Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn phân tích đúng

    Cho tứ diện OABC. Gọi G là trọng tâm của tam giác ABC.Phân tích nào sau đây là đúng?

    Ta có: G là trọng tâm tam giác ABC khi \overrightarrow{OG} = \frac{1}{3}\left(
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}
ight)

  • Câu 2: Thông hiểu

    Tam giác ABC đều cần?

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tìm tọa độ của C để ABC là tam giác đều?

     Tam giác ABC đều

    \begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}AC = AB\\BC = AB\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} - 6x - 2y + 9 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 ight)\\{x^2} + {y^2} - 4x - 2y + 3 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 ight)\end{array} ight.\\\left( 2 ight) - \left( 1 ight):2x - 6 = 0 \Leftrightarrow x = 3 \Rightarrow {y^2} - 2y = 0 \Leftrightarrow y = 2 \vee y = 0\end{array}

    Suy ra tọa độ điểm C là có 2 nghiệm C thỏa mãn: 

    C\left( {3;2; - 1} ight);C'\left( {3;0; - 1} ight)

  • Câu 3: Vận dụng

    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz có bao nhiêu mặt phẳng song song với mặt phẳng (Q):x + y + z + 3 = 0, cách điểm M(3;2;1) một khoảng bằng 3\sqrt{3} biết rằng tồn tại một điểm X(a;b;c) trên mặt phẳng đó thỏa mãn a + b + c < - 2?

    Mặt phẳng song song với (Q) có dạng (P):x
+ y + z + m = 0,(m eq 3)

    d\left( M,(P) ight) = \frac{|3 + 2 + 1
+ m|}{\sqrt{3}} = 3\sqrt{3} \Leftrightarrow \left\lbrack \begin{matrix}
m = 3(ktm) \\
m = - 15 \\
\end{matrix} ight.

    Với m = −15 thì với mọi X(a;b;c) \in
(P) ta có a + b + c - 15 = 0
\Leftrightarrow a + b + c = 15 > - 2

    Do đó không có mặt phẳng nào thỏa mãn đề bài

  • Câu 4: Thông hiểu

    Chọn đáp án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho điểm M( - 1;1;2) và hai đường thẳng d:\frac{x - 2}{3} = \frac{y + 3}{2} = \frac{z -
1}{1},d^{'}:\frac{x + 1}{1} = \frac{y}{3} = \frac{z}{- 2}. Phương trình nào dưới đây là phương trình đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.

    Gọi \Delta là đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.
    Giả sử \Delta \cap d = A \Rightarrow A(2 +
3t; - 3 + 2t;1 + t).

    \overrightarrow{AM} = (3 + 3t; - 4 + 2t;
- 1 + t)

    \Delta\bot d^{'} \Rightarrow
\overrightarrow{AM} \cdot \overrightarrow{u_{d^{'}}} = 0
\Leftrightarrow 3 + 3t + 3( - 4 + 2t) - 2( - 1 + t) = 0

    \Leftrightarrow 7t = 7 \Leftrightarrow t
= 1

    \Rightarrow A(5; -
1;2),\overrightarrow{AM} = (6; - 2;0) = 2(3; - 1;0).

    \Delta:\left\{ \begin{matrix}x = - 1 + 3t \\y = 1 - t \\z = 2 \\\end{matrix} ight.

  • Câu 5: Thông hiểu

    Viết phương trình mặt phẳng (P)

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A( - 1; - 2;0),B(0; - 4;0),C(0;0; - 3). Phương trình mặt phẳng (P) nào dưới đây đi qua A, gốc tọa độ O và cách đều hai điểm BC?

    (P) đi qua O nên phương trình mặt phẳng (P) có dạng ax + by + cz = 0\left( a^{2} + b^{2} + c^{2} >
0 ight).

    Vì A ∈ (P) và B, C cách đều (P) nên \left\{ \begin{matrix}
- a - 2b = 0 \\
|4b| = |3c| \\
\end{matrix} ight.

    Chọn a = −6, ta có b = 3, suy ra c = ±4.

    Vậy có hai mặt phẳng thỏa mãn là −6x + 3y − 4z = 0 hoặc −6x + 3y + 4z = 0.

  • Câu 6: Thông hiểu

    Xét tính đúng sai của mỗi kết luận

    Trong không gian Oxyz, cho hai điểm A(1; - 1;2),B( - 2;0;3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}. Sai||Đúng

    b) Tọa độ của vectơ \overrightarrow{AB} =
( - 3;1;1). Đúng||Sai

    c) Điểm A' là hình chiếu của điểm A trên mặt phẳng tọa độ (Oxy) thì \overrightarrow{AA'} = (0;0;2). Sai||Đúng

    d) Tọa độ điểm C để tứ giác OABC là hình bình hành là C(1;1; - 3). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A(1; - 1;2),B( - 2;0;3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}. Sai||Đúng

    b) Tọa độ của vectơ \overrightarrow{AB} =
( - 3;1;1). Đúng||Sai

    c) Điểm A' là hình chiếu của điểm A trên mặt phẳng tọa độ (Oxy) thì \overrightarrow{AA'} = (0;0;2). Sai||Đúng

    d) Tọa độ điểm C để tứ giác OABC là hình bình hành là C(1;1; - 3). Sai||Đúng

    a) Điểm A(1; - 1;2) \Rightarrow
\overrightarrow{OA} = (1; - 1;2) \Rightarrow \overrightarrow{OA} =
\overrightarrow{i} - \overrightarrow{j} +
2\overrightarrow{k}.

    b) \overrightarrow{AB} = ( - 2 - 1;0 +
1;3 - 2) = ( - 3;1;1).

    c) A' là hình chiếu của điểm A trên mặt phẳng tọa độ (Oxy) nên A'(1; - 1;0).

    Suy ra \overrightarrow{AA'} = (0;0; -
2).

    d) Gọi C(x;y;z) \Rightarrow
\overrightarrow{OC} = (x;y;z).

    Ta có \overrightarrow{AB} = ( -
3;1;1).

    Tứ giác OABC là hình bình hành nên \overrightarrow{OC} =
\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = 1 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow C( - 3;1;1).

  • Câu 7: Vận dụng

    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian Oxyz, cho điểm M( - 1;0;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại A,B,C sao cho 3OA = 2OB = OC eq 0?

    Từ giả thiết, ta có thể coi A(2a;0;0),B(0;3b;0),C(0;0;6c) (với |a| = |b| = |c| eq 0).

    Khi đó, phương trình mặt phẳng (P) là \frac{x}{2a} + \frac{y}{3b} + \frac{z}{6c} =1.

    Do (P) đi qua M(−1; 0; 3) nên -\frac{1}{2a} + \frac{1}{2c} = 1.

    Theo trên có c = ±a, kết hợp với phương trình vừa thu được, ta suy ra a = −1, c = 1.

    Cũng theo trên, b = ±a, nên có 2 giá trị của b.

    Suy ra có 2 bộ (a, b, c) thỏa mãn, hay có 2 mặt phẳng thỏa yêu cầu đề bài.

  • Câu 8: Vận dụng cao

    Max của khoảng cách

    Trong không gian với hệ trục tọa độ Oxyz , cho điểm A(3; -1; 0)  và đường thẳng d: \frac{x-2}{-1} = \frac{y+1}{2}=\frac{z-1}{1}  . Mặt phẳng (\alpha) chứa d sao cho khoảng cách từ A đến  lớn nhất có phương trình là:

    Mã của khoảng cách

    Gọi H là hình chiếu vuông góc của A lên (\alpha) , K là hình chiếu vuông góc của A lên d.

    Ta có: d(A, d)=AKcố định và  d(A, (\alpha))=AH\leq AK

    Suy ra  d(A, (\alpha)) lớn nhất bằng AK khi H\equiv K .

    Ta có (d): \frac{x-2}{-1} = \frac{y+1}{2}=\frac{z-1}{1} qua M(2; -1; 1) , có VTCP \vec{u_d} = (-1; 2; 1) .

    Gọi (P)  là mặt phẳng qua A và chứa có VTPT \vec{n_p}=[\vec{u_d}, \vec{AM}]=(2; 0; 2) .

    Mặt phẳng (\alpha) có một VTPT là \vec{n_\alpha}=[\vec{n_p}, \vec{u_d}]=(-4; -4; 4)=-4(1;1;-1)(\alpha)  qua  M (2; -1; 1) có phương trình: 1.(x-2)+1.(y+1)-1.(z-1)=0\Leftrightarrow x+y-z=0

  • Câu 9: Vận dụng

    Tính khoảng cách

    Cho hình hộp chữ nhật ABCD.EFGH có AB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với Ox, Oy, Oz. Gọi M, N, P lần lượt là trung điểm BC, EF, DH. Tính khoảng cách giữa NP và CG.

    Ta biểu diễn các điểm N, P, C, G theo a, b, c được:

    N\left( {\frac{a}{2},0,c} ight);P\left( {0,b,\frac{c}{2}} ight);\,C\left( {a,b,0} ight);\,\,\,G\left( {a,b,c} ight)

    Từ đó, ta tính được các vecto tương ứng:

    \overrightarrow {NP}  = \left( { - \frac{a}{2},b, - \frac{c}{2}} ight);\,\,\,\overrightarrow {CG}  = \left( {0,0,c} ight);\,\,\overrightarrow {PC}  = \left( {a,0, - \frac{c}{2}} ight)

    Để tính khoảng cách giữa NP và CG, ta cần tính tích có hướng và tích độ dài giữa chúng rồi áp dụng CT tính khoảng cách:

    \begin{array}{l}\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight] = \left( { - bc, - \dfrac{{ac}}{2},0} ight) =  > \left| {\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight]} ight| = \dfrac{c}{2}\sqrt {{a^2} + 4{b^2}} \\\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight].\overrightarrow {PC}  =  - abc =  > d\left( {NP,CG} ight) = \dfrac{{2ab\sqrt {{a^2} + 4{b^2}} }}{{{a^2} + 4{b^2}}}\end{array}

  • Câu 10: Nhận biết

    Tìm vectơ cùng phương với vectơ đã cho

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} = (1;3;4). Hãy chọn vectơ cùng phương với \overrightarrow{a}?

    Ta có: \overrightarrow{b} cùng phương với \overrightarrow{a} khi \overrightarrow{b} =
k.\overrightarrow{a};\left( k\mathbb{\in R} ight). Khi đó đáp án cần tìm là \overrightarrow{b} = ( - 2; -
6; - 8) (vì \overrightarrow{b} = -2(1;3;4) = - 2\overrightarrow{a}).

  • Câu 11: Vận dụng cao

    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho \overrightarrow{a} = (1; - 1;0) và hai điểm A( - 4;7;3),B(4;4;5). Giả sử M;N là hai điểm thay đổi trong mặt phẳng (Oxy) sao cho \overrightarrow{MN} cùng hướng với \overrightarrow{a}MN = 5\sqrt{2}. Giá trị lớn nhất của |AM - BN| bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho \overrightarrow{a} = (1; - 1;0) và hai điểm A( - 4;7;3),B(4;4;5). Giả sử M;N là hai điểm thay đổi trong mặt phẳng (Oxy) sao cho \overrightarrow{MN} cùng hướng với \overrightarrow{a}MN = 5\sqrt{2}. Giá trị lớn nhất của |AM - BN| bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Nhận biết

    Tìm điều kiện để hai đường thẳng song song

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M, nhận vectơ \overrightarrow{a} làm vectơ chỉ phương và đường thẳng d' đi qua điểm M', nhận vectơ \overrightarrow{a'} làm vectơ chỉ phương. Điều kiện để đường thẳng d song song với d' là:

    Điều kiện để d//d' là: \left\{ \begin{matrix}
\overrightarrow{a} = k.\overrightarrow{a'};(k eq 0) \\
M otin d' \\
\end{matrix} ight..

  • Câu 13: Thông hiểu

    Tìm tọa độ điểm D

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(3; - 4;0),B( - 1;1;3),C(3;1;0). Xác định tọa độ điểm D \in Ox sao cho AD = BC?

    Ta có: D(x;0;0) \in Ox

    AD = BC \Leftrightarrow \sqrt{(x -
3)^{2} + 16} = 5

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow D(0;0;0) \\
x = 6 \Rightarrow D(6;0;0) \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: D(0;0;0) hoặc D(6;0;0)

  • Câu 14: Thông hiểu

    Xác định khẳng định sai

    Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau.

    Ta có: \overrightarrow{BB'}.\overrightarrow{BD} =
\overrightarrow{BB'}.\left( \overrightarrow{BA} +
\overrightarrow{BC} ight) =
\overrightarrow{BB'}.\overrightarrow{BA} +
\overrightarrow{BB'}.\overrightarrow{BC}

    = BB'.BA\left(
\cos\widehat{B'BA} + cos\widehat{B'BC} ight)

    AA'B'BABCD là hai hình thoi bằng nhau nên

    + \widehat{B'BA} = \widehat{B'BC}
\Rightarrow \overrightarrow{BB'}.\overrightarrow{BD} eq 0 suy ra BB' không vuông góc với BD

    + \widehat{B'BA} + \widehat{B'BC}= 180^{0}\Rightarrow \cos\widehat{B'BA} = - \cos\widehat{B'BC}\Rightarrow \overrightarrow{BB'}.\overrightarrow{BD} = 0 suy ra BB'\bot BD

    Nên đáp án BB'\bot BD có thể sai vì chưa có điều kiện của góc \widehat{B'BA}\widehat{B'BC}

  • Câu 15: Nhận biết

    Xác định vectơ pháp tuyến của mặt phẳng

    Trong không gian Oxyz, mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là:

    Mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là: \overrightarrow{n}
= (2;0;1).

  • Câu 16: Nhận biết

    Xác định phương trình đường thẳng d

    Trong không gian Oxyz, cho đường thẳng d đi qua điểm M(2;2;1) và có một vecto chỉ phương \overrightarrow{u} = (5;2; - 3). Phương trình của d là:

    Đường thẳng d đi qua điểm M(2;2;1) và có một vectơ chỉ phương \overrightarrow{u} = (5;2; - 3), phương trình của d\left\{ \begin{matrix}
x = 2 + 5t \\
y = 2 + 2t \\
z = 1 - 3t \\
\end{matrix} \right.

  • Câu 17: Thông hiểu

    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho điểm M( - 4;0;0)và đường thẳng\Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + 3t \\
z = - 2t \\
\end{matrix} \right.. Gọi H(a;b;c) là hình chiếu của M lên \Delta. Tính a+b+c.

    Gọi H là hình chiếu của M lên \Deltanên tọa độ của H có dạng H(1 - t; - 2 + 3t; - 2t)\overrightarrow{MH}\bot\overrightarrow{u_{\Delta}}

    \overrightarrow{MH}.\overrightarrow{u_{\Delta}} =
0 \Leftrightarrow 14t - 11 = 0 \Leftrightarrow t =
\frac{11}{14}

    \Rightarrow
H(\frac{3}{14};\frac{5}{14};\frac{- 22}{14}) \Rightarrow a + b + c = -
1

  • Câu 18: Nhận biết

    Chọn đáp án đúng

    Trong không gian với hệ trục toạ độ Oxyz. Mặt phẳng đi qua M(1;4;3) và vuông góc với trục Oy có phương trình là:

    Phương pháp tự luận

    Mặt phẳng qua M(1;4;3) và có vectơ pháp tuyến \overrightarrow{j} =
(0;1;0) có phương trình y - 4 =
0.

    Phương pháp trắc nghiệm

    Mặt phẳng qua M và vuông góc với trục Oy có phương trình y = y_{M}.

  • Câu 19: Vận dụng

    Tính góc giữa hai đường thẳng

    Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và các góc \widehat{B'A'D'} =
60^{0},\widehat{B'A'A} = \widehat{D'A'A} =
120^{0}. Tính diện tích các tứ giác A'B'CDACC'A'.

    Hình vẽ minh họa

    Ta có: \overrightarrow{A'C} =
\overrightarrow{a} + \overrightarrow{b} +
\overrightarrow{c},\overrightarrow{B'D} = \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}

    \Rightarrow
\overrightarrow{A'C}.\overrightarrow{B'D} = \left(
\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}
\right)\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} \right) = 0

    \Rightarrow A'C\bot B'D nên S_{A'B'DC} =
\frac{1}{2}A'C.B'D.

    Dễ dàng tính được A'C =a\sqrt{2},B'D = a\sqrt{2}

    \Rightarrow S_{A'B'CD} =\frac{1}{2}a\sqrt{2}a.\sqrt{2} = a^{2}

    S_{AA'C'C} = AA'AC\sin\left(
\overrightarrow{AA'},\overrightarrow{AC} \right), AA' = a,Ac = a\sqrt{3}.

    Tính được \sin\left(
\overrightarrow{AA'},\overrightarrow{AC} \right) = \sqrt{1 -
cos^{2}\left( \overrightarrow{AA'},\overrightarrow{AC} \right)} =
\frac{\sqrt{6}}{3}

    Vậy S_{AA'C'C} =
AA'AC\sin\left( \overrightarrow{AA'},\overrightarrow{AC} \right)
= a.a\sqrt{3}.\frac{\sqrt{6}}{3} = a^{2}\sqrt{2}.

  • Câu 20: Thông hiểu

    Ghi đáp án vào ô trống

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Đáp án là:

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Ta có: \overrightarrow{n_{P}} = (2; -1;2);\overrightarrow{n_{Q}} = (1;m;1)

    Để hai mặt phẳng (P)(Q)vuông góc với nhau thì \overrightarrow{n_{P}}\bot\overrightarrow{n_{Q}}.

    \Leftrightarrow 2.1 - 1.m + 2.1 = 0
\Leftrightarrow m = 4.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo