Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 1 Hàm số - Sự biến thiên của hàm số

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút chương 1: Hàm số - Sự biến thiên của hàm số Toán 12 các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Dựa vào bảng biến thiên ta suy ra mệnh đề đúng là: “Điểm cực tiểu của đồ thị hàm số là B(0;1)”.

  • Câu 2: Thông hiểu

    Chọn hàm số thỏa mãn điều kiện đề bài

    Trong các hàm số sau, hàm số nào nghịch biến trên tập xác định của nó?

    Hàm trùng phương không nghịch biến trên tập xác định của nó

    Với y = \frac{{x + 1}}{{ - x + 3}} \Rightarrow y' = \frac{4}{{{{\left( { - x + 3} ight)}^2}}} > 0,\forall x e 3

    Hàm số đã cho đồng biến trên từng khoảng xác định

    Với y =  - 2{x^3} - 3x + 5 \Rightarrow y' =  - 6{x^2} - 3 < 0,\forall x \in \mathbb{R}

    => Hàm số nghịch biến trên \mathbb{R}

  • Câu 3: Thông hiểu

    Tìm các giá trị nguyên của m

    Cho hàm số f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - 4 ight)x + 3 với m là tham số. Xác định điều kiện của tham số m để hàm số đã cho đạt cực đại tại x = 3?

    Ta có: \left\{ \begin{matrix}
y' = x^{2} - 2mx + \left( x^{2} - 4 ight) \\
y'' = 2x - 2m \\
\end{matrix} ight.

    Hàm số đạt cực đại tại x = 3 suy ra y'(3) = 0 \Leftrightarrow m^{2} - 6m
+ 5 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 5 \\
\end{matrix} ight.

    Với m = 5 ta có: y''(3) = 6 - 10 = - 4 < 0 suy ra hàm số đạt cực đại tại x =
3.

    Với m = 1 ta có: y''(3) = 6 - 2 = 4 > 0 suy ra hàm số đạt cực tiểu tại x = 3.

    Vậy giá trị của tham số m thỏa mãn yêu cầu là m = 5

  • Câu 4: Nhận biết

    Số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = \frac{{\sqrt {{x^2} - 4} }}{{x - 1}}. Đồ thị hàm số có mấy đường tiệm cận?

    Tập xác định: D = \left( { - \infty ;2} ight] \cup \left[ {2; + \infty } ight)

    Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.

    \begin{matrix}  \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt {{x^2} - 4} }}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|\sqrt {1 - \dfrac{4}{{{x^2}}}} }}{{x\left( {1 - \dfrac{1}{x}} ight)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|}}{x} \hfill \\   = \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

  • Câu 5: Nhận biết

    Xác định điều kiện của m thỏa mãn yêu cầu

    Cho hàm y = \sqrt{x^{2} - 6x +
5}. Mệnh đề nào sau đây là đúng?

    Tập xác định: D = ( - \infty;1brack
\cup \lbrack 5; + \infty).

    Ta có y' = \frac{x - 3}{\sqrt{x^{2} -
6x + 5}} > 0, \forall x \in (5;
+ \infty).

    Vậy hàm số đồng biến trên khoảng (5; +
\infty).

  • Câu 6: Vận dụng

    Khoảng cách MA nhỏ nhất

    Cho biết \left( P ight):y = {x^2} và điểm A\left( { - 2;\frac{1}{2}} ight). Gọi M là điểm bất kì thuộc (P). Khoảng cách MA nhỏ nhất là:

    M thuộc (P)

    => \begin{matrix}  M\left( {a;{a^2}} ight) \Rightarrow \overrightarrow {AM}  = \left( {a + 2;{a^2} - \dfrac{1}{2}} ight) \hfill \\   \hfill \\ \end{matrix}

    \Rightarrow M{A^2} = {\left( {a + 2} ight)^2} + {\left( {{a^2} - \frac{1}{2}} ight)^2} = {a^4} - 4a + \frac{{17}}{4}

    Xét hàm số f\left( a ight) = {a^4} + 4a + \frac{{17}}{4} ta có:

    \begin{matrix}  f'\left( a ight) = 4{a^3} + a \hfill \\  f'\left( a ight) = 0 \Rightarrow a =  - 1 \hfill \\   \Rightarrow \min f\left( a ight) = f\left( { - 1} ight) = 1 - 4 + \dfrac{{17}}{4} = \dfrac{5}{4} \hfill \\   \Rightarrow M{A_{\min }} = \sqrt {\dfrac{5}{4}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

  • Câu 7: Vận dụng

    Xác định số cực trị của hàm số

    Hàm số f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} có bao nhiêu điểm cực trị?

    Ta có:

    \begin{matrix}  f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} = {\left( {1 + x} ight)^{2019}} \hfill \\   \Rightarrow f'\left( x ight) = 2019.{\left( {1 + x} ight)^{2018}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow x =  - 1 \hfill \\ \end{matrix}

    Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.

  • Câu 8: Vận dụng cao

    Tổng GTLN và GTNN của biểu thức P

    Cho x, y là các số thực dương thỏa mãn điều kiện \left\{ {\begin{array}{*{20}{c}}  {{x^2} - xy + 3 = 0} \\   {2x + 3y - 14 \leqslant 0} \end{array}} ight.. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức P = 3{x^2}y - x{y^2} - 2{x^3} + 2x bằng:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {x > 0,y > 0} \\   {{x^2} - xy + 3 = 0} \end{array}} ight. \Rightarrow y = \frac{{{x^2} + 3}}{x} = x + \frac{3}{x}

    Lại có: 2x + 3y - 14 \leqslant 0

    \begin{matrix}   \Leftrightarrow 2x + 3\left( {x + \dfrac{3}{x} - 14} ight) \leqslant 0 \hfill \\   \Leftrightarrow 5{x^2} - 14x + 9 \leqslant 0 \Leftrightarrow x \in \left[ {1;\dfrac{9}{5}} ight] \hfill \\ \end{matrix}

    Từ đó P = 3{x^2}\left( {x + \frac{3}{x}} ight) - x\left( {x + \frac{3}{x}} ight) - 2{x^3} + 2x = 5x - \frac{9}{x}

    Xét hàm số f\left( x ight) = 5x - \frac{9}{x};\forall x \in \left[ {1;\frac{9}{5}} ight]

    f'\left( x ight) = 5 + \frac{9}{{{x^2}}} > 0;\forall x \in \left[ {1;\frac{9}{5}} ight]

    => Hàm số đồng biến trên \left[ {1;\frac{9}{5}} ight]

    => f\left( 1 ight) \leqslant f\left( x ight) \leqslant f\left( {\frac{9}{5}} ight) \Rightarrow  - 4 \leqslant f\left( x ight) \leqslant 4

    => \max P + \min P = 4 + \left( { - 4} ight) = 0

  • Câu 9: Thông hiểu

    Tính tổng các đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Nhìn bảng biến thiên ta thấy x = 0 hàm số không xác định nên x = 0 là TCĐ của đồ thị hàm số

    \lim_{x ightarrow + \infty}f(x) = 3\Rightarrow y = 3 là TCN của đồ thị hàm số

    \lim_{x ightarrow - \infty}f(x) = 1
\Rightarrow y = 1là TCN của đồ thị hàm số

    Vậy hàm số có 3 tiệm cận

  • Câu 10: Nhận biết

    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    a) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    b) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    c) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra \underset{D}{\max f(x)} = M.

    d) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra\underset{D}{\min f(x)} = M.

  • Câu 11: Thông hiểu

    Tìm giá trị lớn nhất nhỏ nhất của hàm số

    Cho hàm số f(x) = \frac{2x^{2} + x + 1}{x
+ 1}. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn \lbrack 0;1brack.

    Đạo hàm f'(x) = \frac{2x^{2} + 4x}{(x+ 1)^2}.

    Ta có \left\{ \begin{matrix}
f'(x) \geq 0,\ \forall x \in \lbrack 0;1brack \\
f'(x) = 0 \Leftrightarrow x = 0 \\
\end{matrix} ight..

    Suy ra hàm số f(x) đồng biến trên đoạn \lbrack 0;1brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;1brack}f(x) = f(1) = 2 \\
m = \min_{\lbrack 0;1brack}f(x) = f(0) = 1 \\
\end{matrix} ight.

  • Câu 12: Nhận biết

    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{3} - 2x^{2} - 4x + 1 trên đoạn \lbrack 1;3brack.

    Đạo hàm f'(x) = 3x^{2} - 4x -
4

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \in \lbrack 1;3brack \\
x = - \frac{2}{3} otin \lbrack 1;3brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(1) = - 4 \\
f(2) = - 7 \\
f(3) = - 2 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
2

    Cách 2. Sử dụng chức năng MODE 7 và nhập hàm f(X) = X^{3} - 2X^{2} - 4X + 1 với thiết lập Start 1, End 3, Step 0,2.

    Quan sát bảng giá trị F(X) ta thấy giá trị lớn nhất F(X) bằng - 2 khi X = 3.

  • Câu 13: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số f(x) liên tục trên R có bảng xét dấu f'(x)

    Số điểm cực đại của hàm số đã cho là:

    Ta có: f'(x) = 0, f'(x) không xác định tại x = - 2;x = 1;x = 2,x = 3.

    Nhưng có 2 giá trị x=-2;x=2 mà qua đó f'(x) đổi dấu từ dương sang âm nên hàm số đã cho có 2 điểm cực đại.

  • Câu 14: Thông hiểu

    Xác định hàm số đồng biến trên R

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Hàm số y = \frac{1}{3}{x^3} - \frac{1}{2}{x^2} + 3x + 1

    y' = {x^2} - x + 3 = {\left( {x - \frac{1}{2}} ight)^2} + \frac{{11}}{4} > 0,\forall x \in \mathbb{R}

  • Câu 15: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}f'(x) = (x - 1)(x + 3). Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2021brack để hàm số y =f\left( x^{2} + 3x - m ight) đồng biến trên khoảng (0;2)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}f'(x) = (x - 1)(x + 3). Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2021brack để hàm số y =f\left( x^{2} + 3x - m ight) đồng biến trên khoảng (0;2)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Thông hiểu

    Tìm tung độ của điểm

    Biết rằng đường thẳng y = - 2x +
2 cắt đồ thị hàm số y = x^{3} + x +
2 tại điểm duy nhất; kí hiệu \left(
x_{0};y_{0} \right) là tọa độ của điểm đó. Tìm y_{0}

    Xét phương trình hoành độ giao điểm:

    - 2x + 2 = x^{3} + x + 2

    \Leftrightarrow x^{3} + 3x = 0
\Leftrightarrow x = 0

    Với x_{0} = 0 \Rightarrow y_{0} =
2.

    Vậy đáp án cần tìm là: y_{0} =
2

  • Câu 17: Thông hiểu

    Tìm khoảng nghịch biến của hàm số

    Hàm số y =
\sqrt{2x - x^{2}} nghịch biến trên khoảng:

    Tập xác định \lbrack
0;2brack

    Ta có: y' = \frac{1 - x}{\sqrt{2x -
x^{2}}} \Rightarrow y' = 0 \Leftrightarrow \frac{1 - x}{\sqrt{2x -
x^{2}}} = 0\Leftrightarrow x = 1

    \Rightarrow \left\{ \begin{matrix}
y' < 0 \Leftrightarrow x \in (1;2) \\
y' > 0 \Leftrightarrow x \in (0;1) \\
\end{matrix} ight.

    Vậy hàm số nghịch biến trên khoảng (1;2)

  • Câu 18: Thông hiểu

    Chọn khoảng nghịch biến của hàm số

    Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như sau

    Hàm số y = - 2f(x) + 2019 nghịch biến trên khoảng nào trong các khoảng dưới đây?

    Xét y = g(x) = - 2f(x) +
2019.

    Ta có g'(x) = \left( - 2f(x) + 2019
ight)^{'} = - 2f'(x)

    g'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = - 1 \\
x = 2 \\
x = 4 \\
\end{matrix} ight..

    Dựa vào bảng xét dấu của f'(x), ta có bảng xét dấu của g'(x):

    Dựa vào bảng xét dấu, ta thấy hàm số y =
g(x) nghịch biến trên khoảng ( -
1;2).

  • Câu 19: Nhận biết

    Xác định cực tiểu của hàm số

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}, đạo hàm y = f'(x) có đồ thị như hình vẽ sau:

    Tìm số điểm cực tiểu của hàm số y =
f(x)?

    Hàm số đạt cực tiểu tại điểm có f'(x) đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.

  • Câu 20: Thông hiểu

    Tính tổng tất cả các tham số m

    Cho hàm số y = x^{3} - 3x^{2} + m -
1 với m là tham số. Tổng tất cả các giá trị nguyên của tham số m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt bằng:

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là:

    x^{3} - 3x^{2} + m - 1 = 0
\Leftrightarrow x^{3} - 3x^{2} + 1 = m

    Xét hàm số f(x) = - x^{3} + 3x^{2} +
1;\forall x\mathbb{\in R}

    Ta có: f'(x) = - 3x^{2} + 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên ta thấy để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt khi và chỉ khi 1 < m <
5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 2;3;4 ight\}

    Vậy tổng tất cả các giá trị nguyên của tham số m thỏa mãn yêu cầu bằng 9.

  • Câu 21: Vận dụng cao

    Chọn kết luận đúng

    Đồ thị của hàm số y = x^{4} - 2(m +
1)x^{2} + 2m + 1 (với m là tham số) cắt trục hoành tại bốn điểm phân biệt có hoành độ lập thành một cấp số cộng. Kết luận nào sau đây đúng?

    Phương trình hoành độ giao điểm y = x^{4}
- 2(m + 1)x^{2} + 2m + 1 = 0\ \ (1)

    Đặt t = x^{2};t \geq 0. Phương trình trở thành t^{2} - 2(m + 1)t + 2m + 1 =
0\ \ \ (2)

    Phương trình (1) có 4 nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương phân biệt, nghĩa là \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(m + 1)^{2} - (2m + 1) > 0 \\
m + 1 > 0 \\
2m + 1 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - 1 \\m > - \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - \dfrac{1}{2} \\\end{matrix} ight.

    Gọi x_{1};x_{2};x_{3};x_{4};\left( x_{1} < x_{2} < x_{3} < x_{4}
ight) là nghiệm cỉa phương trình (1) và t_{1};t_{2};\left( t_{1} < t_{2}
ight) là nghiệm của phương trình (2)

    Theo giả thiết ta có:

    x_{4} - x_{3} = x_{3} - x_{2} = x_{2} -
x_{1}

    \Leftrightarrow x_{4} - x_{3} = x_{3} -
x_{2}

    \Leftrightarrow \sqrt{t_{2}} -
\sqrt{t_{1}} = \sqrt{t_{1}} + \sqrt{t_{1}} \Leftrightarrow t_{2} =
9t_{1} > 0

    Ta có hệ:

    \left\{ \begin{matrix}t_{1} + t_{2} = 2(m + 1) \\t_{1}.t_{2} = 2m + 1 \\t_{1} = 9t_{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t_{1} = \dfrac{m}{5} + \dfrac{1}{5} \\t_{2} = \dfrac{9m}{5} + \dfrac{9}{5} \\t_{1}.t_{2} = 2m + 1 \\\end{matrix} ight.

    \Leftrightarrow \left( \dfrac{m}{5} +\dfrac{1}{5} ight)\left( \dfrac{9m}{5} + \dfrac{9}{5} ight) = 2m + 1\Leftrightarrow \left\lbrack \begin{matrix}m = 4 \\m = - \dfrac{4}{9} \\\end{matrix} ight.

    Vậy m \in (2;6)

  • Câu 22: Thông hiểu

    Tìm m thỏa mãn phương trình

    Cho hàm số bậc ba y = f(x) có đồ thị như sau:

    Số giá trị nguyên của tham số m để phương trình f(x) + 3m = 0 có ba nghiệm phân biệt là:

    Số nghiệm của phương trình f(x) + 3m =0 là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = - 3m

    Suy ra để phương trình f(x) + 3m =0 có ba nghiệm phân biệt thì - 1< - 3m < 3 \Leftrightarrow - 1 < m <\frac{1}{3}

    m\mathbb{\in Z \Rightarrow}m =0

    Vậy có duy nhất một số nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 23: Vận dụng

    Tìm số thực m thỏa mãn điều kiện

    Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.

    Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:

    f’(x) = -3x2 – 6x

    f’(x) = 0 => \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 1} \\   { - 3{x^2} - 6x = 0} \end{array}} ight. \Leftrightarrow x = 0

    Ta tính được

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = 2 + m} \\   \begin{gathered}  f\left( 0 ight) = m \hfill \\  f\left( 1 ight) =  - 4 + m \hfill \\ \end{gathered}  \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = f\left( 1 ight) =  - 4 + m \hfill \\   \Leftrightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = 0 \Rightarrow m = 4 \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Ghi đáp án đúng vào ô trống

    Cho hàm số y = e^{x}\left( x^{2} - 3
\right), gọi M =
\frac{a}{e^{b}}\left( a\mathbb{\in N},b\mathbb{\in N} \right) là giá trị lớn nhất của hàm số trên đoạn \lbrack - 5; - 2\rbrack. Tính giá trị của biểu thức P = a + b?

    Đáp án: 9

    Đáp án là:

    Cho hàm số y = e^{x}\left( x^{2} - 3
\right), gọi M =
\frac{a}{e^{b}}\left( a\mathbb{\in N},b\mathbb{\in N} \right) là giá trị lớn nhất của hàm số trên đoạn \lbrack - 5; - 2\rbrack. Tính giá trị của biểu thức P = a + b?

    Đáp án: 9

    Ta có: y' = e^{x}\left( x^{2} + 2x -
3 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 3 \in \lbrack - 5; - 2brack \\
x = 1 otin \lbrack - 5; - 2brack \\
\end{matrix} ight.

    Ta có y( - 5) = \frac{22}{e^{5}};y( - 3)
= \frac{6}{e^{3}};y( - 2) = \frac{1}{e^{2}}.

    Khi đó \max_{\lbrack - 5; - 2brack}y =
\frac{6}{e^{3}} \Rightarrow a = 6;b = 3 \Rightarrow a + b =
9.

  • Câu 25: Vận dụng

    Tìm m để đồ thị hàm số không có tiệm cận đứng

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{2x^{2} - 3x + m}{x - m} không có tiệm cận đứng.

    TXĐ: D\mathbb{= R}\backslash\left\{ m
ight\}.

    Ta có y = \frac{(x - m)(2x + 2m - 3) +
2m(m - 1)}{x - m} = 2x + 2m - 3 +
\frac{2m(m - 1)}{x - m}

    Để đồ thị hàm số không có tiệm cận đứng thì các giới hạn \lim_{x ightarrow m^{\pm}}y tồn tại hữu hạn \Leftrightarrow 2m(m - 1) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 0 \\
\end{matrix} ight.\ .

    Cách 2. (Chỉ áp dụng cho mẫu thức là bậc nhất)

    Từ yêu cầu bài toán suy ra phương trình 2x^{2} - 3x + m = 0 có một nghiệm là x = m

    \Rightarrow 2m^{2} - 3m + m = 0 \Leftrightarrow 2m(m - 1) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 1 \\
\end{matrix} ight..

  • Câu 26: Thông hiểu

    Tìm số phần từ của tập hợp S

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để hàm số y = \frac{\cos x + m^{2}}{2 - \cos
x} có giá trị lớn nhất trên \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack bằng 1. Số phần tử của tập hợp S:

    Ta có: y = \frac{\cos x + m^{2}}{2 - \cos
x};\forall x \in \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack

    Đặt t = \cos x;(0 \leq t \leq
1)

    Hàm số đã cho trở thành: f(t) = \frac{t +
m^{2}}{2 - t};\forall t \in \lbrack 0;1brack

    Ta có: f'(t) = \frac{2 + m^{2}}{(2 -
t)^{2}} > 0;\forall t \in \lbrack 0;1brack

    \Rightarrow \underset{\left\lbrack -
\frac{\pi}{2};\frac{\pi}{3} ightbrack}{\max y} = f(1) = m^{2} + 1 =
1 \Leftrightarrow m = 0

    Vậy số phần tử của tập hợp S là 1.

  • Câu 27: Vận dụng

    Ghi đáp án vào ô trống

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 28: Thông hiểu

    Chọn đáp án đúng

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \lbrack - 2017;2018brack để hàm số y = \frac{1}{3}x^{3} - mx^{2} + (m +
2)x có hai điểm cực trị nằm trong khoảng (0; + \infty).

    Ta có: y' = x^{2} - 2mx + m +
2

    Yêu cầu bài toán \Leftrightarrow y'=0 có hai nghiệm dương phân biệt

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' = m^{2} - m - 2 > 0 \\
S = x_{1} + x_{2} > 0 \\
P = x_{1}x_{2} > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(m + 1)(m - 2) > 0 \\
2m > 0 \\
m + 2 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\left\lbrack \begin{matrix}m>2 \\m <-1 \\\end{matrix} ight.\  \\m > 0 \\\end{matrix} ight.\ \Leftrightarrow m>2

    \overset{m\mathbb{\in Z}\ \&\ m \in
\lbrack - 2017;2018brack}{ightarrow}m = \left\{ 3;4;5;...2018
ight\}\overset{}{ightarrow}2016 giá trị.

  • Câu 29: Nhận biết

    Tìm khoảng nghịch biến của hàm số

    Hàm số y = \frac{5 - 2x}{x + 3} nghịch biến trên

    Hàm số y = \frac{5 - 2x}{x + 3} có tập xác định là D\mathbb{=
R}\backslash\left\{ - 3 ight\}.

    y' = \frac{- 11}{(x + 3)^{2}} <
0,với x \in D.

    Vậy hàm số đã cho nghịch biến trên các khoảng ( - \infty; - 3)( - 3; + \infty).

  • Câu 30: Vận dụng

    Tìm m nguyên để hàm số đồng biến trên R

    Số giá trị nguyên của tham số m để hàm số y = 2{x^3} - 3m{x^2} + 6mx + 2 đồng biến trên \mathbb{R}?

    Ta có: y' = 6{x^2} - 6mx + 6m

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 6 > 0} \\   {\Delta ' = 9{m^2} - 36m \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.

  • Câu 31: Nhận biết

    Chọn hàm số thích hợp

    Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?

    Đường cong trong hình vẽ là đồ thị hàm số y = ax^{3} + bx^{2} + cx + d với a > 0 nên đồ thị đã cho là đồ thị của hàm số y = x^{3} - 3x - 1.

  • Câu 32: Thông hiểu

    Chọn đáp án thích hợp

    Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?

    Ta có:

    y = \frac{x}{1 + \sqrt{x}} không có tiệm cận ngang vì \lim_{x ightarrow +
\infty}\frac{x}{1 + \sqrt{x}} = + \infty

    y = x^{3} - 3x không có tiệm cận ngang vì \lim_{x ightarrow \pm
\infty}\left( x^{3} - 3x ight) = \pm \infty

    y = \log_{2}x không có tiệm cận ngang vì \lim_{x ightarrow + \infty}\left(\log_{2}x ight) = + \infty

    y = x + \sqrt{x^{2} + 4} có tiệm cận ngang vì \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } \left( {x + \sqrt {{x^2} + 4} } ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {x + \sqrt {{x^2} + 4} } ight) = 0 \hfill \\ 
\end{gathered}  ight.

  • Câu 33: Nhận biết

    Chọn hàm số thích hợp với hình vẽ

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Đồ thị hàm số bậc 4 có hệ số a >
0 cắt trục tung tại điểm có tung độ lớn hơn 0 nên hàm số cần tìm là y = x^{4} - 2x^{2} - 1.

  • Câu 34: Vận dụng cao

    Tìm m để hàm số có 11 cực trị

    Cho hàm số y = f’(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \left[ { - 30;30} ight] để hàm số f\left( {{x^3} - 3{m^2}x} ight) có đúng 11 điểm cực trị?

    Tìm m để hàm số có 11 cực trị

    Hàm số đạt cực trị tại x = a <  - 1;x =  - 1;x = 4

    Xét hàm số f\left( {\left| {{x^3} - 3mx} ight|} ight) = f\left( u ight)

    Bảng biến thiên của hàm số u = \left| {{x^3} - 3mx} ight| \geqslant 0 suy ra chỉ có phương trình u = \left| {{x^3} - 3mx} ight| = 4 cho ta nghiệm bội lẻ.

    Nếu m \leqslant 0

    => Số điểm cực trị u là 1

    => Số nghiệm bội lẻ của phương trình u = 4 tối đa 2 nghiệm bội lẻ (Không thỏa yêu cầu)

    Khi m > 0 => Số điểm cực trị u là 5 ta có bảng biến thiên của hàm số u = \left| {{x^3} - 3mx} ight|

    Tìm m để hàm số có 11 cực trị

    Áp dụng công thức:

    Số điểm cực trị của hàm số f(u) = số nghiệm bội lẻ của phương trình (u = 4) + số điểm cực trị của u

    => \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {2m\sqrt m  > 4} \end{array}} ight. \Leftrightarrow m > \sqrt[3]{4}. Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \mathbb{Z}} \\   {m \in \left[ { - 30;30} ight]} \end{array}} ight.

    => Có 29 giá trị nguyên thỏa mãn yêu cầu.

  • Câu 35: Vận dụng

    Ghi đáp án vào ô trống

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Nhận biết

    Tìm số đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?

    Đồ thị của hàm số đã cho có 2 đường tiệm cận.

  • Câu 37: Vận dụng

    Chọn kết luận đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số g(x) =
f\left( x^{2} - 2x ight) trên khoảng (0; + \infty)?

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 1\  \\
x^{2} - 2x = 2\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 1 \pm \sqrt{3} \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên suy ra hàm số g(x) =
f\left( x^{2} - 2x ight) có hai cực trị trên khoảng (0; + \infty).

  • Câu 38: Thông hiểu

    Tìm số cực trị của hàm số

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R}f'(x) = (x - 1)(x - 2)^2(x + 3). Số điểm cực trị của hàm số đã cho là:

    Ta có f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = - 3 \\
\end{matrix} ight.

    Bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số đã cho có 2 điểm cực trị.

  • Câu 39: Vận dụng

    Chọn đáp án đúng

    Tìm số giao điểm của đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x?

    Cách 1: Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x \Leftrightarrow
\sqrt{x^{4} - 4} = x - 5

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - 4 = (x - 5)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - x^{2} + 10x - 29 = 0\ \ \ (*) \\
\end{matrix} ight.

    Do x \geq 5nên x^{4} - x^{2} = x^{2}(x^{2} - 1) > 010x - 29 > 0. Vì vậy (*) vô nghiệm

    Như vậy phương trình \sqrt{x^{4} - 4} + 5
= x vô nghiệm hay đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào.

    Cách 2:

    Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x. Ta có điều kiện xác định \left\lbrack \begin{matrix}
x \geq \sqrt{2} \\
x \leq - \sqrt{2} \\
\end{matrix} ight.

    Với điều kiện trên ta có \sqrt{x^{4} - 4}
+ 5 = x \Leftrightarrow \sqrt{x^{4} - 4} + 5 - x = 0

    Xét hàm số h(x) = \sqrt{x^{4} - 4} + 5 -
x. Ta có h'(x) =
\frac{2x^{3}}{\sqrt{x^{4} - 4}} - 1; h'(x) = 0 \Leftrightarrow 2x^{3} = \sqrt{x^{4}
- 4}

    Với x \geq \sqrt{2} ta có 2x^{3} > \sqrt{x^{4} - 4}. Với x \leq - \sqrt{2} ta có 2x^{3} < \sqrt{x^{4} - 4}

    Ta có Bảng biến thiên:

    Số nghiệm của phương trình\sqrt{x^{4} -
4} + 5 = x là số giao điểm của đồ thịy = h(x) = \sqrt{x^{4} - 4} + 5 - x và trục hoànhy = 0.

    Dựa vào BBT ta thấy phương trình \sqrt{x^{4} - 4} + 5 = x vô nghiệm hay đồ thị hàm số y = \sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào. 

  • Câu 40: Vận dụng cao

    Xét tính đúng sai của các nhận định

    Đường dây điện 110KV kéo từ trạm phát trong đất liền ra Côn Đảo. Biết BC =
60km, AB = 100km, góc \widehat{ABC} = 90{^\circ}, như hình vẽ. Mỗi km dây điện dưới nước chi phí là 5000\ USD, chi phí cho mỗi km dây điện trên bờ là 3000\ USD. Đặt x = AG.

    a) Khi x = 20\ km thì đường dây điện nối từ C về G dài 100km. Đúng||Sai

    b) Khi x = 20\ km thì tổng chi phí mắc điện là 560.000USD. Đúng||Sai

    c) Tổng chi phí mắc điện nhỏ nhất khi x =
50km. Sai||Đúng

    d) Tổng chi phí mắc điện nhỏ nhất là 540.000USD.Đúng||Sai

    Đáp án là:

    Đường dây điện 110KV kéo từ trạm phát trong đất liền ra Côn Đảo. Biết BC =
60km, AB = 100km, góc \widehat{ABC} = 90{^\circ}, như hình vẽ. Mỗi km dây điện dưới nước chi phí là 5000\ USD, chi phí cho mỗi km dây điện trên bờ là 3000\ USD. Đặt x = AG.

    a) Khi x = 20\ km thì đường dây điện nối từ C về G dài 100km. Đúng||Sai

    b) Khi x = 20\ km thì tổng chi phí mắc điện là 560.000USD. Đúng||Sai

    c) Tổng chi phí mắc điện nhỏ nhất khi x =
50km. Sai||Đúng

    d) Tổng chi phí mắc điện nhỏ nhất là 540.000USD.Đúng||Sai

    Tổng quan đáp án bài tập:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

    a) Có AG = x \Rightarrow BG = 100 -
x với 0 \leq x \leq
100.

    Xét tam giác CBG vuông tại BCG =
\sqrt{CB^{2} + BG^{2}} = \sqrt{3600 + (100 - x)^{2}}.

    Khi x = 20\ km \Rightarrow CG = 100\
km.

    b) Chi phí tiền mắc điện là f(x) = 3000x
+ 5000.\sqrt{3600 + (100 - x)^{2}}

    Khi x = 20\ km \Rightarrow CG = 100\
km và tổng chi phí mắc điện là T =
f(20) = 560.000\ USD.

    c) Để chi phí mắc điện ít nhất thì f(x) đạt giá trị nhỏ nhất.

    Ta có f'(x) = 3000 - 5000\frac{(100 -
x)}{\sqrt{3600 + (100 - x)^{2}}}

    \Rightarrow f'(x) = 0 \Rightarrow f'(x) = 0

    \Leftrightarrow 3000 = 5000\frac{(100 - x)}{\sqrt{3600 +(100 - x)^{2}}}\Leftrightarrow \left\lbrack \begin{matrix}x = 55 \\x = 145(l)\end{matrix} \right..

    Ta có

    \begin{matrix}
f(0) = 583095,1895USD \\
f(55) = 540.000USD \\
f(100) = 600.000USD
\end{matrix}

    Vậy chi phí mắc điện nhỏ nhất khi x =
55km.

    d) chi phí mắc điện nhỏ nhất là 540.000USD

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Hàm số - Sự biến thiên của hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo