Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (Khó)

Hãy cùng Luyện tập củng cố các bài tập Trắc nghiệm Giá trị lớn nhất và giá trị nhỏ nhất của hàm số các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tính tổng GTLN và GTNN của hàm số

    Cho hàm số f(x) liên tục trên khoảng (0; +∞) thỏa mãn 3x.f\left( x ight) - {x^2}.f'\left( x ight) = 2{f^2}\left( x ight), với f(x) ≠ 0 với ∀x ∈ (0; +∞) và f\left( 1 ight) = \frac{1}{3}. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [1;2]. Tính tổng M + m.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  3x.f\left( x ight) - {x^2}.f'\left( x ight) = 2{f^2}\left( x ight) \hfill \\   \Rightarrow 3{x^2}f\left( x ight) - {x^3}f'\left( x ight) = 2x{f^2}\left( x ight) \hfill \\   \Rightarrow \dfrac{{3{x^2}f\left( x ight) - {x^3}f'\left( x ight)}}{{{f^2}\left( x ight)}} = 2x \hfill \\   \Rightarrow \left( {\dfrac{{{x^3}}}{{f\left( x ight)}}} ight)' = 2x \Rightarrow \dfrac{{{x^3}}}{{f\left( x ight)}} = {x^2} + C \hfill \\ \end{matrix}

    Thay x = 1 vào ta có: \left\{ {\begin{array}{*{20}{c}}  {\dfrac{1}{{f\left( 1 ight)}} = 1 + C} \\   {f\left( 1 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow C = 2

    \begin{matrix}   \Rightarrow f\left( x ight) = \dfrac{{{x^3}}}{{{x^2} + 2}} \hfill \\  f'\left( x ight) = \dfrac{{{x^4} + 6{x^2}}}{{{{\left( {{x^2} + 2} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \Rightarrow x = 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tính tổng GTLN và GTNN của hàm số

    Khi đó f(x) đồng biến trên [1; 2]

    => \left\{ {\begin{array}{*{20}{c}}  {m = f\left( 1 ight) = \dfrac{1}{3}} \\   {M = f\left( 2 ight) = \dfrac{4}{3}} \end{array}} ight. \Rightarrow m + M = \dfrac{5}{3}

  • Câu 2: Thông hiểu
    Tính giá trị nhỏ nhất của hàm số

    Giá trị nhỏ nhất của hàm số f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 là:

    Hướng dẫn:

    Tập xác định D = \mathbb{R}

    Biến đổi f(x) như sau:

    \begin{matrix}  f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 \hfill \\  f\left( x ight) = \left( {{x^2} + 5x + 4} ight)\left( {{x^2} + 5x + 6} ight) + 2019 \hfill \\ \end{matrix}

    Đặt t = {x^2} + 5x + 4 \Rightarrow t = {\left( {x + \frac{5}{2}} ight)^2} - \frac{9}{4} \geqslant  - \frac{9}{4};\forall x \in \mathbb{R}

    Hàm số đã cho trở thành

    f\left( y ight) = {t^2} + 2t + 2019 = {\left( {t + 1} ight)^2} + 2018 \geqslant 2018,\forall t \geqslant  - \frac{9}{4}

    Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại t =  - 1

  • Câu 3: Thông hiểu
    Tìm GTLN của hàm số f(x)

    Giá trị lớn nhất của hàm số y =  - {x^3} + 3x + 1 trên khoảng \left( {0; + \infty } ight)

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {tm} ight)} \\   {x =  - 1\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => Giá trị lớn nhất của hàm số trên khoảng đã cho bằng 3 khi x = 1

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức C\left( x ight) = 0,0001{x^2} - 0,2x + 11000, C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức C\left( x ight) = 0,0001{x^2} - 0,2x + 11000, C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Vận dụng
    Tìm số thực m thỏa mãn điều kiện

    Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.

    Hướng dẫn:

    Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:

    f’(x) = -3x2 – 6x

    f’(x) = 0 => \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 1} \\   { - 3{x^2} - 6x = 0} \end{array}} ight. \Leftrightarrow x = 0

    Ta tính được

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = 2 + m} \\   \begin{gathered}  f\left( 0 ight) = m \hfill \\  f\left( 1 ight) =  - 4 + m \hfill \\ \end{gathered}  \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = f\left( 1 ight) =  - 4 + m \hfill \\   \Leftrightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = 0 \Rightarrow m = 4 \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu
    Tính Min, Max của hàm số

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là:

    Hướng dẫn:

    Tập xác định D = \left[ {1;9} ight]

    Ta có:

    \begin{matrix}  y' = \dfrac{1}{{2\sqrt {x - 1} }} - \dfrac{1}{{2\sqrt {9 - x} }} \hfill \\  y' = 0 \Rightarrow \sqrt {x - 1}  = \sqrt {9 - x}  \Rightarrow x = 5\left( {tm} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = y\left( 9 ight) = 2\sqrt 2 } \\   {y\left( 5 ight) = 4} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\min y = 2\sqrt 2 } \\   {\max y = 4} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 7: Vận dụng cao
    Tính giá trị nhỏ nhất của biểu thức

    Cho x, y, z là ba số thực thuộc đoạn [1; 9] và x \geqslant y,x \geqslant z. Giá trị nhỏ nhất của biểu thức P = \frac{y}{{10y - x}} + \frac{1}{2}\left( {\frac{y}{{y + z}} + \frac{x}{{z + x}}} ight) bằng:

    Hướng dẫn:

    Ta có:

    \frac{1}{{1 + a}} + \frac{1}{{a + b}} \geqslant \frac{2}{{1 + \sqrt {ab} }} \Rightarrow {\left( {\sqrt a  - \sqrt b } ight)^2}\left( {\sqrt {ab}  - 1} ight) \geqslant 0(đúng do ab \geqslant 1)

    Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1

    Áp dụng bất đẳng thức trên ta có:

    P = \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{2}\left( {\dfrac{1}{{1 + \dfrac{z}{y}}} + \dfrac{1}{{1 + \dfrac{x}{z}}}} ight) \geqslant \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{{1 + \sqrt {\frac{x}{y}} }}

    Đặt \sqrt {\frac{x}{y}}  = t \in \left[ {1;3} ight]. Xét hàm số f\left( t ight) = \frac{1}{{10 - {t^2}}} + \frac{1}{{1 + t}} trên đoạn [1; 3]

    \begin{matrix}  f'\left( t ight) = \dfrac{{2t}}{{{{\left( {10 - {t^2}} ight)}^2}}} - \dfrac{1}{{{{\left( {1 + t} ight)}^2}}} \hfill \\  f'\left( t ight) = 0 \hfill \\   \Rightarrow {t^4} - 2{t^3} - 24{t^2} - 2t + 100 = 0 \hfill \\   \Rightarrow \left( {t - 2} ight)\left( {{t^3} - 24t - 50} ight) = 0 \Rightarrow t = 2 \hfill \\ \end{matrix}

    Do {t^3} - 24t - 50 < 0,\forall t \in \left[ {1;3} ight]

    Ta có bảng biến thiên

    Tính giá trị nhỏ nhất của biểu thức

    Suy ra {P_{\min }} = \frac{1}{2} khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {\left[ {\begin{array}{*{20}{c}}  {\dfrac{z}{y} = \dfrac{x}{z}} \\   {\dfrac{x}{y} = 1} \end{array}} ight.} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {z = 2y} \end{array}} ight.

  • Câu 8: Nhận biết
    Tìm GTNN của hàm số trên khoảng

    Cho hàm số y = f\left( x ight) = \frac{{{x^2} + 3}}{{x - 1}}. Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].

    Gợi ý:

    Học sinh cần nhớ công thức \left( {\frac{u}{v}} ight)' = \frac{{u'v - uv'}}{{{v^2}}}

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \frac{{{x^2} + 3}}{{x - 1}} trên [2; 4] ta có:

    \begin{matrix}  f'\left( x ight) = \dfrac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \in \left[ {2;4} ight]} \\   {{x^2} - 2x - 3 = 0} \end{array}} ight. \Rightarrow x = 3 \hfill \\ \end{matrix}

    Tính f(2) = 7; f(3) = 6; f(4) = 19/3

    Vậy \mathop {\min }\limits_{\left[ {2;4} ight]} f\left( x ight) = f\left( 3 ight) = 6

  • Câu 9: Vận dụng
    Xác định vận tốc lớn nhất

    Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:

    Xác định vận tốc lớn nhất

    Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?

    Gợi ý:

     Gợi ý: Mối quan hệ giữa gia tốc và vận tốc

    a\left( t ight) = v'\left( t ight)

    Hướng dẫn:

    Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2

    Ta có bảng biến thiên:

    Xác định vận tốc lớn nhất

    => Vận tốc lớn nhất đạt được khi t = 2

  • Câu 10: Vận dụng cao
    Tính GTNN của biểu thức

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Hướng dẫn:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 11: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) và có bảng biến thiên trên [-5; 7) như sau:

    Chọn khẳng định đúng

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên dễ dàng ta thấy \mathop {\min }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 2

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 6 là sai vì f(x) sẽ nhận các giá trị 7; 8 lớn hơn 6 khi x tiến tới 7

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 9 là sai vì f(x) không bằng 9 mà chỉ tiến đến 9 khi x dần đến 7 (x khác 7)

    Vậy chọn đáp án A.

  • Câu 12: Thông hiểu
    Tìm GTLN, GTNN của hàm số

    Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}} trên tập D = \left( { - \infty ; - 1} ight] \cup \left[ {1;\frac{3}{2}} ight]. Tính giá trị H của m.M

    Hướng dẫn:

    Tập xác định của hàm số y là: \left( { - \infty ; - 1} ight] \cup \left( {1; + \infty } ight]\backslash \left\{ 2 ight\}

    Ta có:

    \begin{matrix}  y' = \dfrac{{\dfrac{{x\left( {x - 2} ight)}}{{\sqrt {{x^2} - 1} }} - \sqrt {{x^2} - 1} }}{{{{\left( {x - 2} ight)}^2}}} = \dfrac{{ - 2x + 1}}{{\sqrt {{x^2} - 1} {{\left( {x - 2} ight)}^2}}} \hfill \\  y' = 0 \Rightarrow x = \dfrac{1}{2} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tìm GTLN, GTNN của hàm số

    Từ bảng biến thiên ta được:

    M = 0,m =  - \sqrt 5  \Rightarrow H = m.M = 0

  • Câu 13: Vận dụng cao
    Xác định số phần tử của tập hợp

    Gọi K là tập hợp các giá trị nguyên của tham số m \in \left[ {0;2019} ight] để bất phương trình {x^2} - m + \sqrt {{{\left( {1 - {x^2}} ight)}^3}}  \leqslant 0 nghiệm đúng với mọi x \in \left[ { - 1;1} ight] . Số các phần tử của tập hợp K là:

    Hướng dẫn:

    Đặt t = \sqrt {1 - {x^2}} ;x \in \left[ { - 1;1} ight] \Rightarrow t \in \left[ {0;1} ight]

    Bất phương trình đã cho trở thành {t^3} - {t^2} + 1 - m \leqslant 0 \Leftrightarrow m \geqslant {t^3} - {t^2} + 1\left( * ight)

    Yêu cầu bài toán tương đương với bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight]

    Xét hàm số f\left( t ight) = {t^3} - {t^2} + 1 \Rightarrow f'\left( t ight) = 3{t^3} - 2t

    f'\left( t ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0\left( L ight)} \\   {t = \dfrac{2}{3}\left( {tm} ight)} \end{array}} ight.

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = f\left( 1 ight) = 1} \\   {f\left( {\dfrac{2}{3}} ight) = \dfrac{{23}}{{27}}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} f\left( t ight) = 1

    Do đó bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight] khi và chỉ khi m \geqslant 1

    Mặt khác m là số nguyên thuộc [0; 2019] nên m \in \left\{ {1;2;3;...;2019} ight\}

  • Câu 14: Vận dụng cao
    Tìm liều lượng thuốc lớn nhất cần dùng

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.

    Hướng dẫn:

    Xét G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight) ta có:

    \begin{matrix}  G'\left( x ight) = 0,035\left( {30x - 3{x^2}} ight) \hfill \\  G'\left( x ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 10} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {G\left( 0 ight) = G\left( {15} ight) = 0} \\   {G\left( {10} ight) = 17,5} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;15} ight]}  = 17,5 \Rightarrow x = 10

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = \frac{{\sin x + 1}}{{{{\sin }^2}x + \sin x + 1}}. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.

    Hướng dẫn:

    Đặt t = \sin x,t \in \left[ { - 1;1} ight]

    Khi đó y = f\left( t ight) = \frac{{t + 1}}{{{t^2} + t + 1}}

    \begin{matrix}  f'\left( t ight) = \dfrac{{ - {t^2} - 2t}}{{{{\left( {{t^2} + t + 1} ight)}^2}}} \hfill \\  f'\left( t ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0\left( {tm} ight)} \\   {t =  - 2\left( L ight)} \end{array}} ight. \hfill \\  f\left( 0 ight) = 1;f\left( { - 1} ight) = 0;f\left( 1 ight) = \frac{2}{3} \hfill \\ \end{matrix}

    Vậy M = 1; m = 0 => M = m + 1

  • Câu 16: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số y = f(x) = x4 – 2x2 + 1 trên đoạn [0; 2].

    Hướng dẫn:

    Xét hàm số f(x) = x4 – 2x2 + 1 trên [0; 2] có:

    f’(x) = 4x3 – 4x

    f’(x) = 0 => \left\{ {\begin{array}{*{20}{c}}{x \in \left[ {0;2} ight]} \\   {4{x^3} - 4x = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \end{array}} ight.

    Tính f(0) = 1; f(1) = 0; f(2) = 9

    Vậy \mathop {\max }\limits_{\left[ {0;2} ight]} f\left( x ight) = f\left( 2 ight) = 9

  • Câu 17: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số có bảng biến thiên như hình dưới đây.

    Chọn khẳng định đúng

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.

  • Câu 18: Vận dụng
    Tìm m để bất phương trình nghiệm đúng với mọi x

    Tìm các giá trị của tham số m để bất phương trình \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m nghiệm đúng với mọi x \in \left[ {0;1} ight]

    Hướng dẫn:

    Xét hàm số g\left( x ight) = \frac{{{x^2} + 3x + 3}}{{x + 1}},x \in \left[ {0;1} ight] ta có:

    \begin{matrix}  g\left( x ight) = x + 2 + \dfrac{1}{{x + 1}} \hfill \\   \Rightarrow g'\left( x ight) = 1 - \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\  g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} g\left( x ight) = \frac{7}{2};\mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) = 3

    Ta có:

    \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m,\left( {\forall x \in \left[ {0;1} ight]} ight) \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) \geqslant m \Leftrightarrow m \leqslant 3

  • Câu 19: Vận dụng
    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]

    Hướng dẫn:

     Từ đồ thị ta có: f’(x) = 0 => \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = x4 – 2x2 + 5. Khẳng định nào sau đây đúng:

    Hướng dẫn:

    Tập xác định D = \mathbb{R}

    \begin{matrix}  y' = 4{x^3} - 4x \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Chọn đáp án đúng

    Dựa vào bảng biến thiên ta thấy hàm số có giá trị nhỏ nhất, không có giá trị lớn nhất.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (25%):
    2/3
  • Vận dụng cao (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 12 (cũ)

Xem thêm