếu a > 0

    Do đó hàm số y = log­3x đồng biến trên (1; +∞)

  • Câu 20: Nhận biết
    Số phức có phần thực bằng

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

    Gợi ý:

     Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi

    (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 12 (cũ)

Xem thêm