Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa kì 1 Toán 12 Đề 3

Mô tả thêm:

Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Số cạnh của hình đa diện

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 2: Nhận biết

    Tìm min, max của hàm số trên đoạn

    Cho hàm số f(x) = x^{3} + 3x^{2} + x -
1. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack lần lượt là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 6x + 1\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{- 3 - \sqrt{6}}{3} \\x = \dfrac{- 3 + \sqrt{6}}{3} \\\end{matrix} ight.

    Khi đó: y( - 1) = 0;y\left( \frac{- 3 +
\sqrt{6}}{3} ight) = - \frac{4\sqrt{6}}{9};y(2) = 21

    \Rightarrow \left\{ \begin{gathered}
  \mathop {\max }\limits_{\left[ { - 1;2} ight]} y = y\left( 2 ight) = 21 \hfill \\
  \mathop {\min }\limits_{\left[ { - 1;2} ight]} y = y\left( {\frac{{ - 3 + \sqrt 6 }}{3}} ight) =  - \frac{{4\sqrt 6 }}{9} \hfill \\ 
\end{gathered}  ight.

  • Câu 3: Thông hiểu

    Tìm số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{2x\sqrt{3 -
x^{2}}}{x^{2} + x - 2} có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = \left\lbrack - \sqrt{3}\ ;\
\sqrt{3} ightbrack\backslash\left\{ 1 ight\}\ \
\overset{}{ightarrow}không tồn tại \lim_{x ightarrow - \infty}y\lim_{x ightarrow + \infty}y. Suy ra đồ thị hàm số không có tiệm cận ngang.

    Ta có \left\{ \begin{matrix}
\lim_{x ightarrow \ 1^{+}}\frac{2x\sqrt{3 - x^{2}}}{x^{2} + x - 2} = +
\infty \\
\lim_{x ightarrow 1^{-}}\frac{2x\sqrt{3 - x^{2}}}{x^{2} + x - 2} = -
\infty \\
\end{matrix} ight.\ \overset{}{ightarrow}\ \ x = 1 là TCĐ.

    Vậy đồ thị hàm số có đúng một tiệm cận.

  • Câu 4: Thông hiểu

    Tính giá trị của biểu thức

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có đồ thị như hình vẽ bên. Gọi M,mlần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 1;3brack. Giá trị của M + m

    Dựa vào đồ thị ta thấy GTLN của hàm số trên đoạn \lbrack - 1;3brackM = 2 đạt được tại x = - 1 và GTNN của hàm số số trên đoạn \lbrack - 1;3brackm = - 4 đạt được tại x = 2

    \Rightarrow M + m = 2 + ( - 4) = -
2

  • Câu 5: Thông hiểu

    Xác định khoảng đồng biến của hàm số

    Tìm tất cả các khoảng đồng biến của hàm số y = \sqrt {9 - {x^2}}

    Tập xác định D = \left[ { - 3;3} ight]

    Ta có:

    \begin{matrix}  y' = \dfrac{{ - x}}{{\sqrt {9 - {x^2}} }} \hfill \\  y' < 0,\forall x \in \left( {0;3} ight) \hfill \\ \end{matrix}

    => Hàm số đồng biến trên (-3; 0)

  • Câu 6: Nhận biết

    Tìm khoảng đồng biến của hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào đồ thị ta có hàm số đồng biến trên khoảng ( - 1;\ 0).

  • Câu 7: Vận dụng cao

    Số cực trị của hàm số

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như sau:

    Số cực trị của hàm số

    Hàm số g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) có bao nhiêu điểm cực trị?

    Xét hàm số t\left( x ight) = \frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}, ta có bảng giá trị |t(x)|

    Số cực trị của hàm số

    Ta có: g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) = f\left( {\left| {t\left( x ight)} ight|} ight)

    Hàm số không có đạo hàm tại điểm x =  \pm \sqrt {{e^2} - 1}

    Tại mọi điểm x =  \pm \sqrt {{e^2} - 1} ta có:

    g'\left( x ight) = f'\left( {\left| {t\left( x ight)} ight|} ight).\left( {\left| {t\left( x ight)} ight|} ight)'

    = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \infty ; - \sqrt {{e^2} - 1} } ight) \cup \left( {\sqrt {{e^2} - 1} ; + \infty } ight)} \\   { - \dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \sqrt {{e^2} - 1} ;\sqrt {{e^2} - 1} } ight)} \end{array}} ight.\left( * ight)

    => g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {\left| {t\left( x ight)} ight| = {t_1};\left( {{t_1} < 1} ight){\text{   }}\left( 1 ight)} \\   {\left| {t\left( x ight)} ight| = {t_2};\left( { - 1 < {t_2} < 0} ight){\text{   }}\left( 2 ight)} \\   {\left| {t\left( x ight)} ight| = {t_3};\left( {0 < {t_3} < 1} ight){\text{   }}\left( 3 ight)} \\   {\left| {t\left( x ight)} ight| = {t_4};\left( {{t_4} > 1} ight){\text{   }}\left( 4 ight)} \end{array}} ight.

    Dựa vào bảng giá trị hàm |t| suy ra:

    + Phương trình (1), (2) vô nghiệm

    + Phương trình (3) có 4 nghiệm phân biệt khác 0

    + Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)

    => g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu

    Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm x =  \pm \sqrt {{e^2} - 1}

    Vậy hàm số g(x) có 9 điểm cực trị.

  • Câu 8: Thông hiểu

    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

     

    Dựa vào đồ thị ta thấy hàm số y =
f(x) có hai điểm cực trị là x =
0x = 2.

    Giá trị lớn nhất của hàm số trên R không tồn tại.

    Dựa vào đồ thị ta thấy hàm số nghịch biến trên khoảng ( - 2;0)

    Dựa vào đồ thị ta có f(0) = 2
\Rightarrow c = 2

  • Câu 9: Vận dụng

    Định tham số m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số m để khoảng cách từ điểm M(0;3) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x^{3} + 3mx +
1 bằng \frac{2}{\sqrt{5}}.

    Ta có y' = 3x^{2} + 3m;\ y' = 0
\Leftrightarrow x^{2} = - m.

    Để hàm số có hai điểm cực trị \Leftrightarrow y' = 0 có hai nghiệm phân biệt \Leftrightarrow m < 0. (*)

    Thực hiện phép chia y cho y' ta được phần dư 2mx + 1, nên đường thẳng \Delta:y = 2mx + 1 chính là đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.

    Yêu cầu bài toán

    \Leftrightarrow d\lbrack
M,\Deltabrack = \frac{2}{\sqrt{4m^{2} + 1}} =
\frac{2}{\sqrt{5}}

    \Leftrightarrow m^{2} = 1 \Leftrightarrow
m = \pm 1.

    Đối chiếu điều kiện (*), ta chọn m = - 1.

  • Câu 10: Vận dụng

    Giá trị của biểu thức

    Cho hình vẽ là đồ thị hàm số có dạng y = a{x^4} + b{x^2} + c

    Giá trị của biểu thức

    Giá trị của biểu thức B = {a^2} + {b^2} + {c^2} có thể nhận giá trị nào trong các giá trị sau?

    Đồ thị hàm số đi qua điểm \left( {0; - 1} ight) => c =  - 1

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{y_{CD}} = y\left( {\sqrt {\dfrac{{ - b}}{{2a}}} } ight) = \dfrac{{ - {b^2}}}{{4a}} + c = 3} \\   {y\left( 1 ight) = a + b + c = 2} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16a} \\   {a + b = 3} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16\left( {3 - b} ight)} \\   {a = 3 - b} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {b = 12;a = 9} \\   {b = 4;a =  - 1} \end{array}} ight. \hfill \\   \Rightarrow B = {a^2} + {b^2} + {c^2} = 18 \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Tìm tiệm cận ngang

    Đồ thị hàm số y = \frac{x - 2}{x^{2} -
4} có đường tiệm cận ngang là

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\dfrac{x - 2}{x^{2} - 4} = \lim_{xightarrow \pm \infty}\dfrac{\dfrac{x}{x^{2}} -\dfrac{2}{x^{2}}}{\dfrac{x^{2}}{x^{2}} - \dfrac{4}{x^{2}}} = 0

    Suy ra tiệm cận ngang là y =
0.

  • Câu 12: Thông hiểu

    Tính V lăng trụ biết V chóp

    Tính thể tích Vcủa khối lăng trụ ABC.A'B'C' biết thể tích khối chóp A.BCB'C' bằng 2a^3

    Ta có thể tích khối chóp: {V_{A.A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}}

    Suy ra:

    {V_{A.BCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}}\xrightarrow{{}}{V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCB'C'}} = \frac{3}{2}.2{a^3} = 3{a^3}.

  • Câu 13: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của hàm số y = \left|
f(x) ight| là:

    Khi đó bảng biến thiên của hàm số y =
\left| f(x) ight| là:

    Dựa vào bảng biến thiên ta thấy hàm số y
= \left| f(x) ight| có 5 điểm cực trị.

  • Câu 14: Thông hiểu

    Hàm số đã cho là hàm số nào

    Cho hàm số y = \frac{{ax + b}}{{cx + d}} có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

    Hàm số đã cho là hàm số nào

    Dựa vào bảng biến thiên ta thấy:

    Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1

    => Loại đáp án C và D

    Hàm số đã cho nghịch biến trên mỗi khoảng xác định

    Xét hàm số y = \frac{{x - 3}}{{x - 2}} \Rightarrow y' = \frac{1}{{{{\left( {x - 2} ight)}^2}}}

    => Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A

  • Câu 15: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số g(x) = \frac{1}{f(x)} đồng biến trên khoảng nào sau đây?

    Ta có: g'(x) = -
\frac{f'(x)}{\left\lbrack f(x) ightbrack^{2}} >
0

    \Leftrightarrow \left\{ \begin{matrix}
f'(x) < 0 \\
f(x) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
1 < x < 3 \\
x eq \left\{ - 2;0;3 ight\} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 2 < x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.

    Vậy hàm số g(x) = \frac{1}{f(x)} đồng biến trên các khoảng ( - \infty; - 2),(
- 2; - 1),(1;3)

    Suy ra hàm số g(x) =
\frac{1}{f(x)} đồng biến trên khoảng (1;2).

  • Câu 16: Vận dụng

    Tính thể tích biết hình chiếu

    Tính thể tích V của khối lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB = 1,{\text{ }}AC = 2 ; cạnh bên AA' = \sqrt 2. Biết hình chiếu vuông góc của A' trên mặt đáy (ABC)  trùng với chân đường cao hạ từ B của tam giác ABC

     

    Gọi H là chân đường cao hạ từ B trong \Delta ABC.

    Theo giả thiết, ta có A'H \bot \left( {ABC} ight)

    Tam giác vuông ABC, có BC = \sqrt {A{C^2} - A{B^2}}  = \sqrt 3; AH = \frac{{A{B^2}}}{{AC}} = \frac{1}{2}.

    Tam giác vuông A'HA, có A'H = \sqrt {AA{'^2} - A{H^2}}  = \frac{{\sqrt 7 }}{2}.

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{\sqrt 3 }}{2}

    Vậy {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.A'H = \frac{{\sqrt {21} }}{4}.

     

  • Câu 17: Vận dụng

    Xác định giá trị nhỏ nhất của biểu thức P

    Xác định giá trị nhỏ nhất của biểu thức P = 4\left( {{m^2} + {n^2}} ight) - m - n, biết y = {\left( {x + m} ight)^3} + {\left( {x + n} ight)^3} - {x^3} với m,n là tham số và hàm số đồng biến trên \left( { - \infty ; + \infty } ight).

    Ta có:

    \begin{matrix}  y' = 3{\left( {x + m} ight)^2} + 3{\left( {x + n} ight)^2} - 3{x^2} \hfill \\   = 3\left[ {{x^2} + 2\left( {m + n} ight)x + {m^2} + {n^2}} ight] \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên \mathbb{R}

    \begin{matrix} y' \geqslant 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \Delta ' = {\left( {m + n} ight)^2} - {m^2} - {n^2} \leqslant 0 \hfill \\   \Rightarrow mn \leqslant 0 \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  P = 4\left( {{m^2} + {n^2}} ight) - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 8mn - \left( {m + n} ight) \hfill \\   \geqslant 4{\left( {m + n} ight)^2} - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 2.2\left( {m + n} ight).\dfrac{1}{4} + \dfrac{1}{{16}} - \dfrac{1}{{16}} \hfill \\   = {\left[ {2\left( {m + n} ight) - \dfrac{1}{4}} ight]^2} - \dfrac{1}{{16}} \geqslant  - \dfrac{1}{{16}} \hfill \\   \Rightarrow {P_{\min }} =  - \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Tìm giá trị của tham số m

    Với giá trị nào của tham số m để đồ thị hàm số y = \frac{2x^{2} + 6mx + 4}{mx
+ 2} đi qua điểm A( -
1;4)?

    Thay tọa độ điểm A( - 1;4) vào y = \frac{2x^{2} + 6mx + 4}{mx + 2} ta được:

    4 = \frac{2.( - 1)^{2} + 6m.( - 1) +
4}{m.( - 1) + 2} \Leftrightarrow 2m = - 2 \Leftrightarrow m = -
1

    Vậy giá trị m cần tìm là m = -
1.

  • Câu 19: Nhận biết

    Xác định các tiệm cận ngang

    Đồ thị hàm số y = \frac{\sqrt{10000 -
x^{2}}}{x - 2} có bao nhiêu đường tiệm cận ngang?

    Điều kiện xác định \left\{ \begin{matrix}
10000 - x^{2} \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 100 \leq x \leq 100 \\
x eq 2 \\
\end{matrix} ight.

    Tập xác định \lbrack -
100;100brack\backslash\left\{ 2 ight\}

    Vì hàm số không tồn tại khi x ightarrow
- \inftyx ightarrow +
\infty nên đồ thị hàm số không có tiệm cận ngang.

  • Câu 20: Nhận biết

    Đếm số hình đa diện

    Cho các hình sau:

    Đếm số hình đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:

     Các hình đa diện là:

    Đếm số hình đa diện; Đếm số hình đa diện; Đếm số hình đa diện

  • Câu 21: Thông hiểu

    Ghi đáp án vào ô trống

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Nhận biết

    Mệnh đề nào sau đây đúng

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 23: Thông hiểu

    Ghi đáp án vào ô trống

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 24: Vận dụng

    Chọn mệnh đề sai

    Cho hàm số y =
f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Xét hàm g(x) = f\left( x^{2} - 2
ight). Mệnh đề nào dưới đây sai?

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 2 ight)

    g'(x) = 0 \Leftrightarrow
2x.f'\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x = 0 \\
f'\left( x^{2} - 2 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 2 = - 1 \\
x^{2} - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Dựa vào đồ thị ta thấy f'\left( x^{2}
- 2 ight) > 0

    \Leftrightarrow x^{2} - 2 > 2
\Leftrightarrow x^{2} > 4 \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
x > 2 \\
\end{matrix} ight.

    Vậy hàm số g(x) nghịch biến trên ( - 1;0) là sai.

  • Câu 25: Nhận biết

    Chọn phương án thích hợp

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho đạt cực tiểu tại

    Từ bảng biến thiên ta có điểm cực tiểu của hàm số là x = 3.

  • Câu 26: Thông hiểu

    Khối lăng trụ ngũ giác

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 27: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 2)^{2}(x - 1).x^{3};\forall
x\mathbb{\in R}. Hỏi hàm số có bao nhiêu điểm cực tiểu?

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \\
x = 1 \\
x = 0 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên suy ra hàm số có một điểm cực tiểu.

  • Câu 28: Nhận biết

    Điền đáp án

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 29: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 30: Nhận biết

    Thể tích khối hộp

    Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ đã cho theo a, biết A'B=3a.

     

    Do ABCD.A'B'C'D'là lăng trụ đứng nên AA' \bot AB.

    Xét tam giác vuông A'AB, ta có A'A = \sqrt {A'{B^2} - A{B^2}}  = a\sqrt 5.

    Diện tích hình vuông ABCD{S_{ABCD}} = A{B^2} = 4{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'A = 4\sqrt 5 {a^3}

  • Câu 31: Thông hiểu

    Chọn đáp án thích hợp

    Để hàm số y = x^{3} - 3x^{2} +
mx đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} - 6x + m \\
y'' = 6x - 6 \\
\end{matrix} ight.. Để hàm số y
= x^{3} - 3x^{2} + mx đạt cực tiểu tại x = 2 thì

    \left\{ \begin{matrix}
y' = 0 \\
y'' > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y'(2) = 0 \\
y''(2) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 0 \\
6.2 - 6 > 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m \in ( -
1;1).

  • Câu 32: Nhận biết

    Xác định số điểm cực trị của hàm số

    Cho hàm số f(x) có bảng xét dấu của f'(x) như sau:

    Số điểm cực trị của hàm số đã cho là

    Dựa vào bảng xét dấu của f'(x) hàm số đã cho có 2 điểm cực trị.

  • Câu 33: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số trên đoạn

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack có đồ thị như hình vẽ:

    Tìm giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 2;2brack?

    Trên đoạn \lbrack - 2;2brack ta có: f(x) \geq - 1f(x) = - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Vậy \min_{\lbrack - 2;2brack}y = -
1.

  • Câu 34: Thông hiểu

    Tìm khoảng nghịch biến của hàm số

    Hàm số y =
\sqrt{2x - x^{2}} nghịch biến trên khoảng:

    Tập xác định \lbrack
0;2brack

    Ta có: y' = \frac{1 - x}{\sqrt{2x -
x^{2}}} \Rightarrow y' = 0 \Leftrightarrow \frac{1 - x}{\sqrt{2x -
x^{2}}} = 0\Leftrightarrow x = 1

    \Rightarrow \left\{ \begin{matrix}
y' < 0 \Leftrightarrow x \in (1;2) \\
y' > 0 \Leftrightarrow x \in (0;1) \\
\end{matrix} ight.

    Vậy hàm số nghịch biến trên khoảng (1;2)

  • Câu 35: Thông hiểu

    Tìm tham số m thỏa mãn yêu cầu

    Gọi m là giá trị nhỏ nhất của hàm số y = x + \frac{4}{x} trên khoảng (0; + \infty). Tìm m.

    Cách 1:

    Hàm số y = x + \frac{4}{x} liên tục và xác định trên (0; +
\infty).

    Ta có

    y' = 1 - \frac{4}{x^{2}} =
\frac{x^{2} - 4}{x^{2}} \Rightarrow y' = 0\Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \in (0; + \infty) \\
x = - 2 otin (0; + \infty) \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy giá trị nhỏ nhất là m = 4 khi x = 2.

    Cách 2:

    Với x \in (0;\  + \infty) \Rightarrow x;\
\frac{4}{x} > 0.

    Áp dụng bất đẳng thức Cô si ta có: x + \frac{4}{x} \geq 2\sqrt{x.\frac{4}{x}} =
4.

    Dấu bằng xảy ra khi và chỉ khi \left\{
\begin{matrix}
x > 0 \\
x = \dfrac{4}{x} \\
\end{matrix} ight.\  \Leftrightarrow x = 2. Vậy m = 4 khi x =
2.

  • Câu 36: Vận dụng

    Chóp tứ giác đều

    Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

     Hình chóp tứ giác đều có 4 mặt phẳng đối xứng bao gồm:

    Chóp tứ giác đều

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường trung bình của đáy.

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường chéo của đáy.

  • Câu 37: Nhận biết

    Chọn mệnh đề đúng

    Cho hàm số y = \frac{{2x + 1}}{{ - x + 1}}. Mệnh đề nào dưới dây là đúng?

    Tập xác định của hàm số D = \mathbb{R}\backslash \left\{ 1 ight\}

    Ta có: y' = \frac{3}{{{{\left( { - x + 1} ight)}^2}}} > 0,\forall x e 1

    Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)

  • Câu 38: Nhận biết

    Tìm số mặt của đa diện

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 39: Thông hiểu

    V khối lập phương

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 40: Thông hiểu

    Xác định vận tốc của chuyển động

    Vận tốc của một chất điểm được xác định bởi công thức v(t) = t^{3} - 10t^{2} + 29t - 20 (với v được tính bằng giây). Vận tốc của chất điểm tại thời điểm gia tốc nhỏ nhất gần bằng:

    Gia tốc của chất điểm a(t) = v'(t) =
3t^{2} - 20t + 29 gia tốc là hàm số bậc hai ẩn t đạt giá trị nhỏ nhất tại t = \frac{10}{3}

    Tại đó, vận tốc của chất điểm bằng v\left( \frac{10}{3} ight) = \frac{70}{27}
\approx 2,59.

  • Câu 41: Nhận biết

    Tìm số mặt của đa diện

    Tìm số mặt của hình đa diện dưới đây là?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 42: Nhận biết

    Xác định hàm số thích hợp

    Hàm số nào dưới đây đồng biến trên khoảng ( - \infty; + \infty)?

    Hàm số y = 3x^{3} + 3x - 2

    TXĐ: D\mathbb{= R}.

    Ta có:

    y' = 9x^{2} + 3 > 0,\forall
x\mathbb{\in R}, suy ra hàm số đồng biến trên khoảng ( - \infty; + \infty).

  • Câu 43: Thông hiểu

    Gọi m, n, p lần lượt là số đường tiệm cận của đồ thị các hàm số sau:

    y = \frac{5x + 1}{4-x} ; y = \frac{3x^{2}-5x - 2 }{3x+1} ; y = \frac{11}{-4x^{2}+x-2 }

    Bất đẳng thức nào sau đây đúng?

  • Câu 44: Nhận biết

    Tính thể tích

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB=a, BC = a\sqrt 3. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích V của khối chóp S.ABC.

     

    Gọi H là trung điểm của AB, suy ra SH \bot AB.

    Do \left( {SAB} ight) \bot \left( {ABC} ight) theo giao tuyến AB nên SH \bot (ABC).

    Tam giác SAB là đều cạnh AB=a  nên SH = \frac{{a\sqrt 3 }}{2}.

    Tam giác vuông ABC, có AC = \sqrt {B{C^2} - A{B^2}}  = a\sqrt 2.

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{{{a^2}\sqrt 2 }}{2}.

    Vậy {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{{{a^3}\sqrt 6 }}{{12}}.

  • Câu 45: Vận dụng cao

    Tìm số nguyên m để đồ thị hàm số có tiệm cận ngang

    Cho hàm số y = f(x) liên tục trên tập số thực và \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 1;\mathop {\lim }\limits_{x \to  -  + } f\left( x ight) =  + \infty. Có bao nhiêu giá trị nguyên của tham số m thuộc [-2020; 2020] để đồ thị hàm số g\left( x ight) = \frac{{\sqrt {{x^2} + 3x}  + x}}{{\sqrt {2f\left( x ight) - {f^2}\left( x ight)}  + m}} có tiệm cận ngang nằm bên dưới đường thẳng y = -1.

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {x \leqslant  - 3;x \geqslant 0} \\   {0 \leqslant f\left( x ight) \leqslant 2} \\   {\sqrt {2f\left( x ight) - {f^2}\left( x ight)}  + m e 0} \end{array}} ight.

    Do \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 1 \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \sqrt {2f\left( x ight) - {f^2}\left( x ight)}  = \sqrt {\mathop {\lim }\limits_{x \to  - \infty } \left[ {2f\left( x ight) - {f^2}\left( x ight)} ight]}  = 1

    \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + 3x}  + x} ight) = \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{ - \left( {\sqrt {1 - \dfrac{3}{x}}  + 1} ight)}} =  - \frac{3}{2}

    Từ đó \mathop {\lim }\limits_{x \to  - \infty } g\left( x ight) =  - \frac{3}{{2m + 2}},\left( {m e  - 1} ight)

    Khi đó hàm số g(x) có tiệm cận ngang là đường thẳng y = \frac{{ - 3}}{{2m + 2}}

    Để tiệm cận ngang tìm được ở trên nằm dưới đường thẳng y = - thì \frac{{ - 3}}{{2m + 2}} <  - 1 \Rightarrow  - 1 < m < \frac{1}{2}

    m \in \mathbb{Z} \Rightarrow m = 0

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo