Điền đáp án
Điều kiện xác định của bất phương trình
là:
x>-2|| X>-2 || x lớn hơn -2
Điều kiện xác định của bất phương trình
là:
x>-2|| X>-2 || x lớn hơn -2
Điều kiện:
Vậy để BPT xác định khi và chỉ khi .
Cùng nhau thử sức với bài kiểm tra 15 phút Hàm số mũ - Hàm số Logarit
Điền đáp án
Điều kiện xác định của bất phương trình
là:
x>-2|| X>-2 || x lớn hơn -2
Điều kiện xác định của bất phương trình
là:
x>-2|| X>-2 || x lớn hơn -2
Điều kiện:
Vậy để BPT xác định khi và chỉ khi .
Tìm tập nghiệm của BPT mũ
Tìm tập nghiệm của bất phương trình
sau:
Ta có:
Tìm tất cả các giá trị thực của tham số
Tìm tất cả các giá trị thực của tham số m để bất phương trình ![]()
Bất phương trình tương đương
: (2) không thỏa
: (3) không thỏa
(1) thỏa mãn
.
Vậy .
Mệnh đề nào sau đây đúng?
Cho các hàm số
có đồ thị như hình vẽ. Đường thẳng
cắt trục hoành, đồ thị hàm số
và
lần lượt tại
. Biết rằng
. Mệnh đề nào sau đây đúng?

Ta có:
Theo bài ra ta có:
Khẳng định đúng?
Cho phương trình
. Khẳng định nào sau đây là đúng?
Ta có:
Đặt .
Khi đó
Với .
Trong các phát biểu sau đây, phát biểu nào sai?
Trong các phát biểu sau đây, phát biểu nào sai?
Phát biểu sai là: Hàm số mũ có tập xác định là
Sửa lại: Hàm số mũ có tập xác định là
Tìm tập nghiệm của BPT
Bất phương trình
có tập nghiệm là:
Xét:
Tương tự, ta cũng có:
Cộng vế với vế của (1) và (2) ta được:
Mà BPT: nên
Xét
Tương tự, ta cũng có:
Cộng vế với vế của (3) và (4) ta được:
Vậy hay
.
Tìm nghiệm nguyên nhỏ nhất
Nghiệm nguyên nhỏ nhất của phương trình
là?
3 || ba || Ba
Nghiệm nguyên nhỏ nhất của phương trình
là?
3 || ba || Ba
Điều kiện:
Ta có:
So điều kiện suy ra phương trình có nghiệm .
Tìm tất cả các giá trị thực của m
Tìm tất cả các giá trị thực của tham số m để phương trình
có ít nhất một nghiệm thuộc đoạn
?
Với hay
hay
.
Khi đó bài toán được phát biểu lại là: “Tìm m để phương trình có ít nhất một nghiệm thuộc đoạn ”.
Ta có
Xét hàm số

Suy ra hàm số đồng biến trên .
Khi đó phương trình có nghiệm khi .
Vậy là các giá trị của m cần tìm.
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề nào sau đây là mệnh đề sai?
Ta thấy:
Do vậy đồ thị của hàm số không có tiệm cận đứng
Tính giá trị của biểu thức logarit
Với các số a, b, c là các số thực dương tùy ý khác 1 và
. Khi đó giá trị của
bằng:
Với a, b, c là các số thực dương tùy ý khác 1 ta có:
Khi đó ta có:
Tìm tập nghiệm của PT
Tập nghiệm của phương trình
là:
Điều kiện: x > 0 và
Với điều kiện đó thì .
Khi đó, phương trình đã cho tương đương phương trình:
Đếm số nghiệm không âm
Phương trình
có tất cả bao nhiêu nghiệm không âm ?
Ta có:
Xét hàm số , ta có:
.
. Do đó hàm số
đồng biến trên R.
Vậy nghiệm duy nhất của phương trình là x=1.
Biểu diễn biểu thức theo a
Đặt
. Khi đó
biểu diễn là:
Ta có:
Hàm số nào nghịch biến trên tập số thực?
Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?
Ta có:
là các hàm số không xác định trên
Vì nghịch biến trên
Hàm số nào nghịch biến trên tập số thực?
Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực
?
Hàm số là hàm số mũ có cơ số bằng
nghịch biến trên
Hàm số là hàm số mũ có cơ số
nên đồng biến trên
Hàm số chỉ xác định trên
Hàm số có
nên nghịch biến trên
Giá trị của biểu thức
Giá trị của biểu thức
là:
Ta có:
Đếm số nghiệm
Số nghiệm của phương trình
là:
0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm
Số nghiệm của phương trình
là:
0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm
PT
Vậy số nghiệm của PT là 0.
Tìm nghiệm nguyên MIN
Nghiệm nguyên nhỏ nhất của bất phương trình
là:
17 || x=17 || x bằng 17 || X=17
Nghiệm nguyên nhỏ nhất của bất phương trình
là:
17 || x=17 || x bằng 17 || X=17
Điều kiện:
Vậy nghiệm nguyên nhỏ nhất .
Tính giá trị biểu thức
Cho
biết , biểu thức
có giá trị là:
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: