Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tính diện tích thiết diện

    Cho hình chóp S.ABCSA = SB = SC = a, \widehat{ASB} = \widehat{BSC} = \widehat{CSA} =
\alpha. Gọi (\beta) là mặt phẳng đi qua A và các trung điểm của SB,SC. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (\beta).

    Hinh vẽ minh họa

    Gọi B',C' lần lượt là trung điểm của SB,SC. Thiết diện là tam giác AB'C'.

    Theo bài tập 5 thì S_{AB'C'} =
\frac{1}{2}\sqrt{AB'^{2}AC'^{2} - \left(
\overrightarrow{AB'}.\overrightarrow{AC'}
\right)^{2}}

    Ta có \overrightarrow{AB'} =
\overrightarrow{SB'} - \overrightarrow{SA} =
\frac{1}{2}\overrightarrow{SB} - \overrightarrow{SA}

    \Rightarrow AB'^{2} =
\frac{1}{4}SB^{2} + SA^{2} -
\overrightarrow{SA}\overrightarrow{SB}

    = \frac{a^{2}}{4}(5 -
4cos\alpha).

    Tính tương tự, ta có

    \overrightarrow{AB'}\overrightarrow{AC'} =
\frac{a^{2}}{4}(4 - 3cos\alpha).

    Vậy S_{AB'C'} =
\frac{1}{2}\sqrt{\frac{a^{4}}{16}(5 - 4cos\alpha)^{2} -
\frac{a^{4}}{16}(4 - 3cos\alpha)^{2}}

    = \frac{a^{2}}{8}\sqrt{7cos^{2}\alpha -
16cos\alpha + 9}.

  • Câu 2: Vận dụng cao

    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(4;9;1), phương trình mặt phẳng (\alpha):\frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1 qua điểm M và cắt ba tia Ox,Oy,Oz lần lượt tại A,B,C sao cho OA + OB + OC nhỏ nhất. Tính P = a + b + c.

    Mặt phẳng (\alpha) cắt ba trục tọa độ lần lượt tại A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0.

    Do (\alpha) đi qua điểm M(4;9;1) nên:

    1 = \frac{4}{a} + \frac{9}{b} +
\frac{1}{c} = \frac{2^{2}}{a} + \frac{3^{2}}{b} + \frac{1^{2}}{c} \geq
\frac{(2 + 3 + 1)^{2}}{a + b + c} = \frac{36}{a + b + c}

    \Rightarrow a + b + c \geq
36

    Mà OA + OB + OC = a + b + c nên OA + OB + OC nhỏ nhất khi a + b + c nhỏ nhất và bằng 36.

  • Câu 3: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = - 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào sau đây không thuộc đường thẳng d?

    Thay M(1;2; - 1) vào d ta được: \left\{ \begin{matrix}
1 = 1 - t \\
2 = 2 + 2t \\
- 1 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 \Rightarrow M \in
d

    Thay N(6; - 8;9) vào d ta được: \left\{ \begin{matrix}
6 = 1 - t \\
- 8 = 2 + 2t \\
9 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = - 5 \Rightarrow N \in
d

    Thay P( - 6;16; - 14) vào d ta được: \left\{ \begin{matrix}
- 6 = 1 - t \\
16 = 2 + 2t \\
- 14 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 7 \\
t = 7 \\
t = \frac{13}{2} \\
\end{matrix} ight. hệ vô nghiệm nên P otin d.

    Thay Q( - 19;42; - 41) vào d ta được: \left\{ \begin{matrix}
19 = 1 - t \\
42 = 2 + 2t \\
- 41 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 20 \Rightarrow Q \in
d

  • Câu 4: Nhận biết

    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Đường thẳng \Delta đi qua C và song song với AB có phương trình là:

    Một vectơ chỉ phương của đường thẳng ∆ là \overrightarrow{BA} = (1;2;1)

    Vậy phương trình tham số của đường thẳng ∆ là \left\{ \begin{matrix}
x = 2 + t \\
y = 1 + 2t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 5: Vận dụng

    Tìm giá trị biểu thức S

    Trong không gian tọa độ Oxyz, mặt phẳng (\alpha) đi qua M(1; - 3;8) và chắn trên tia Oz một đoạn thẳng dài gấp đôi các đoạn thẳng mà nó chắn trên các tia OxOy. Giả sử (P):ax + by + cz + d = 0, với a,b,c,d\mathbb{\in Z},d eq 0. Tính S = \frac{a + b + c}{d}.

    Từ giả thiết, ta suy ra các giao điểm của (α) với các tia Ox, Oy, Oy lần lượt là A(a; 0; 0), B(0; a; 0) ,C(0; 0; 2a),  a > 0.

    Suy ra phương trình (đoạn chắn) của (α) là \frac{x}{a} + \frac{y}{a} + \frac{z}{2a} =
1.

    Do (α) đi qua M nên a = 2.

    Suy ra (α): 2x + 2y + z − 4 = 0.

    Từ đó, ta tính được: S = \frac{a + b +
c}{d} = \frac{2 + 2 + 1}{- 4} = - \frac{5}{4}.

  • Câu 6: Thông hiểu

    Xác định tọa độ trọng tâm tam giác

    Trong không gian Oxyz, cho \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k}, điểm B(3\ ;\  - 4\ ;\ 1) và điểm C(2\ ;\ 0\ ;\  - 1). Tọa độ trọng tâm tam giác ABC

    Từ \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}
\Rightarrow A(1\ ;\  - 2\ ;\ 3)

    Tọa độ trọng tâm G của tam giác ABC\left\{ \begin{matrix}
x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = 2 \\
y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = - 2 \\
z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = 1 \\
\end{matrix} ight.

    Vậy tọa độ trọng tâm (2\ ;\  - 2\ ;\
1).

  • Câu 7: Nhận biết

    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian Oxyz, tính khoảng cách từ điểm M(1;2; - 3) đến mặt phẳng (P):x + 2y - 2z - 2 =
0?

    Khoảng cách từ điểm M đến mặt phẳng (P):x + 2y - 2z - 2 = 0 là:

    d\left( M;(P) ight) = \frac{\left| 1 +
2.2 - 2( - 3) - 2 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
3

  • Câu 8: Thông hiểu

    Chọn đáp án thích hợp

    Trong không gian Oxyz, cho hai mặt phẳng (P):x + my + (m - 1)z + 1 =
0(Q):x + y + 2z = 0. Tập hợp tất cả các giá trị m để hai mặt phẳng này không song song là:

    Ta có A(0;0;0) \in (Q).

    (P)//(Q) \Leftrightarrow \left\{\begin{matrix}\dfrac{1}{1} = \dfrac{m}{1} = \dfrac{m - 1}{2} \\A(0;0;0) otin (P) \\\end{matrix} ight. hệ này vô nghiệm

    Hệ này vô nghiệm.

    Do đó (P) không song song với (Q), với mọi giá trị của m.

  • Câu 9: Thông hiểu

    Viết phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, gọi d là giao tuyến của hai mặt phẳng (\alpha):x - 3y + z = 0(\beta):x + y - z + 4 = 0 = 0. Phương trình tham số của đường thẳng d

    Cách 1:

    Đặt y = t, ta có \left\{ \begin{matrix}
x + z = 3t \\
x - z = - 4 - t \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = - 2 + t \\
z = 2 + 2t \\
\end{matrix} ight.

    Vậy phương trình tham số của d\left\{ \begin{matrix}
x = - 2 + t \\
y = t \\
z = 2 + 2t \\
\end{matrix} ight.

    Cách 2:

    Tìm một điểm thuộc d, bằng cách cho y = 0

    Ta có hệ \left\{ \begin{matrix}
x + z = 0 \\
x - z = - 4 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
x = - 2 \\
z = 2 \\
\end{matrix} ight.\  \Rightarrow M( - 2;0;2) \in d

    (\alpha) có vectơ pháp tuyến \overrightarrow{n_{\alpha}} = (1; -
3;1)

    (\beta) có vectơ pháp tuyến \overrightarrow{n_{\beta}} = (1;1; -
1)

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {2;2;4} ight)

    d đi qua điểm M(-2;0;2) và có vectơ chỉ phương là \overrightarrow {{a_d}}

    Vậy phương trình tham số của d là  \left\{ \begin{matrix}
x = - 2 + t \\
y = t \\
z = 2 + 2t \\
\end{matrix} ight. 

  • Câu 10: Thông hiểu

    Tính giá trị biểu thức T

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 11: Vận dụng

    Khoảng cách giữa 2 đường thẳng

    Khoảng cánh giữa hai đường thẳng : {(d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. và  ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. là:

     Chuyển d1 về dạng tham số :({d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. \Rightarrow ({d_1}):\left\{ \begin{array}{l}x = t\\y =  - t\\z =  - 4 - 2t\end{array} ight.

    Qua đó, ta có A(0,0, - 4) \in ({d_1}) và 1 vectơ chỉ phương của (d1): \overrightarrow a  = (1, - 1, - 2).

    Chuyển (d2) về dạng tham số : ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. \Rightarrow ({d_2}):\left\{ \begin{array}{l}x =  - 5 + 3t\\y = 2 - t\\z = t\end{array} ight.

    Qua đó, ta có B( - 5,2,0) \in ({d_2}) và 1 vectơ chỉ phương của ({d_2}):\overrightarrow b (3, - 1,1).

    Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:

    d = \frac{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB} } ight|}}{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight]} ight|}} = \frac{9}{{\sqrt {62} }}

    .

  • Câu 12: Vận dụng cao

    Xác định hoành độ đỉnh A

    Trong không gian Oxyz, cho tam giác ABC vuông tại A, \widehat{ABC} = 30^{0}, BC = 3\sqrt{2}, đường thẳng BC có phương trình \frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{-
4}, đường thẳng AB nằm trong mặt phẳng (\alpha):x + z - 3 =
0. Biết rằng đỉnh C có cao độ âm. Tìm hoành độ của đỉnh A.

    Hình vẽ minh họa:

    Tọa độ điểm B là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
\frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{- 4} \\
x + z - 3 = 0 \\
\end{matrix} ight.\  \Rightarrow B(2;3;1)

    Do C ∈ BC nên C(4 + c;5 + c; - 7 -
4c)

    Theo giả thiết BC = 3\sqrt{2} nên: 18(2 + c)^{2} = 18 \Leftrightarrow
\left\lbrack \begin{matrix}
c = - 1 \Rightarrow C(3;4; - 3) \\
c = - 3 \Rightarrow C(1;2;5) \\
\end{matrix} ight.

    Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).

    Gọi A(x;y;3 - x) \in (\alpha). Do \widehat{ABC} = 30^{0} nên:

    \left\{ \begin{matrix}
AB = \frac{3\sqrt{6}}{2} \\
AC = \frac{3\sqrt{2}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(x - 2)^{2} + (y - 3)^{2} + (2 - z)^{2} = \frac{27}{2} \\
(x - 3)^{2} + (y - 4)^{2} + (6 - z)^{2} = \frac{9}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
2x^{2} - 18x + y^{2} - 8y + \frac{113}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10x + 2y - 53 = 0 \\
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
2x^{2} - 8x + \left( \frac{53 - 10x}{2} ight)^{2} - 6.\left( \frac{53
- 10x}{2} ight) + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 4 \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Rightarrow A\left( \frac{9}{2};4; - \frac{3}{2}
ight)

    Vậy đáp án cần tìm là \frac{9}{2}.

  • Câu 13: Thông hiểu

    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\frac{x - 1}{2} = \frac{y + 2}{3}
= \frac{z - 4}{1} và đường thẳng (\Delta):\frac{x + 1}{2} = \frac{y}{- 1} = \frac{z
+ 2}{- 1}.

    a) Đường thẳng (d) qua điểm M(1; - 2;4) và có một vectơ chỉ phương \overrightarrow u  = \left( {2;3;1} \right).Đúng||Sai

    b) Đường thẳng qua điểm N( - 5;2; - 2) và có một vectơ chỉ phương  \overrightarrow{v} = (2; - 1; -
1) .Sai||Đúng

    c) Đường thẳng (d) có phương trình tham số \left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và đường thẳng \Delta có phương trình tham số \left\{ \begin{matrix}
x = - 1 + 2t' \\
y = - t' \\
z = - 2 - t'
\end{matrix} \right.\ ;\left( t'\mathbb{\in R} \right).Đúng||Sai

    d) Đường thẳng (d) và đường thẳng \Delta vuông góc và cắt nhau.Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\frac{x - 1}{2} = \frac{y + 2}{3}
= \frac{z - 4}{1} và đường thẳng (\Delta):\frac{x + 1}{2} = \frac{y}{- 1} = \frac{z
+ 2}{- 1}.

    a) Đường thẳng (d) qua điểm M(1; - 2;4) và có một vectơ chỉ phương \overrightarrow u  = \left( {2;3;1} \right).Đúng||Sai

    b) Đường thẳng qua điểm N( - 5;2; - 2) và có một vectơ chỉ phương  \overrightarrow{v} = (2; - 1; -
1) .Sai||Đúng

    c) Đường thẳng (d) có phương trình tham số \left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và đường thẳng \Delta có phương trình tham số \left\{ \begin{matrix}
x = - 1 + 2t' \\
y = - t' \\
z = - 2 - t'
\end{matrix} \right.\ ;\left( t'\mathbb{\in R} \right).Đúng||Sai

    d) Đường thẳng (d) và đường thẳng \Delta vuông góc và cắt nhau.Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    Phương án a) đúng vì dựa vào phương trình chính tắc ta thấy đường thẳng (d) qua điểm M(1; - 2;4) và có một vectơ chỉ phương \overrightarrow{u} = (2;3;1).

    Phương án b) sai vì: \frac{- 5 + 1}{2} =
\frac{2}{- 1} \neq \frac{- 2 + 2}{- 1} do đó điểm N không thuộc đường thẳng \Delta.

    Phương án c) đúng vì từ phương trình d:\frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z -
4}{1} = t suy ra \left\{
\begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Và từ phương trình \Delta:\frac{x + 1}{2}
= \frac{y}{- 1} = \frac{z + 2}{- 1} = t' suy ra \left\{ \begin{matrix}
x = - 1 + 2t' \\
y = - t' \\
z = - 2 - t'
\end{matrix} \right.\ ;\left( t'\mathbb{\in R} \right)

    Phương án d) sai vì

    Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{u} = (2;3;1) và đường thẳng \Delta có một vectơ chỉ phương \overrightarrow{v} = (2; - 1; -
1)

    Ta có \overrightarrow{u}.\overrightarrow{v} = 2.2 + 3.(
- 1) + 1.( - 1) = 0 do đó d\bot\Delta.

    Gọi A là giao điểm (nếu có) của d và \Delta, tọa độ A là nghiệm hệ phương trình \left\{ \begin{matrix}
1 + 2t = - 1 + 2t' \\
- 2 + 3t = - t' \\
4 + t = - 2 - t'
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
2t - 2t' = - 2\ \ \ (1) \\
3t + t' = 2\ \ \ (2) \\
t + t' = - 6\ \ \ (3)
\end{matrix} \right.

    (1);(2) \Leftrightarrow \left\{
\begin{matrix}
t = \frac{1}{4} \\
t' = \frac{5}{4}
\end{matrix} \right.

    Khi đó t + t' = \frac{3}{2} không thỏa mãn (3). Vậy hai đường thẳng (d)\Delta vuông góc nhưng không cắt nhau.

  • Câu 14: Nhận biết

    Xác định tọa độ điểm A

    Trong không gian Oxyz, cho \overrightarrow{AO} = \overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k}. Tọa độ của điểm A

    Ta có: \overrightarrow{AO} =
\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k} = (1; -
2;3)

    Khi đó A( - 1;2; - 3)

  • Câu 15: Nhận biết

    Tìm vecto pháp tuyến của mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) có phương trình - 2x + 2y - z - 3 = 0. Mặt phẳng (P) có một vectơ pháp tuyến là:

    Mặt phẳng (P) có phương trình - 2x + 2y -
z - 3 = 0 có một vectơ pháp tuyến \overrightarrow{n}(4; - 4;2)

  • Câu 16: Thông hiểu

    Tính góc giữa hai vecto

    Cho tứ diện đều ABCD có cạnh bằng a. Tính góc \left( \overrightarrow{AB},\overrightarrow{CD}
\right).

    Gọi M là trung điểm CD.

    Khi đó, \overrightarrow{AB}.\overrightarrow{CD} = \left(
\overrightarrow{AM} + \overrightarrow{MB} \right).\overrightarrow{CD} =
\overrightarrow{AM}.\overrightarrow{CD} +
\overrightarrow{MB}.\overrightarrow{CD}

    Do tam giác ACD đều nên AM\bot CD \Rightarrow
\overrightarrow{AM}.\overrightarrow{CD} = 0

    Và tam giác BCD đều nên BM\bot CD \Rightarrow
\overrightarrow{BM}.\overrightarrow{CD} = 0

    Vậy \overrightarrow{AB}.\overrightarrow{CD} = \left(\overrightarrow{AM} + \overrightarrow{MB} \right).\overrightarrow{CD}=\overrightarrow{AM}.\overrightarrow{CD} +\overrightarrow{MB}.\overrightarrow{CD} = 0\Rightarrow\overrightarrow{AB}\bot\overrightarrow{CD}.

    Kết luận \left(
\overrightarrow{AB},\overrightarrow{CD} \right) =
90{^\circ}.

  • Câu 17: Vận dụng

    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;1) và cắt các tia Ox,Oy,Oz lần lượt tại A,B,C sao cho độ dài OA,OB,OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O đến mặt phẳng (\alpha).

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0.

    Phương trình mặt phẳng (α) có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    Ta có (α) đi qua điểm M(1; 2; 1) nên ta có \frac{1}{a} + \frac{2}{b} + \frac{1}{c} =
1 (∗)

    OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên c = 2b = 4a.

    Thay vào (∗), ta được \frac{1}{a} +
\frac{2}{2a} + \frac{1}{4a} = 1 \Leftrightarrow a =
\frac{9}{4}

    Suy ra phương trình mặt phẳng (α) là \frac{x}{1} + \frac{y}{2} + \frac{z}{4} =
\frac{9}{4} hay 4x + 2y + z - 9 =
0

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{| - 9|}{\sqrt{4^{2} + 2^{2} + 1^{2}}} =
\frac{3\sqrt{21}}{7}.

  • Câu 18: Thông hiểu

    Tìm tọa độ điểm C

    Tứ giác MNPQ là hình bình hành biết tọa độ các điểm M(1;2;3),N(2; -
3;1),P(3;1;2). Tìm tọa độ điểm Q?

    Giả sử điểm Q(x;y;z) khi đó \left\{ \begin{matrix}
\overrightarrow{QP} = (x - 3;y - 1;z - 2) \\
\overrightarrow{MN} = ( - 1;5;2) \\
\end{matrix} ight.

    ta có MNPQ là hình bình hành nên \overrightarrow{QP} =
\overrightarrow{MN}

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 = - 1 \\
y - 1 = 5 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 6 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm Q(2;6;4).

  • Câu 19: Thông hiểu

    Xác định tọa độ vectơ

    Trong không gian Oxyz, véctơ \overrightarrow{u} vuông góc với hai véctơ \overrightarrow{a} = (1 ; 1 ;1) và \overrightarrow{b} = (1\ ; -
1\ ;3); đồng thời \overrightarrow{u} tạo với tia Oz một góc tù và độ dài véctơ \overrightarrow{u} bằng 3. Tìm véctơ \overrightarrow{u}.

    Ta có \overrightarrow{a}\overrightarrow{b} không cùng phương đồng thời

    \left\{ \begin{matrix}
\overrightarrow{\mathbf{u}}\mathbf{\bot}\overrightarrow{\mathbf{a}} \\
\overrightarrow{\mathbf{u}}\mathbf{\bot}\overrightarrow{\mathbf{b}} \\
\end{matrix} ight.\mathbf{\Rightarrow}\overrightarrow{\mathbf{u}}\mathbf{\
}\mathbf{//}\mathbf{\ }\left\lbrack \overrightarrow{\mathbf{a}}\mathbf{\
}\mathbf{,}\mathbf{\ }\overrightarrow{\mathbf{b}}
ightbrack\mathbf{=}\left( \mathbf{4}\mathbf{\
}\mathbf{;}\mathbf{\  -}\mathbf{2}\mathbf{\
}\mathbf{;}\mathbf{\  -}\mathbf{2}
ight)\mathbf{\Rightarrow}\overrightarrow{\mathbf{u}}\mathbf{=}\left(
\mathbf{2}\mathbf{k\ }\mathbf{;}\mathbf{\  - k\ }\mathbf{;}\mathbf{\  -
k} ight).

    Do \left| \overrightarrow{u} ight| = 3\Leftrightarrow \sqrt{4k^{2} + k^{2} + k^{2}} = 3\Leftrightarrow k =\pm \frac{\sqrt{6}}{2}.

    Mặt khác \overrightarrow{u} tạo với tia Oz một góc tù nên

    \cos\left(
\overrightarrow{u},\overrightarrow{k} ight) < 0 \Leftrightarrow
\overrightarrow{u}.\overrightarrow{k} < 0\Leftrightarrow 2k.0 + ( -
k).1 < 0 \Leftrightarrow ( - k).1 < 0 \Leftrightarrow k >
0.

    Suy ra k =
\frac{\sqrt{6}}{2}.

    Vậy \overrightarrow{u} = \left( \sqrt{6}\
;\  - \frac{\sqrt{6}}{2}\ ;\ \frac{\sqrt{6}}{2} ight).

  • Câu 20: Nhận biết

    Tính tích vô hướng

    Cho hai véc tơ \overrightarrow{a} = (1; -
2;3), \overrightarrow{b} = ( -
2;1;2). Khi đó, tích vô hướng \left( \overrightarrow{a} + \overrightarrow{b}
\right).\overrightarrow{b} bằng

    Ta có:

    \overrightarrow{a} + \overrightarrow{b} =
( - 1; - 1;5)

    \Rightarrow \left(
\overrightarrow{a} + \overrightarrow{b} ight).\overrightarrow{b} = -
1.( - 2) + ( - 1).1 + 5.2 = 11.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo