Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Hàm số mũ Hàm số logarit

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Hàm số mũ - Hàm số Logarit

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Điều kiện xác định

    Điều kiện xác định của phương trình \log ({x^2} - 6x + 7) + x - 5 = \log (x - 3) là:

    Điều kiện phương trình xác định:  

    \left\{ \begin{gathered}  {x^2} - 6{\text{x + 7}} > 0 \hfill \\  x - 3 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x > 3 + \sqrt 2  \hfill \\  x < 3 - \sqrt 2  \hfill \\ \end{gathered}  ight. \hfill \\  x > 3 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 3 + \sqrt 2

  • Câu 2: Thông hiểu

    Khẳng định nào sau đây đúng?

    Cho các số thực dương a, b với a e 1;{\log _a}b > 0. Khẳng định nào sau đây đúng?

    Trường hợp 1: 0 < a < 1 \Rightarrow {\log _a}b > 0 = {\log _a}1 \Rightarrow 0 < b < 1

    Trường hợp 2: a > 1 \Rightarrow {\log _a}b > 0 = {\log _a}1 \Rightarrow b > 1

    Vậy \left[ {\begin{array}{*{20}{c}}  {0 < a,b < 1} \\   {1 < a;b} \end{array}} ight.

  • Câu 3: Thông hiểu

    Tìm tập nghiệm của BPT logarit

    Tập nghiệm của bất phương trình {\log _{\frac{1}{3}}}\left( {{x^2} - 6x + 5} ight) + {\log _3}\left( {x - 1} ight) \geqslant 0 là:

    {\log _{\frac{1}{3}}}\left( {{x^2} - 6x + 5} ight) + {\log _3}\left( {x - 1} ight) \geqslant 0 \Leftrightarrow {\log _3}\left( {x - 1} ight) \geqslant {\log _3}\left( {{x^2} - 6x + 5} ight)

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 6x + 5 > 0 \hfill \\  x - 1 \geqslant {x^2} - 6x + 5 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x < 1 \vee x > 5 \hfill \\  1 \leqslant x \leqslant 6 \hfill \\ \end{gathered}  ight. \Leftrightarrow 5 < x \leqslant 6

     Vậy tập nghiệm của BPT là  S = \left( {5;6} ight].

  • Câu 4: Thông hiểu

    PT trở thành?

    Nếu đặt t = \lg x thì phương trình \frac{1}{{4 - \lg x}} + \frac{2}{{2 + \lg x}} = 1 trở thành phương trình nào?

     Đặt t = \lg x

    PT \Leftrightarrow \frac{1}{{4 - t}} + \frac{2}{{2 + t}} = 1 \Leftrightarrow \frac{{2 + t + 2(4 - t)}}{{(4 - t)(2 + t)}} = 1

    \Leftrightarrow 2 + t + 2(4 - t) = (4 - t)(2 + t)

    \Leftrightarrow 10 - t = 8 + 2t - {t^2} \Leftrightarrow {t^2} - 3t + 2 = 0.

  • Câu 5: Nhận biết

    Tính đạo hàm của hàm số

    Hàm số y = {\log _{2019}}\left| x ight|;\forall x e 0 có đạo hàm là:

    Áp dụng công thức đạo hàm ta có: y' = \frac{1}{{x\ln 2019}}

  • Câu 6: Vận dụng

    Tính

    Gọi x_1, x_2 là 2 nghiệm của phương trình {\log _3}\left( {{x^2} - x - 5} ight) = {\log _3}\left( {2x + 5} ight).

    Khi đó \left| {{x_1} - {x_2}} ight| bằng:

     Ta có: {\log _3}\left( {{x^2} - x - 5} ight) = {\log _3}\left( {2x + 5} ight) \Leftrightarrow \left\{ \begin{gathered}  2{\text{x}} + 5 > 0 \hfill \\  {x^2} - x - 5 = 2x + 5 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - \frac{5}{2} \hfill \\  \left[ \begin{gathered}  x = 5 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 5 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight.

    Suy ra \left| {{x_1} - {x_2}} ight| =|5-(-2)|=|5+2|=7

  • Câu 7: Thông hiểu

    Đẳng thức nào sau đây đúng với mọi số dương x?

    Đẳng thức nào sau đây đúng với mọi số dương x?

    Ta có: \left( {\log x} ight)' = \frac{1}{{x\ln 10}};\forall x > 0

  • Câu 8: Vận dụng

    Tìm tập nghiệm của BPT logarit

    Bất phương trình {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 có tập nghiệm là:

     Điều kiện: {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 \Leftrightarrow {\log _2}\left[ {\left( {{x^2} - x - 2} ight)\left( {x - 1} ight)} ight] \geqslant 1

    \Leftrightarrow \left( {{x^2} - x - 2} ight)\left( {x - 1} ight) - 2 \geqslant 0 \Leftrightarrow {x^3} - 2{x^2} - x \geqslant 0 \Leftrightarrow \left[ \begin{gathered}  1 - \sqrt 2  \leqslant x \leqslant 0 \hfill \\  x \geqslant 1 + \sqrt 2  \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là S = \left[ {1 + \sqrt 2 ; + \infty } ight).

     

  • Câu 9: Nhận biết

    Giá trị của biểu thức

    Giá trị của biểu thức A = {\log _{{2^{2018}}}}4 - \frac{1}{{1009}} + \ln {e^{2018}}

    Ta có:

    A = {\log _{{2^{2018}}}}4 - \frac{1}{{1009}} + \ln {e^{2018}} = {\log _{{2^{2018}}}}{2^2} - \frac{1}{{1009}} + 2018.\ln e

    = \frac{1}{{1009}} - \frac{1}{{1009}} + 2018 = 2018

  • Câu 10: Thông hiểu

    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = {\log _9}\left( {{x^2} + 1} ight)

    Ta có:

    y' = \left[ {{{\log }_9}\left( {{x^2} + 1} ight)} ight]' = \frac{{2x}}{{\left( {{x^2} + 1} ight)\ln {3^2}}} = \frac{{2x}}{{\left( {{x^2} + 1} ight).2.\ln 3}} = \frac{x}{{\left( {{x^2} + 1} ight)\ln 3}}

  • Câu 11: Nhận biết

    Giá trị của biểu thức

    Giá trị của biểu thức {\log _2}5.{\log _5}64 là:

    Ta có: {\log _2}5.{\log _5}64 = {\log _2}64 = {\log _2}{2^6} = 6

  • Câu 12: Nhận biết

    Giải bất phương trình

    Nghiệm của bất phương trình (0,2)^{x^{2}}
> 1

    Ta có (0,2)^{x^{2}} > 1
\Leftrightarrow x^{2} < log_{0,2}1 \Leftrightarrow x^{2} <
0 (vô nghiệm).

    Vậy tập nghiệm của bất phương trình đã cho là \varnothing.

  • Câu 13: Vận dụng cao

    Định giá trị gần nhất với kết quả

    Cho a,b,c là ba số thực dương, a > 1 thỏa mãn:

    \log_{a}^{2}(bc) + \log_{a}\left(b^{3}c^{3} + \dfrac{bc}{4} ight)^{2} + 4 + \sqrt{9 - c^{2}} =0

    Khi đó, giá trị của biểu thức T = a + 3b
+ 2c gần với giá trị nào nhất sau đây?

    Áp dụng bất đẳng thức (x + y)^{2} \geq
4xy, ta được:

    \left( b^{3}c^{3} + \dfrac{bc}{4}ight)^{2} \geq b^{4}c^{4} \Rightarrow \log_{a}\left( b^{3}c^{3} +\dfrac{bc}{4} ight)^{2} \geq 4\log_a(bc)

    Do đó với \forall a > 1,b,c >
0

    \log _a^2(bc) + {\log _a}{\left( {{b^3}{c^3} + \frac{{bc}}{4}} ight)^2} + 4 + \sqrt {9 - {c^2}}\geqslant \log _a^2(bc) + 4{\log _a}(bc) + 4 + \sqrt {9 - {c^2}}

    \Leftrightarrow \log _a^2(bc) + {\log _a}{\left( {{b^3}{c^3} + \frac{{bc}}{4}} ight)^2} + 4 + \sqrt {9 - {c^2}}\geqslant {\left[ {{{\log }_a}(bc) + 2} ight]^2} + \sqrt {9 - {c^2}}  \geqslant 0

    Dấu “=” xảy ra khi \left\{ \begin{matrix}b^{3}c^{3} = \dfrac{bc}{4} \\\log_{a}(bc) = - 2 \\c^{2} = 9 \\a > 1 \\b > 0 \\c > 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = \sqrt{2} \\b = \dfrac{1}{6} \\c = 3 \\\end{matrix} ight.

    Khi đó T = a + 3b + 2c = \sqrt{2} +
\frac{1}{2} + 6 \approx 7,91.

    Vậy giá trị của T gần 8 nhất.

  • Câu 14: Vận dụng cao

    Tính tích các nghiệm

    Tích các nghiệm của phương trình {\log _2}x.{\log _4}x.{\log _8}x.{\log _{16}}x = \frac{{81}}{{24}}  là:

    Điều kiện: x >0

    Ta có: {\log _2}x.{\log _4}x.{\log _8}x.{\log _{16}}x = \frac{{81}}{{24}} \Leftrightarrow \left( {{{\log }_2}x} ight)\left( {\frac{1}{2}{{\log }_2}x} ight)\left( {\frac{1}{3}{{\log }_2}x} ight)\left( {\frac{1}{4}{{\log }_2}x} ight) = \frac{{81}}{{24}}

    \Leftrightarrow \log _2^4 = 81 \Leftrightarrow {\log _2}x =  \pm 3 \Leftrightarrow x = 8  hoặc x = \frac{1}{8}. (thỏa mãn điều kiện)

    Vậy tập nghiệm của phương trình đã cho là S = \left\{ {\frac{1}{8};8} ight\} \Rightarrow {x_1}.{x_2} = 1.

  • Câu 15: Thông hiểu

    Xác định giá trị của biểu thức logarit

    Với các số a, b > 0 thỏa mãn {a^2} + {b^2} = 6ab, biểu thức {\log _2}\left( {a + b} ight) bằng:

    Ta có: 

    \begin{matrix}  {a^2} + {b^2} = 6ab \hfill \\   \Rightarrow {\left( {a + b} ight)^2} = 8ab \hfill \\   \Rightarrow {\log _2}{\left( {a + b} ight)^2} = {\log _2}\left( {8ab} ight) \hfill \\   \Rightarrow 2{\log _2}\left( {a + b} ight) = {\log _2}8 + {\log _2}a + {\log _2}b \hfill \\   \Rightarrow {\log _2}\left( {a + b} ight) = \dfrac{1}{2}\left( {{{\log }_2}8 + {{\log }_2}a + {{\log }_2}b} ight) \hfill \\   \Rightarrow {\log _2}\left( {a + b} ight) = \dfrac{1}{2}\left( {3 + {{\log }_2}a + {{\log }_2}b} ight) \hfill \\ \end{matrix}

  • Câu 16: Vận dụng

    Tính tổng

    Hai phương trình 2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1){\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2) lần lượt có 2 nghiệm duy nhất x_1, x_2là . Tổng x_1 + x_2 là?

     Phương trình 1: 2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1)

    Phương trình \Leftrightarrow \left\{ \begin{gathered}  3x - 1 > 0 \hfill \\  2x + 1 > 0 \hfill \\  2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  {\log _5}{(3x - 1)^2} + {\log _5}5 = 3{\log _5}(2x + 1) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  {\log _5}5{(3x - 1)^2} = {\log _5}{(2x + 1)^3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  5{(3x - 1)^2} = {(2x + 1)^3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  5(9{x^2} - 6x + 1) = 8{x^3} + 12{x^2} + 6x + 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  8{x^3} - 33{x^2} + 36x - 4 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  \left[ \begin{gathered}  x = \frac{1}{8} \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow {x_1} = 2

    Phương trình 2: {\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2)

    Phương trình \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 2x - 8 > 0 \hfill \\  x + 2 > 0 \hfill \\  {\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x <  - 2 \vee x > 4 \hfill \\  x >  - 2 \hfill \\  {\log _2}({x^2} - 2x - 8) = 1 + {\log _2}(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {\log _2}({x^2} - 2x - 8) = {\log _2}2(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {x^2} - 2x - 8 = 2(x + 2) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {x^2} - 4x - 12 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  \left[ \begin{gathered}  x =  - 2 \hfill \\  x = 6 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow {x_2} = 6

    Vậy {x_1} + {x_2} = 2 + 6 = 8.

  • Câu 17: Nhận biết

    Đếm số nghiệm

    Số nghiệm của phương trình {\log _2}x.{\log _3}(2x - 1) = 2{\log _2}x là:

    2 || hai nghiệm || Hai nghiệm || 2 nghiệm

    Đáp án là:

    Số nghiệm của phương trình {\log _2}x.{\log _3}(2x - 1) = 2{\log _2}x là:

    2 || hai nghiệm || Hai nghiệm || 2 nghiệm

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  2x - 1 > 0 \hfill \\  {\log _2}x.{\log _3}(2x - 1) = 2{\log _2}x \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{2} \hfill \\  {\log _2}x\left[ {{{\log }_3}(2x - 1) - 2} ight] = 0 \hfill \\ \end{gathered}  ight. 

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{2} \hfill \\  \left[ \begin{gathered}  {\log _2}x = 0 \hfill \\  {\log _3}(2x - 1) = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{2} \hfill \\  \left[ \begin{gathered}  x = 1 \hfill \\  x = 5 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 1 \hfill \\  x = 5 \hfill \\ \end{gathered}  ight.

    Vậy PT có hai nghiệm.

  • Câu 18: Thông hiểu

    Tìm điều kiện của x để hàm số có nghĩa?

    Tìm điều kiện của x để hàm số y = {\left( {{x^2} - 3x + 2} ight)^\pi } có nghĩa?

     Ta có điều kiện xác định {x^2} - 3x + 2 > 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > 2} \end{array}} ight.

  • Câu 19: Thông hiểu

    Tìm tập nghiệm của BPT mũ

    Tập nghiệm của bất phương trình \frac{{{{2.3}^x} - {2^{x + 2}}}}{{{3^x} - {2^x}}} \leqslant 1 là:

     Ta có: \frac{{{{2.3}^x} - {2^{x + 2}}}}{{{3^x} - {2^x}}} \leqslant 1 \Leftrightarrow \frac{{2.{{\left( {\frac{3}{2}} ight)}^x} - 4}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} \leqslant 1\Leftrightarrow \frac{{2.{{\left( {\frac{3}{2}} ight)}^x} - 4}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} - 1 \leqslant 0

    \Leftrightarrow \frac{{{{\left( {\frac{3}{2}} ight)}^x} - 3}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} \leqslant 0 \Leftrightarrow 1 < {\left( {\frac{3}{2}} ight)^x} \leqslant 3 \Leftrightarrow 0 < x \leqslant {\log _{\frac{3}{2}}}3.

  • Câu 20: Vận dụng

    Mệnh đề nào sau đây đúng?

    Cho các hàm số y = {\log _a}x;{\text{ }}y = {\log _b}x có đồ thị như hình vẽ. Đường thẳng x = 5 cắt trục hoành, đồ thị hàm số y = {\log _a}xy = {\log _b}x lần lượt tại A,B,C. Biết rằng CB = 2AB. Mệnh đề nào sau đây đúng?

    Mệnh đề nào sau đây đúng

    Ta có: A\left( {5;0} ight),B\left( {5;{{\log }_a}5} ight),C\left( {5;{{\log }_b}5} ight)

    Theo bài ra ta có: CB = 2AB

    \begin{matrix}   \Leftrightarrow {\log _b}5 - {\log _a}5 = 2{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = 3{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = \dfrac{1}{3}{\log _5}a \hfill \\   \Leftrightarrow a = {b^3} \hfill \\ \end{matrix}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Hàm số mũ Hàm số logarit Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo