Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 1 Hàm số - Sự biến thiên của hàm số

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút chương 1: Hàm số - Sự biến thiên của hàm số Toán 12 các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số a để hàm số y= ax^3 - ax^2 + 1 có điểm cực tiểu x = \frac{2}{3}.

    Nếu a = 0 thì y = 1: Hàm hằng nên không có cực trị.

    Với a eq 0, ta có y' = 3ax^{2} - 2ax = ax(3x - 2);y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \frac{2}{3} \\
\end{matrix} ight.\ .

    a >
0\overset{}{ightarrow}y' đổi dấu từ '' - '' sang '' + '' khi qua x = \frac{2}{3}\overset{}{ightarrow}Hàm số đạt cực tiểu tại điểm x =
\frac{2}{3}. Do đó a >
0 thỏa mãn.

    a <
0\overset{}{ightarrow}y' đổi dấu từ '' + '' sang '' - '' khi qua x = \frac{2}{3}\overset{}{ightarrow}Hàm số đạt cực đại tại điểm x =
\frac{2}{3}.

    Do đó a <
0 không thỏa mãn.

    Nhận xét. Nếu dùng \left\{ \begin{matrix}
y'\left( \frac{2}{3} ight) = 0 \\
y''\left( \frac{2}{3} ight) > 0 \\
\end{matrix} ight. mà bổ sung thêm điều kiện a\boxed{=}0 nữa thì được, tức là giải hệ \left\{ \begin{matrix}
a=0 \\
y'\left( \frac{2}{3} ight) = 0 \\
y''\left( \frac{2}{3} ight) > 0 \\
\end{matrix} ight..

    Như vậy, khi gặp hàm y = ax^{3} + bx^{2} + cd + d mà chưa chắc chắn hệ số a\boxed{=}0 thì cần xét hai trường hợp a = 0a=0 (giải hệ tương tự như trên).

  • Câu 2: Nhận biết

    Chọn hàm số thích hợp

    Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?

    Đường cong trong hình vẽ là đồ thị hàm số y = ax^{3} + bx^{2} + cx + d với a > 0 nên đồ thị đã cho là đồ thị của hàm số y = x^{3} - 3x - 1.

  • Câu 3: Thông hiểu

    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{mx + 4}{x + m} nghịch biến trên khoảng ( - \infty;1)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m^{2} - 4}{(x +
m)^{2}}

    Theo yêu cầu bài toán: \Leftrightarrow
y' < 0;\forall x \in ( - \infty;1)

    \Leftrightarrow \left\{ \begin{matrix}
- m otin ( - \infty;1) \\
m^{2} - 4 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq - 1 \\
- 2 < m < 2 \\
\end{matrix} ight.\  \Leftrightarrow - 2 < m \leq - 1

    Vậy đáp án cần tìm là m \in ( - 2; -
1brack.

  • Câu 4: Thông hiểu

    Chọn đáp án đúng

    Cho hàm trùng phương y = f(x) có đồ thị như hình vẽ dưới đây:

    Tìm các giá trị của tham số m để phương trình f(x) - m = 0 có 4 nghiệm phân biệt?

    Hình vẽ minh họa

    Để phương trình f(x) - m = 0 có 4 nghiệm phân biệt thì - 3 < m <
1.

  • Câu 5: Nhận biết

    Chọn đáp án thích hợp

    Cho hàm số y = f(x) có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận ngang của đồ thị hàm số đã cho?

    Từ đồ thị suy ra đồ thị hàm số đã cho có đường tiệm cận ngang là y = 1.

  • Câu 6: Nhận biết

    Tìm điểm cực tiểu của hàm số

    Cho hàm số y = f(x) có đồ thị như hình 1. Điểm cực tiểu của hàm số đã cho là:

    Điểm cực tiểu của hàm số là 2.

  • Câu 7: Thông hiểu

    Tìm số điểm cực trị của hàm số

    Cho hàm số y = f(x) có đạo hàm f\left( x ight) = \left( {x - 2} ight){\left( {x - 3} ight)^2}. Khi đó số cực trị của hàm số là:

    Ta có:

    \begin{matrix}  y' = 2f'\left( {2x + 1} ight) \hfill \\   = 2\left( {2x + 1 + 2} ight){\left( {2x + 1 - 3} ight)^2} \hfill \\   = 2\left( {2x - 1} ight){\left( {2x - 2} ight)^2} \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{1}{2}} \\   {x = 1} \end{array}} ight. \hfill \\ \end{matrix}

    => Hàm số có 1 cực trị.

  • Câu 8: Thông hiểu

    Chọn câu đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    “Đồ thị hàm số y = f(x) có tiệm cận ngang y = 1 khi và chỉ khi \lim_{x ightarrow + \infty}f(x) =
1\lim_{x ightarrow -
\infty}f(x) = 1“ sai vì chỉ cần một trong hai giới hạn \lim_{x ightarrow - \infty}f(x) = 1 hoặc \lim_{x ightarrow + \infty}f(x) =
1 tồn tại thì đã suy ra được tiệm cận ngang là y = 1.

    “Nếu hàm số y = f(x) không xác định tại x_{0} thì đồ thị hàm số y = f(x) có tiệm cận đứng x = x_{0}“ sai, ví dụ hàm số y = \sqrt{x^{3} - 1} không xác định tại x = - 2 nhưng \lim_{x ightarrow \ ( - 2)^{-}}f(x)\lim_{x ightarrow \ ( -
2)^{+}}f(x) không tiến đến vô cùng nên x = - 2 không phải là tiệm cận đứng của đồ thị hàm số.

    “Đồ thị hàm số y = f(x) có tiệm cận đứng x = 2 khi và chỉ khi \lim_{x ightarrow 2^{+}}f(x) = + \infty\lim_{x ightarrow 2^{-}}f(x) = +
\infty“ sai vì chỉ cần tồn tại một trong bốn giới hạn sau:

    \lim_{x ightarrow 2^{-}}f(x) = -
\infty,\lim_{x ightarrow 2^{-}}f(x) = + \infty,\lim_{x ightarrow \
2^{+}}f(x) = - \infty,\lim_{x ightarrow \ 2^{+}}f(x) = +
\infty.

    “Đồ thị hàm số y = f(x) bất kì có nhiều nhất hai đường tiệm cận ngang.“ đúng vì chỉ có hai giới hạn \lim_{x ightarrow - \infty}f(x),\ \
\lim_{x ightarrow + \infty}f(x).

  • Câu 9: Thông hiểu

    Xác định số nghiệm tối đa

    Cho đồ thị hàm số y = f(x) như sau:

    Hỏi phương trình 2f(x) = m có tối đa bao nhiêu nghiệm thực?

    Phương trình 2f(x) = m \Leftrightarrow
f(x) = \frac{m}{2} là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = \frac{m}{2}

    Số giao điểm của hai đường bằng số nghiệm của phương trình f(x) = \frac{m}{2}.

    Dựa vào đồ thị hàm số ta thấy đường thẳng y = \frac{m}{2} cắt đồ thị tại nhiều nhất 5 điểm.

    Vậy phương trình có tối đa 5 nghiệm.

  • Câu 10: Thông hiểu

    Xác định thời điểm số lượng cá thể giảm

    Sự ảnh hưởng khi sử dụng một loại thuốc với cá thể X được một nhà sinh học mô tả bởi hàm số P(t) = \frac{t + 1}{t^{2} + t + 4}, trong đó P(t) là số lượng cá thể sau t giờ sử dụng thuốc. Vào thời điểm nào thì số lượng cá thể X bắt đầu giảm?

    Xét P(t) = \frac{t + 1}{t^{2} + t +
4} ta có: P'(t) = \frac{- t^{2}
- 2t + 3}{\left( t^{2} + t + 4 ight)^{2}} = \frac{(t - 1)( - t -
3)}{\left( t^{2} + t + 4 ight)^{2}}

    P'(t) = 0 \Leftrightarrow \frac{(t -
1)( - t - 3)}{\left( t^{2} + t + 4 ight)^{2}} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = - 3 \\
t = 1 \\
\end{matrix} ight.

    Ta thấy hàm số đạt cực đại tại t =
1P'(t) < 0;\forall t \in
(1; + \infty) nên sau 1 giờ thì cá thể bắt đầu giảm.

  • Câu 11: Nhận biết

    Chọn đáp án thích hợp

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x - 2)^{3}, với mọi x\mathbb{\in R}. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight..

    Đồng thời f'(x) < 0
\Leftrightarrow x \in (0;2) nên ta chọn đáp án theo đề bài là (0;\ \ 1).

  • Câu 12: Vận dụng cao

    Tìm điều kiện cần và đủ của tham số m theo yêu cầu

    Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) như hình vẽ. Cho bất phương trình 3f(x) \geq x^{3} - 3x +
m (m là tham số thực). Điều kiện cần và đủ để bất phương trình 3f(x) \geq x^{3} - 3x + m đúng với mọi x \in \left\lbrack - \sqrt{3};\sqrt{3}
\right\rbrack

    Ta có 3f(x) \geq x^{3} - 3x + m
\Leftrightarrow 3f(x) - x^{3} + 3x \geq m

    Đặt g(x) = 3f(x) - x^{3} + 3x. Tính g'(x) = 3f'(x) - 3x^{2} +
3

    g'(x) = 0 \Leftrightarrow
f'(x) = x^{2} - 1

    Nghiệm của phương trình g'(x) =
0 là hoành độ giao điểm của đồ thị hàm số y = f'(x) và parabol y = x^{2} - 1

    Dựa vào đồ thị hàm số ta có: f'(x) =
x^{2} - 1 \Leftrightarrow \left\lbrack \begin{matrix}
x = - \sqrt{3} \\
x = 0 \\
x = \sqrt{3} \\
\end{matrix} ight.

    BBT

    Để bất phương trình nghiệm đúng với mọi x
\in \left\lbrack - \sqrt{3};\sqrt{3} ightbrack thì m \leq \min_{\left\lbrack - \sqrt{3};\sqrt{3}
ightbrack}g(x) = g\left( \sqrt{3} ight) = 3f\left( \sqrt{3}
ight).

  • Câu 13: Vận dụng cao

    Tìm số điểm cực trị của hàm số

    Cho hàm số f(x) liên tục và có đạo hàm trên \mathbb{R}. Biết f(0) > 0. Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = \left| f(x) - \frac{x^{2}}{2}
ight| có bao nhiêu điểm cực trị?

    Xét g(x) = f(x) - \frac{x^{2}}{2}
\Rightarrow g'(x) = f'(x) - x.

    Từ đồ thị ta thấy: g'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Vì hệ số cao nhất của f(x) nhỏ hơn 0 nên hệ số cao nhất của g(x) cùng nhỏ hơn 0. Ta có bảng biến thiên:

    \Rightarrow g( x )=0 luôn có đúng 2 nghiệm bội lé.

    Số điểm cực trị của hàm số y = \left|
f(x) - \frac{x^{2}}{2} ight| là 5.

  • Câu 14: Nhận biết

    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

    Mệnh đề nào dưới đây đúng?

    Hàm số y = f(x)f'(x) đổi dấu từ + sang – khi f'(x) đi qua điểm x = 1

    Vậy hàm số y = f(x) đạt cực đại tại x = 1.

  • Câu 15: Thông hiểu

    Tìm số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x^{2} + 2x +
3}{\sqrt{x^{4} - 3x^{2} + 2}} có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = \left( - \infty; - \sqrt{2}
ight) \cup ( - 1;1) \cup \left( \sqrt{2}; + \infty ight). Ta có:

    \lim_{x ightarrow \pm \infty}y = 1
ightarrow y = 1 là TCN;

    \lim_{x ightarrow \ \left( - \sqrt{2}
ight)^{-}}y = + \infty ightarrow x = - \sqrt{2} là TCĐ;

    \lim_{x ightarrow \ ( - 1)^{+}}y = +
\infty ightarrow x = - 1 là TCĐ;

    \lim_{x ightarrow \ 1^{-}}y = + \infty
ightarrow x = 1 là TCĐ;

    \lim_{x ightarrow \ {\sqrt{2}}^{+}}y =
+ \infty ightarrow x = \sqrt{2} là TCĐ.

    Vậy hàm số đã cho có tất cả năm đường tiệm cận.

  • Câu 16: Vận dụng

    Tìm khoảng biến của hàm số

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau

    Hàm số y = 3f(x + 2) - x^{3} +
3x đồng biến trên khoảng nào dưới đây?

    Ta có: y' = 3\left\lbrack f'(x +
2) - \left( x^{2} - 3 ight) ightbrack

    Với x \in ( - 1;0) \Rightarrow x + 2 \in
(1;2) \Rightarrow f'(x + 2) > 0, lại có x^{2} - 3 < 0 \Rightarrow y' > 0;\forall
x \in ( - 1;0)

    Vậy hàm số y = 3f(x + 2) - x^{3} +
3x đồng biến trên khoảng ( -
1;0) (1; + \infty)

    Chú ý:

    +) Ta xét x \in (1;2) \subset (1; +
\infty) \Rightarrow x + 2 \in (3;4) \Rightarrow f'(x + 2) <
0;x^{2} - 3 > 0

    Suy ra hàm số nghịch biến trên khoảng (1;2) nên loại hai phương án ( - \infty; - 1).

    +) Tương tự ta xét

    x \in ( - \infty; - 2)\Rightarrow x + 2 \in ( - \infty;0)

    \Rightarrow f'(x + 2) <0;x^{2} - 3 > 0 \Rightarrow y' < 0;\forall x \in ( - \infty; -
2)

    Suy ra hàm số nghịch biến trên khoảng ( -
\infty; - 2)

  • Câu 17: Nhận biết

    Tìm giá trị biểu thức

    Cho hàm số y = x^{3} - 3x^{2} +
2. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;3brack lần lượt là P;Q. Khi đó P - Q bằng:

    Ta có: y' = 3x^{2} - 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f( - 1) = - 2;f(0) = 2 \\
f(2) = - 2;f(3) = 2 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
P = 2 \\
Q = - 2 \\
\end{matrix} ight.\  \Rightarrow P - Q = 4

  • Câu 18: Vận dụng

    Tìm số điểm cực trị của hàm số

    Số điểm cực trị của hàm số y = \left| {\sin x - \frac{\pi }{4}} ight|,x \in \left( { - \pi ;\pi } ight) là?

    Xét hàm số y = f\left( x ight) = \sin x - \frac{x}{4};x \in \left( { - \pi ;\pi } ight)

    Ta có:

    \begin{matrix}  f'\left( x ight) = \cos x - \dfrac{1}{4} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \cos x = \dfrac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = {x_1} \in \left( { - \dfrac{\pi }{2};0} ight)} \\   {x = {x_1} \in \left( {0;\dfrac{\pi }{2}} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {{x_1}} ight) = \sin {x_1} - \dfrac{{{x_1}}}{4} =  - \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} <  - \dfrac{{\sqrt {15} }}{4} + \dfrac{\pi }{8} < 0 \hfill \\  f\left( {{x_2}} ight) = \sin {x_2} - \dfrac{{{x_2}}}{4} = \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} < \dfrac{{\sqrt {15} }}{4} - \dfrac{\pi }{8} < 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm số điểm cực trị của hàm số

    Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2

    => Hàm số y = \left| {\sin x - \frac{x}{4}} ight|,x \in \left( { - \pi ,\pi } ight) có 5 điểm cực trị

  • Câu 19: Nhận biết

    Đồ thị được cho dưới đây là đồ thị của hàm số nào

    Đồ thị được cho dưới đây là đồ thị của hàm số nào?

    Đồ thị được cho dưới đây là đồ thị của hàm số nào

     Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng

    y = a{x^3} + b{x^2} + cx + d;\left( {a < 0} ight)

  • Câu 20: Thông hiểu

    Chọn mệnh đề đúng

    Biết rằng hàm số y = ax^{3} + bx^{2} +
cx (a eq 0) nhận x = - 1 là một điểm cực trị. Mệnh đề nào sau đây là đúng?

    Ta có y' = 3ax^{2} + 2bx +
c.

    Hàm số nhận x = - 1 là một điểm cực trị nên suy ra y'(-1) =0

    \Leftrightarrow 3a -2b+c=0 \Leftrightarrow 3a+c=2b.

  • Câu 21: Vận dụng

    Chọn phương án thích hợp

    Tìm giá trị lớn nhất M của hàm số f(x) = \left| - x^{2} - 4x + 5
\right| trên đoạn \lbrack -
6;6\rbrack.

    Xét hàm số g(x) = - x^2- 4x +
5 liên tục trên đoạn \lbrack -
6;6brack.

    Đạo hàm g'(x) = - 2x - 4

    \Rightarrow g'(x) = 0
\Leftrightarrow x = - 2 \in \lbrack - 6;6brack

    Lại có g(x) = 0 \Leftrightarrow - x^2 - 4x + 5 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in \lbrack - 6;6brack \\
x = - 5 \in \lbrack - 6;6brack \\
\end{matrix} ight..

    Ta có \left\{ \begin{matrix}
g( - 6) = - 7 \\
g( - 2) = 9 \\
g(6) = - 55 \\
g(1) = \ g( - 5) = 0 \\
\end{matrix} ight.

    \Rightarrow \max_{\lbrack -
6;6brack}f(x) = \max_{\lbrack - 6;6brack}\left\{ \left| g( - 6)
ight|;\left| g( - 2) ight|;\left| g(6) ight|;\left| g(1)
ight|;\left| g( - 5) ight| ight\} = 55.

    Nhận xét. Bài này rất dễ sai lầm vì không để ý hàm trị tuyệt đối không âm.

  • Câu 22: Nhận biết

    Tính tổng m + M

    Cho hàm số f(x) liên tục trên đoạn \lbrack 0\ ;\ 3brack và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên \lbrack 0\
;\ 3brack. Giá trị của M +
m bằng?

    Dựa vào hình vẽ ta có: M = 3, m = - 2 nên M + m = 1.

  • Câu 23: Vận dụng

    Chọn khẳng định đúng

    Cho đồ thị hàm số (C):y = \frac{2x + 1}{x
+ 2}. Giả sử M(a;b) \in
(C) có khoảng cách đến đường thẳng d:y = 3x + 6 nhỏ nhất. Chọn khẳng định đúng?

    Ta có: M\left( a;\frac{2a + 1}{a + 2}
ight);(a eq - 2)

    Khoảng cách từ M đến đường thẳng (d) bằng:

    d(M;d) = \dfrac{\left| 3a - \dfrac{2a +1}{a + 2} + 6 ight|}{\sqrt{3^{2} + 1}}= \frac{1}{\sqrt{10}}.\left| 3a+ 6 - \frac{2a + 1}{a + 2} ight|= \frac{1}{\sqrt{10}}.\left|\frac{3a^{2} + 10a + 11}{a + 2} ight|

    Xét hàm số f(a) = \frac{3a^{2} + 10a +
11}{a + 2};(a eq - 2)

    f'(a) = \frac{3\left( a^{2} + 4a + 3
ight)}{(a + 2)^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = - 3 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy giá trị nhỏ nhất của hàm số \left|
f(a) ight| = 4 tại a = -
1

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b = - 2

  • Câu 24: Thông hiểu

    Chọn phương án thích hợp

    Cho đường cong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi đó là hàm số nào?

    Dựa vào đồ thị suy ra tiệm cận đứng x = -
1 loại y = \frac{2x + 3}{x +
1}y = \frac{2x - 2}{x -
1}

    Đồ thị hàm số giao với trục hoành có hoành độ dương nên loại y = \frac{2x + 1}{x - 1}suy ra chọn y = \frac{2x - 1}{x + 1}

  • Câu 25: Nhận biết

    Tìm khoảng nghịch biến của hàm số

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng cho dưới đây?

    Dựa vào bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng ( - 1;1).

  • Câu 26: Vận dụng cao

    Ghi đáp án vào ô trống

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đáp án là:

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đặt HE = x_{}và_{}FK = y, với x,\ y > 0

    Ta có: HE + KF = 24 \Rightarrow x + y =24 \Rightarrow y = 24 - x

    \left\{ \begin{matrix}AE = \sqrt{25 + x^{2}} \\BF = \sqrt{49 + y^{2}} = \sqrt{49 + (24 - x)^{2}} \\\end{matrix} ight.

    Nhận định AB ngắn nhất khi AE + BF nhỏ nhất ( vì EF không đổi).

    Xét hàm số f(x) = \sqrt{x^{2} + 25} +\sqrt{(24 - x)^{2} + 49}

    f'(x) = \frac{x}{\sqrt{x^{2} + 25}} +\frac{x - 24}{\sqrt{x^{2} - 48x + 625}},\ \forall x \in(0;24).

    Cho f'(x) = 0 \Rightarrow x =10

    Bảng biến thiên

    Vậy\underset{(0;24)\ \ \ \ \ \ \ \ \ \}{\min f(x)} = f(10) = 12\sqrt{5}

    Khi đó BF = \sqrt{49 + (24 - 10)^{2}} =7\sqrt{5} \approx 16\ km

  • Câu 27: Vận dụng

    Chọn đáp án đúng

    Cho hàm số y =
f(x) xác định trên y =
f(x) và có đạo hàm f'(x) = (2 -
x)(x + 3)g(x) + 2021 trong đó g(x)
< 0;\forall x\mathbb{\in R}. Hàm số y = f(1 - x) + 2021x + 2022 đồng biến trên khoảng nào?

    Ta có:

    y' = - f'(1 - x) +
2021

    y' = - \left\lbrack (1 + x)(4 -
x)g(1 - x) + 2021 ightbrack + 2021

    y' = (x + 1)(x - 4).g(1 - x)
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    g(x) < 0;\forall x\mathbb{\in
R} nên y' > 0;\forall x \in
( - 1;4)

    Suy ra hàm số đồng biến trên ( -
1;4).

  • Câu 28: Vận dụng

    Xét tính đúng sai của các nhận định

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    Đáp án là:

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    Gọi số tiền cần tăng giá mỗi chiếc khăn là x .

    Vì cứ tăng giá thêm 1 thì số khăn bán ra giảm 100 chiếc nên tăng x thì số khăn bán ra giảm 100x chiếc.

    Do đó tổng số khăn bán ra mỗi tháng là: 3000 - 100x chiếc.

    Lúc đầu bán với giá 30, mỗi chiếc khăn có lãi 12. Sau khi tăng giá, mỗi chiếc khăn thu được số lãi là: 12 +
x.

    Do đó tổng số lợi nhuận một tháng thu được sau khi tăng giá là:

    f(x) = (3000 - 100x)(12 +
x).

    Xét hàm số f(x) = (3000 - 100x)(12 +
x) trên (0; + \infty).

    Ta có:f(x) = - 100x^{2} + 1800x +
36000.

    f'(x) = - 200x + 1800

    f'(x) = 0 \Leftrightarrow - 200x +
1800 = 0 \Leftrightarrow x = 9

    Lập bảng biến thiên của hàm số f(x) trên (0;\  + \infty) ta thấy hàm số đạt giá trị lớn nhất khix = 9

    hư vậy, để thu được lợi nhuận cao nhất thì cơ sở sản xuất cần tăng giá bán mỗi chiếc khăn là 9.000 đồng, tức là mỗi chiếc khăn bán với giá mới là39.000 đồng.

  • Câu 29: Thông hiểu

    Tìm tham số m thỏa mãn điều kiện

    Cho hàm số f(x) = \frac{x - m^{2} + m}{x
+ 1} với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 2.

    Đạo hàm f'(x) = \frac{m^2 - m +1}{(x + 1)^{2}} > 0,\forall x \in \lbrack 0;1brack.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;1brack

    \Rightarrow \min_{\lbrack
0;1brack}f(x) = f(0) = - m^{2} + m

    Theo bài ra:

    \min_{\lbrack 0;1brack}f(x) = - 2
\Leftrightarrow - m^{2} + m = - 2

    \Leftrightarrow m^{2} - m - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 30: Thông hiểu

    Chọn khoảng nghịch biến của hàm số

    Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như sau

    Hàm số y = - 2f(x) + 2019 nghịch biến trên khoảng nào trong các khoảng dưới đây?

    Xét y = g(x) = - 2f(x) +
2019.

    Ta có g'(x) = \left( - 2f(x) + 2019
ight)^{'} = - 2f'(x)

    g'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = - 1 \\
x = 2 \\
x = 4 \\
\end{matrix} ight..

    Dựa vào bảng xét dấu của f'(x), ta có bảng xét dấu của g'(x):

    Dựa vào bảng xét dấu, ta thấy hàm số y =
g(x) nghịch biến trên khoảng ( -
1;2).

  • Câu 31: Vận dụng cao

    Xét tính đúng sai của các nhận định

    Một công ty bất động sản A có 100 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 triệu đồng một tháng thì mọi căn hộ đều có người thuê, và cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm 200000 đồng mỗi tháng thì có thêm 4 căn hộ bị bỏ trống. Gọi x,\left( x\mathbb{\in N} \right) là số lần tăng giá cho thuê mỗi căn hộ của công ty A. Các mệnh đề dưới đây đúng hay sai?

    a) Nếu giữ nguyên giá thuê mỗi căn hộ là 3 triệu đồng một tháng thì công ty A thu về 300 triệu đồng mỗi tháng. Đúng||Sai

    b) Sau x lần tăng giá cho thuê mỗi căn hộ của công ty A, số căn hộ có người thuê là 100 - 4x. Đúng||Sai

    c) Giá thuê một căn hộ của công ty A200000x đồng/tháng sau x lần tăng giá. Sai||Đúng

    d) Công ty A thu về nhiều nhất là 320 triệu đồng/tháng. Đúng||Sai

    Đáp án là:

    Một công ty bất động sản A có 100 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 triệu đồng một tháng thì mọi căn hộ đều có người thuê, và cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm 200000 đồng mỗi tháng thì có thêm 4 căn hộ bị bỏ trống. Gọi x,\left( x\mathbb{\in N} \right) là số lần tăng giá cho thuê mỗi căn hộ của công ty A. Các mệnh đề dưới đây đúng hay sai?

    a) Nếu giữ nguyên giá thuê mỗi căn hộ là 3 triệu đồng một tháng thì công ty A thu về 300 triệu đồng mỗi tháng. Đúng||Sai

    b) Sau x lần tăng giá cho thuê mỗi căn hộ của công ty A, số căn hộ có người thuê là 100 - 4x. Đúng||Sai

    c) Giá thuê một căn hộ của công ty A200000x đồng/tháng sau x lần tăng giá. Sai||Đúng

    d) Công ty A thu về nhiều nhất là 320 triệu đồng/tháng. Đúng||Sai

    a) Nếu giữ nguyên giá thuê mỗi căn hộ là 3 triệu đồng một tháng thì công ty A thu về: 3\
\ .\ \ 100 = 300

    Suy ra mệnh đề đúng.

    b) Sau x lần tăng giá cho thuê mỗi căn hộ, công ty A có số căn hộ bị bỏ trống là: 4x.

    Khi đó, số căn hộ có người thuê là: 100 -
4x.

    Suy ra mệnh đề đúng.

    c) Sau x lần tăng giá, giá thuê mỗi căn hộ của công ty A tăng thêm: 200000x.

    Khi đó, giá thuê mỗi căn hộ của công ty A là: 3000000
+ 200000x.

    Suy ra mệnh đề sai.

    d) Mỗi tháng, công ty A thu về: (100 - 4x).(3000000 + 200000x).

    Ta thấy: 100 - 4x > 0 \Leftrightarrow
x < 25.

    Công ty A muốn có thu nhập thì không được tăng quá 24 lần tăng giá thuê mỗi căn hộ.

    Xét hàm số: y = (100 - 4x).(3000000 +
200000x) = - 800000x^{2} + 8000000x
+ 300000000 trên \lbrack
0;24\rbrack.

    y' = - 1600000x + 8000000 = 0
\Leftrightarrow x = 5 \in \lbrack 0;24\rbrack.

    Ta có: y(0) = 300000000

    y(5) = 320000000

    y(24) = 31200000

    Suy ra \underset{x \in \lbrack
0;24\rbrack}{Max}\ y = y(5) = 320000000.

    Vậy công ty A thu về nhiều nhất là 320000000 đồng/tháng hay 320 triệu đồng/tháng.

    Suy ra mệnh đề đúng.

  • Câu 32: Thông hiểu

    Chọn đáp án thích hợp

    Cho hàm số y = x^{4} - 2x^{2}. Mệnh đề nào dưới đây đúng?

    TXĐ: D\mathbb{= R}.

    y' = 4x^{3} - 4x;\ \ y' = 0
\Leftrightarrow 4x^{3} - 4x = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Suy ra hàm số đồng biến trên các khoảng (
- 1;\ 0), (1;\  + \infty); hàm số nghịch biến trên các khoảng ( -
\infty;\  - 1), (0;\ 1). Vậy hàm số nghịch biến trên khoảng ( -
\infty;\  - 2).

    Cách 2: Dùng chức năng mode 7 trên máy tính kiểm tra từng đáp án.

  • Câu 33: Vận dụng

    Tìm giá trị của tham số a

    Có bao nhiêu giá trị nguyên âm của a để đồ thị hàm số y = x^{3} + (x + 10)x^{2} - x + 1 cắt trục hoành tại đúng một điểm?

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là:

    x^{3} + (a + 10)x^{2} - x + 1 =
0(*)

    \Leftrightarrow x^{3} + 10x^{2} - x + 1
= - ax^{2}

    Ta thấy x = 0 không là nghiệm của phương trình nên (*) \Leftrightarrow -
\frac{x^{3} + 10x^{2} - x + 1}{x^{2}} = a

    Xét hàm số f(x) = - \frac{x^{3} + 10x^{2}
- x + 1}{x^{2}};\left( \forall x\mathbb{\in R}\backslash\left\{ 0
ight\} ight)

    Ta có: f'(x) = - \frac{x^{3} + x -
2}{x^{3}} = - \frac{(x - 1)\left( x^{2} + x + 2
ight)}{x^{3}}

    f'(x) = 0 \Leftrightarrow x =
1

    Bảng biến thiên của hàm số f(x) như sau:

    Từ bảng biến thiên ta thấy đồ thị hàm số đã cho cắt trục hoành tại đúng một điểm khi (*) có đúng 1 nghiệm \Leftrightarrow a > - 11

    a nguyên âm nên a \in \left\{ - 10; - 9; - 8;...; - 1
ight\}

    Vậy có 10 giá trị của a thỏa mãn yêu cầu bài toán.

  • Câu 34: Thông hiểu

    Chọn đáp án chính xác

    Tìm tất cả các giá trị của tham số m để hàm số y
= x^{3} - 3(m + 1)x^{2} + 3(3m + 7)x + 1 có cực trị?

    Ta có: y' = 3x^{2} - 6(m + 1)x + 3(3m
+ 7)

    Để hàm số y = x^{3} - 3(m + 1)x^{2} +
3(3m + 7)x + 1 có cực trị thì y' = 0 có hai nghiệm phân biệt

    \Rightarrow \Delta' > 0
\Leftrightarrow 9m^{2} - 9m - 54 > 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 2 \\
m > 3 \\
\end{matrix} ight..

  • Câu 35: Vận dụng

    Tính a + b

    Cho hàm số y = \frac{{ax + b}}{{x + 1}}. Biết đồ thị hàm số đã cho đi qua điểm A\left( {0; - 1} ight) và có đường tiệm cận ngang là y = 1. Giá trị a + b bằng:

    Điều kiện để đồ thị hàm số có tiệm cận là a - b e 0

    => Đồ thị hàm số đi qua điểm A\left( {0; - 1} ight) nên b =  - 1

    Đồ thị hàm số có đường tiệm cận ngang là y = a \Rightarrow a = 1 (thỏa mãn)

    Vậy a + b = 0

  • Câu 36: Nhận biết

    Xác định tiệm cận ngang của đồ thị hàm số

    Tiệm cận ngang của đồ thị hàm số y =
\frac{2x + 1}{x - 1} là:

    Ta có \lim_{x ightarrow \pm
\infty}\frac{2x + 1}{x - 1} = \lim_{x ightarrow \pm \infty}\frac{2 +
\frac{1}{x}}{1 - \frac{1}{x}} = 2.

    Suy ra đồ thị hàm số có tiệmcận ngang là \mathbf{y =}\mathbf{2}.

  • Câu 37: Thông hiểu

    Tìm giá trị thực của tham số

    Tìm giá trị thực của tham số a để hàm số f(x) = - x^{3} - 3x^{2} +
a có giá trị nhỏ nhất trên đoạn \lbrack - 1;1brack bằng 0.

    Đạo hàm f'(x) = - 3x^{2} -
6x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \in \lbrack - 1;1brack \\
x = - 2 otin \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 1) = a - 2 \\
f(0) = a \\
f(1) = a - 4 \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack - 1;1brack}f(x) = f(1) = a - 4

    Theo bài ra: \min_{\lbrack -
1;1brack}f(x) = 0 \Leftrightarrow a - 4 = 0 \Leftrightarrow a =
4

  • Câu 38: Vận dụng cao

    Chọn mệnh đề đúng

    Cho hàm số y = f(x). Đồ thị của hàm số y = f'\left( x ight) như hình bên. Đặt g\left( x ight) = f\left( x ight) - x. Mệnh đề nào sau đây đúng?

    Xét hàm số g\left( x ight) = f\left( x ight) - x

    \begin{matrix}g'\left( x ight) = f'\left( x ight) - 1 \hfill \\  g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \\   {x = 2} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Chọn mệnh đề đúng

     

    Vậy g\left( 2 ight) < g\left( 1 ight) < g\left( { - 1} ight)

  • Câu 39: Thông hiểu

    Xác định hàm số thích hợp

    Hàm số y = - x^{3} + 3x^{2} - 2 đồng biến trên khoảng

    Ta có: y' = - 3x^{2} +
6x.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight..

    Bảng xét dấu của y' như sau:

    Nhìn vào bảng xét dấu của y' ta thấy hàm số y = - x^{3} + 3x^{2} -
2 đồng biến trên khoảng (0\ ;\
2).

    Vậy hàm số y = - x^{3} + 3x^{2} -
2 đồng biến trên khoảng (0\ ;\
2).

  • Câu 40: Thông hiểu

    Xác định số cực tiểu của hàm số

    Cho hàm số f(x)f'(x) = x(x + 1)(x - 4)^{3},\forall x\mathbb{\in R}. Số điểm cực tiểu của hàm số đã cho là

    Ta có:

    f'(x) = x(x + 1)(x - 4)^{3} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 4 \\
\end{matrix} ight..

    Bảng xét dấu của f'(x)

    Vậy hàm số đã cho có hai điểm cực tiểu là x = - 1x
= 4.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Hàm số - Sự biến thiên của hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo