Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Nguyên hàm (Khó)

Hãy cùng Luyện tập củng cố các bài tập Trắc nghiệm Nguyên hàm các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Giá trị của biểu thức T

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

    Hướng dẫn:

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 2: Vận dụng cao
    Chọn kết luận đúng

    Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức f\left( 1 ight) + g\left( 1 ight) = 4;g\left( x ight) =  - xf'\left( x ight);f\left( x ight) =  - xg'\left( x ight). Kết luận nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {g\left( x ight) =  - xf'\left( x ight)} \\   {f\left( x ight) =  - xg'\left( x ight)} \end{array}} ight. \hfill \\   \Rightarrow f\left( x ight) + g\left( x ight) =  - x\left[ {f'\left( x ight) + g'\left( x ight)} ight] \hfill \\   \Rightarrow \dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}} = \dfrac{{ - 1}}{x} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow \int\limits_1^4 {\dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}}dx = \int\limits_1^4 {\dfrac{{ - 1}}{x}dx} }  \hfill \\   \Leftrightarrow \int\limits_1^4 {\dfrac{{d\left[ {f\left( x ight) + g\left( x ight)} ight]}}{{f\left( x ight) + g\left( x ight)}} = } \left. {\ln \left| x ight|} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( x ight) + g\left( x ight)} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| - \ln \left| {f\left( 1 ight) + g\left( 1 ight)} ight| =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| = 0 \hfill \\   \Rightarrow f\left( 4 ight) + g\left( 4 ight) = 1 \hfill \\ \end{matrix}

     

  • Câu 3: Thông hiểu
    Hàm số f(x) = x^3 + 3x - 2 có một nguyên hàm F(x)

    Hàm số f\left( x ight) = {x^3} + 3x - 2 có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:

    Gợi ý:

     \int {\left[ {f\left( x ight) + g\left( x ight)} ight]dx}  = \int {f\left( x ight)dx}  + \int {g\left( x ight)dx}

    Hướng dẫn:

     F\left( x ight) = \int {\left( {{x^3} + 3x - 2} ight)dx = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + C}

    Hàm số đi qua B(2; 10) => \frac{{{2^4}}}{4} + \frac{{{{3.2}^2}}}{2} - 2.2 + C = 10 \Rightarrow C = 4

    => F\left( x ight) = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + 4

    => F\left( { - 2} ight) = \frac{{{{\left( { - 2} ight)}^4}}}{4} + \frac{{3.{{\left( { - 2} ight)}^2}}}{2} - 2\left( { - 2} ight) + 4 = 6

  • Câu 4: Thông hiểu
    Cho F(x) là một nguyên hàm của hàm số f(x) = e^x + 2x

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^x} + 2x thỏa mãn F\left( 0 ight) = \frac{3}{2}. Tìm F(x).

    Gợi ý:

     \int {\left[ {f\left( x ight) + g\left( x ight)} ight]dx}  = \int {f\left( x ight)dx}  + \int {g\left( x ight)dx}

    Hướng dẫn:

     F\left( x ight) = \int {f\left( x ight)dx = \int {\left( {{e^x} + 2x} ight)dx = {e^x} + {x^2} + C} }

    Theo bài ra ta có:

    F\left( 0 ight) = \frac{3}{2} \Rightarrow {e^x} + {x^2} + C = \frac{3}{2} \Rightarrow C = \frac{1}{2}

    => F\left( x ight) = {e^x} + {x^2} + \frac{1}{2}

  • Câu 5: Vận dụng cao
    Phương trình tiếp tuyến của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 6: Vận dụng cao
    Chọn công thức đúng

    Cho hàm số f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của 3e^2F(x)?

    Hướng dẫn:

     Ta có:

    F\left( x ight) = \int {\left( {{x^2} - 1} ight){e^{{x^3} - 3x}}dx = \frac{1}{3}\int {{e^{{x^3} - 3x}}d\left( {{x^3} - 3x} ight) = \frac{1}{3}{e^{{x^3} - 3x}} + C} }

    F'\left( x ight) = f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} = 0 \Rightarrow x =  \pm 1

    \begin{matrix}  F''\left( x ight) = 2x.{e^{{x^3} - 3x}} + \left( {{x^2} - 1} ight)\left( {3{x^2} - 3} ight){e^{{x^3} - 3x}} \hfill \\  F''\left( 1 ight) > 0;F''\left( { - 1} ight) < 0 \hfill \\ \end{matrix}

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)

    => F\left( 1 ight) = 0 \Rightarrow \frac{1}{3}{e^{ - 2}} + C = 0 \Rightarrow C =  - \frac{1}{{3{e^2}}}

    => F\left( x ight) = \frac{{{e^{{x^3} - 3x + 2}} - 1}}{{3{e^2}}} Hay  3e^2F(x) = e^{{x^3} - 3x + 2} - 1

  • Câu 7: Vận dụng
    Giá trị của hàm số

    Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2}. Giá trị của f(2) là:

    Hướng dẫn:

     Chọn f(x) = ax3 + bx2 + cx + d

    Ta có:

    \begin{matrix}  f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow a{x^3} + 2{x^2} + cx + d = x\left( {3a{x^2} + 2bx + c} ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3a - 2} \\   {b = 2b - 3} \\   {d = 0} \\   {c = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1} \\   {b = 3} \\   {c = 0} \\   {d = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy f\left( x ight) = {x^3} + 3{x^2} => f(x) = 20

  • Câu 8: Thông hiểu
    Hàm số F(x) = 2sinx - 3cosx là một nguyên hàm của hàm số

    Hàm số F\left( x ight) = 2\sin x - 3\cos x là một nguyên hàm của hàm số nào sau đây?

    Gợi ý:

     \int {\left[ {f\left( x ight) + g\left( x ight)} ight]dx}  = \int {f\left( x ight)dx}  + \int {g\left( x ight)dx}

    \int {\sin xudu =  - \cos u + C}

    \int {\cos udu = \sin u + C}

    Hướng dẫn:

     F'\left( x ight) = f\left( x ight) = 2\cos x + 3\sin x

  • Câu 9: Nhận biết
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

    Gợi ý:

     Công thức áp dụng làm bài:

    \int {{u^n}dx}  = \frac{{{u^{n + 1}}}}{{n + 1}} + C,\left( {n e  - 1} ight)

    Hướng dẫn:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 10: Vận dụng
    Tìm tập nghiệm S của phương trình

    Cho F(x) là nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{{e^x} + 3}} thỏa mãn F\left( 0 ight) =  - \frac{{ - 1}}{3}\ln 4. Tìm tập nghiệm S của phương trình 3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2

    Hướng dẫn:

    F\left( x ight) = \int {\frac{1}{{{e^x} + 3}}dx}  = \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}

     Đặt t = {e^x} \Rightarrow dt = {e^x}dx

    \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}  = \int {\frac{1}{{t\left( {t + 3} ight)}}dt}

    = \int {\left( {\frac{1}{{3t}} - \frac{1}{{3\left( {t + 3} ight)}}} ight)dt = \frac{{\ln |t|}}{3} - \frac{{\ln |t + 3|}}{3} + C}

    = \frac{{\ln \left( {{e^x}} ight)}}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C = \frac{x}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C

    F\left( 0 ight) =  - \frac{1}{3}\ln 4 \Rightarrow  - \frac{{\ln 4}}{3} + C =  - \frac{1}{3}\ln 4 \Rightarrow C = 0

    Ta có:

    \begin{matrix}  3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow 3\left[ {\dfrac{x}{3} - \dfrac{{\ln \left( {{e^x} + 3} ight)}}{3}} ight] + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow x = 2 \hfill \\ \end{matrix}

  • Câu 11: Nhận biết
    Tìm họ nguyên hàm của hàm số f(x) = 3x^2 + 1

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

    Gợi ý:

     Học sinh sử dụng công thức sau:

    \int {\left[ {f\left( x ight) + g\left( x ight)} ight]dx}  = \int {f\left( x ight)dx}  + \int {g\left( x ight)dx}

    Hướng dẫn:

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 12: Thông hiểu
    Biết F(x) = x2 + 4x + 1 là một nguyên hàm của hàm số y = f(x)

    Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3

    Gợi ý:

     f\left( x ight) = \left[ {F\left( x ight)} ight]'

    Hướng dẫn:

     f\left( x ight) = \left[ {F\left( x ight)} ight]' = 2x + 4 \Rightarrow F\left( 3 ight) = 10

  • Câu 13: Thông hiểu
    Gọi F(x) là một nguyên hàm của hàm số f(x) = cos5x.cosx

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \cos 5x.\cos x thỏa mãn F\left( {\frac{\pi }{5}} ight) = 0. Tính F\left( {\frac{\pi }{6}} ight).

    Gợi ý:

     \cos a.\cos b = \frac{1}{2}\left[ {\cos \left( {a + b} ight) + \cos \left( {a - b} ight)} ight]

    \int {\cos udu = \sin u + C}

    Hướng dẫn:

     \begin{matrix}  \cos 5x + \cos x = \dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight) \hfill \\  \int {\cos 5x.\cos xdx}  = \int {\dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight)} dx = \dfrac{1}{2}.\dfrac{{\sin 6x}}{6} + \dfrac{1}{2}\dfrac{{\sin 4x}}{4} + C \hfill \\  F\left( {\dfrac{\pi }{3}} ight) = 0 \Rightarrow C = \dfrac{{\sqrt 3 }}{6} \hfill \\  F\left( {\dfrac{\pi }{6}} ight) = \dfrac{{\sqrt 3 }}{8} \hfill \\ \end{matrix}

  • Câu 14: Vận dụng
    Tính giá trị của biểu thức

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{2}{{x - 1}};f\left( 0 ight) = 3;f\left( 2 ight) = 4. Tính giá trị của biểu thức  N = f\left( { - 2} ight) + f\left( 5 ight)

    Hướng dẫn:

     

    f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\frac{2}{{x - 1}}dx}  = \ln \left| {2x - 1} ight| + C

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + {C_2}{\text{ khi x  <  }}1} \end{array}} ight.

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 3 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 3} \\   {f\left( 2 ight) = 4 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 3} \\   {{C_1} = 4} \end{array}} ight.

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + 4{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + 3{\text{ khi x  <  }}1} \end{array}} ight.

    => N = f\left( { - 2} ight) + f\left( 5 ight) = \left\{ {2\ln \left[ {1 - \left( { - 2} ight)} ight] + 3} ight\} + \left\{ {2\ln \left( {5 - 1} ight) + 4} ight\}

    = 2\ln 3 + 2\ln 4 + 7

  • Câu 15: Vận dụng cao
    Chọn mệnh đề đúng trong các mệnh đề sau

    Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên \left( {0; + \infty } ight) và thỏa mãn f(1) = 1, f\left( x ight) = f'\left( x ight)\sqrt {3x + 1} ,\forall x > 0. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: f\left( x ight) > 0f\left( x ight) = f'\left( x ight)\sqrt {3x + 1}

    => \frac{{f'\left( x ight)}}{{f\left( x ight)}} = \frac{1}{{\sqrt {3x + 1} }}

    => \int {\frac{{f'\left( x ight)}}{{f\left( x ight)}}dx}  = \int {\frac{1}{{\sqrt {3x + 1} }}} dx \Rightarrow \ln f\left( x ight) = \frac{{2\sqrt {3x + 1} }}{3} + C

    Mà f(1) = 1 => C =  - \frac{4}{3}f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}}.f\left( 5 ight) = {e^{\frac{4}{3}}} \approx 3,79

  • Câu 16: Vận dụng
    Xác định họ các nguyên hàm thỏa mãn điều kiện

    Họ các nguyên hàm của hàm số f\left( x ight) = \frac{{2x - 1}}{{{{\left( {x + 1} ight)}^2}}} trên khoảng \left( { - 1; + \infty } ight)

    Gợi ý:

     \int {\left[ {f\left( x ight) + g\left( x ight)} ight]dx}  = \int {f\left( x ight)dx}  + \int {g\left( x ight)dx}

    Hướng dẫn:

     f\left( x ight) = \frac{{2x - 1}}{{{{\left( {x + 1} ight)}^2}}} = \frac{2}{{x + 1}} - \frac{3}{{{{\left( {x + 1} ight)}^2}}}

    \int {f\left( x ight)dx}  = \int {\left[ {\frac{2}{{x + 1}} - \frac{3}{{{{\left( {x + 1} ight)}^2}}}} ight]dx}  = 2\ln \left| {x + 1} ight| + \frac{3}{{x + 1}} + C

  • Câu 17: Nhận biết
    Tìm nguyên hàm của hàm của hàm số

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

    Gợi ý:

     Dựa vào công thức \int {\frac{1}{u}dx}  = \ln \left| u ight| + C để giải bài toán

    Hướng dẫn:

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

  • Câu 18: Nhận biết
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f\left( x ight) = 3x + \cos 3x

    Gợi ý:

     Công thức sử dụng trong bài toán là:

    \int {\left[ {f\left( x ight) + g\left( x ight)} ight]dx = } \int {f\left( x ight)dx + \int {g\left( x ight)dx} }

    Hướng dẫn:

     Ta có: \int {\left( {3x + \cos 3x} ight)dx = \frac{{3{x^2}}}{2} + \frac{{\sin 3x}}{3} + C}

  • Câu 19: Vận dụng cao
    Viết phương trình tiếp tuyến của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn 2xf\left( x ight) + {x^2}f'\left( x ight) = 1;f\left( 1 ight) = 0. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  2xf\left( x ight) + {x^2}f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left( {{x^2}} ight)'.f\left( x ight) + {x^2}.f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left[ {{x^2}f\left( x ight)} ight]' = 1 \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {{x^2}f\left( x ight)} ight]'dx}  = \int {1.dx}  \hfill \\   \Leftrightarrow {x^2}f\left( x ight) = x + C \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  f\left( 1 ight) = 0 \Rightarrow 1.f\left( 1 ight) = 1 + C \Rightarrow C =  - 1 \hfill \\   \Rightarrow {x^2}f\left( x ight) = x - 1 \Rightarrow f\left( x ight) = \dfrac{{x - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    Xét phương trình hoành độ giao điểm với trục hoành ta có:

    \frac{{x - 1}}{{{x^2}}} = 0 \Rightarrow x = 1\left( {tm} ight)

    Ta lại có: f'\left( x ight) = \frac{{2 - x}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( 1 ight) = 1} \\   {f\left( 1 ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( 1 ight)\left( {x - 1} ight) + f\left( 1 ight) \Rightarrow y = x - 1

  • Câu 20: Nhận biết
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

    Gợi ý:

     \int {{u^n}dx}  = \frac{{{u^{n + 1}}}}{{n + 1}} + C,\left( {n e  - 1} ight)

    Hướng dẫn:

     \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 12 (cũ)

Xem thêm