Số cạnh của hình đa diện
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 nha!
Số cạnh của hình đa diện
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Tìm min, max của hàm số trên đoạn
Cho hàm số
. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là:
Tập xác định
Ta có:
Khi đó:
Tìm số đường tiệm cận của đồ thị hàm số
Đồ thị hàm số
có tất cả bao nhiêu đường tiệm cận?
TXĐ: không tồn tại
và
Suy ra đồ thị hàm số không có tiệm cận ngang.
Ta có là TCĐ.
Vậy đồ thị hàm số có đúng một tiệm cận.
Tính giá trị của biểu thức
Cho hàm số
liên tục trên đoạn
và có đồ thị như hình vẽ bên. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn
. Giá trị của
là

Dựa vào đồ thị ta thấy GTLN của hàm số trên đoạn là
đạt được tại
và GTNN của hàm số số trên đoạn
là
đạt được tại
Xác định khoảng đồng biến của hàm số
Tìm tất cả các khoảng đồng biến của hàm số ![]()
Tập xác định
Ta có:
=> Hàm số đồng biến trên (-3; 0)
Tìm khoảng đồng biến của hàm số
Cho hàm số
có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Dựa vào đồ thị ta có hàm số đồng biến trên khoảng
Số cực trị của hàm số
Cho hàm số f(x) liên tục trên
và có bảng biến thiên của đạo hàm như sau:

Hàm số
có bao nhiêu điểm cực trị?
Xét hàm số , ta có bảng giá trị |t(x)|

Ta có:
Hàm số không có đạo hàm tại điểm
Tại mọi điểm ta có:
=>
Dựa vào bảng giá trị hàm |t| suy ra:
+ Phương trình (1), (2) vô nghiệm
+ Phương trình (3) có 4 nghiệm phân biệt khác 0
+ Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)
=> g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu
Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm
Vậy hàm số g(x) có 9 điểm cực trị.
Xét tính đúng sai của các nhận định
Cho hàm số
có đồ thị như Hình 2.

a) Hàm số
có hai điểm cực trị là
và
. Đúng||Sai
b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng
c) Hàm số nghịch biến trên khoảng
. Sai||Đúng
d)
. Đúng||Sai
Cho hàm số
có đồ thị như Hình 2.

a) Hàm số
có hai điểm cực trị là
và
. Đúng||Sai
b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng
c) Hàm số nghịch biến trên khoảng
. Sai||Đúng
d)
. Đúng||Sai
Dựa vào đồ thị ta thấy hàm số có hai điểm cực trị là
và
.
Giá trị lớn nhất của hàm số trên R không tồn tại.
Dựa vào đồ thị ta thấy hàm số nghịch biến trên khoảng
Dựa vào đồ thị ta có
Định tham số m thỏa mãn điều kiện
Tìm tất cả các giá trị thực của tham số
để khoảng cách từ điểm
đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số
bằng ![]()
Ta có
Để hàm số có hai điểm cực trị có hai nghiệm phân biệt
.
Thực hiện phép chia cho
ta được phần dư
, nên đường thẳng
chính là đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.
Yêu cầu bài toán
.
Đối chiếu điều kiện , ta chọn
.
Giá trị của biểu thức
Cho hình vẽ là đồ thị hàm số có dạng ![]()

Giá trị của biểu thức
có thể nhận giá trị nào trong các giá trị sau?
Đồ thị hàm số đi qua điểm =>
Ta có:
Tìm tiệm cận ngang
Đồ thị hàm số
có đường tiệm cận ngang là
Ta có:
Suy ra tiệm cận ngang là .
Tính V lăng trụ biết V chóp
Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Chọn đáp án đúng
Cho hàm số
có bảng biến thiên như sau:

Số điểm cực trị của hàm số
là:
Khi đó bảng biến thiên của hàm số là:
Dựa vào bảng biến thiên ta thấy hàm số có 5 điểm cực trị.
Hàm số đã cho là hàm số nào
Cho hàm số
có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

Dựa vào bảng biến thiên ta thấy:
Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1
=> Loại đáp án C và D
Hàm số đã cho nghịch biến trên mỗi khoảng xác định
Xét hàm số
=> Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A
Chọn đáp án đúng
Cho hàm số
có bảng biến thiên như sau:

Hàm số
đồng biến trên khoảng nào sau đây?
Ta có:
Vậy hàm số đồng biến trên các khoảng
Suy ra hàm số đồng biến trên khoảng
.
Tính thể tích biết hình chiếu
Tính thể tích
của khối lăng trụ
có đáy
là tam giác vuông tại B,
; cạnh bên
. Biết hình chiếu vuông góc của
trên mặt đáy
trùng với chân đường cao hạ từ B của tam giác
.

Gọi H là chân đường cao hạ từ B trong .
Theo giả thiết, ta có
Tam giác vuông , có
;
.
Tam giác vuông , có
.
Diện tích tam giác là
Vậy .
Xác định giá trị nhỏ nhất của biểu thức P
Xác định giá trị nhỏ nhất của biểu thức
, biết
với
là tham số và hàm số đồng biến trên
.
Ta có:
Hàm số đã cho đồng biến trên
Ta lại có:
Tìm giá trị của tham số m
Với giá trị nào của tham số
để đồ thị hàm số
đi qua điểm
?
Thay tọa độ điểm vào
ta được:
Vậy giá trị m cần tìm là .
Xác định các tiệm cận ngang
Đồ thị hàm số
có bao nhiêu đường tiệm cận ngang?
Điều kiện xác định
Tập xác định
Vì hàm số không tồn tại khi và
nên đồ thị hàm số không có tiệm cận ngang.
Đếm số hình đa diện
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Ghi đáp án vào ô trống
Cho hàm số
. Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho đồng biến trên khoảng
. Xác định tổng tất cả các phần tử của tập hợp
?
Cho hàm số
. Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho đồng biến trên khoảng
. Xác định tổng tất cả các phần tử của tập hợp
?
Mệnh đề nào sau đây đúng
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Ghi đáp án vào ô trống
Tìm giá trị của tham số
để hàm số
nghịch biến trên khoảng ![]()
Tìm giá trị của tham số
để hàm số
nghịch biến trên khoảng ![]()
Chọn mệnh đề sai
Cho hàm số
có đạo hàm liên tục trên
và có đồ thị của hàm số
như hình vẽ sau:

Xét hàm
. Mệnh đề nào dưới đây sai?
Ta có:
Dựa vào đồ thị ta thấy
Vậy hàm số nghịch biến trên
là sai.
Chọn phương án thích hợp
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho đạt cực tiểu tại
Từ bảng biến thiên ta có điểm cực tiểu của hàm số là .
Khối lăng trụ ngũ giác
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Chọn đáp án đúng
Cho hàm số
có đạo hàm
. Hỏi hàm số có bao nhiêu điểm cực tiểu?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên suy ra hàm số có một điểm cực tiểu.
Điền đáp án
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Trung điểm các cạnh của một tứ diện đều
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Thể tích khối hộp
Cho hình lăng trụ đứng
có đáy là hình vuông cạnh
. Tính thể tích
của khối lăng trụ đã cho theo
, biết
.

Do là lăng trụ đứng nên
.
Xét tam giác vuông , ta có
.
Diện tích hình vuông là
.
Vậy
Chọn đáp án thích hợp
Để hàm số
đạt cực tiểu tại
thì tham số
thuộc khoảng nào sau đây?
Ta có: . Để hàm số
đạt cực tiểu tại
thì
Vậy đáp án cần tìm là .
Xác định số điểm cực trị của hàm số
Cho hàm số
có bảng xét dấu của
như sau:

Số điểm cực trị của hàm số đã cho là
Dựa vào bảng xét dấu của hàm số đã cho có
điểm cực trị.
Tìm giá trị nhỏ nhất của hàm số trên đoạn
Cho hàm số
liên tục trên đoạn
có đồ thị như hình vẽ:

Tìm giá trị nhỏ nhất của hàm số trên đoạn
?
Trên đoạn ta có:
và
Vậy .
Tìm khoảng nghịch biến của hàm số
Hàm số
nghịch biến trên khoảng:
Tập xác định
Ta có:
Vậy hàm số nghịch biến trên khoảng
Tìm tham số m thỏa mãn yêu cầu
Gọi
là giá trị nhỏ nhất của hàm số
trên khoảng
. Tìm
.
Cách 1:
Hàm số liên tục và xác định trên
.
Ta có
.
Bảng biến thiên
Vậy giá trị nhỏ nhất là khi
Cách 2:
Với
Áp dụng bất đẳng thức Cô si ta có:
Dấu bằng xảy ra khi và chỉ khi Vậy
khi
Chóp tứ giác đều
Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Hình chóp tứ giác đều có 4 mặt phẳng đối xứng bao gồm:

+) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường trung bình của đáy.
+) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường chéo của đáy.
Chọn mệnh đề đúng
Cho hàm số
. Mệnh đề nào dưới dây là đúng?
Tập xác định của hàm số
Ta có:
Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)
Tìm số mặt của đa diện
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
V khối lập phương
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Xác định vận tốc của chuyển động
Vận tốc của một chất điểm được xác định bởi công thức
(với
được tính bằng giây). Vận tốc của chất điểm tại thời điểm gia tốc nhỏ nhất gần bằng:
Gia tốc của chất điểm gia tốc là hàm số bậc hai ẩn
đạt giá trị nhỏ nhất tại
Tại đó, vận tốc của chất điểm bằng .
Tìm số mặt của đa diện
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Xác định hàm số thích hợp
Hàm số nào dưới đây đồng biến trên khoảng
?
Hàm số
TXĐ: .
Ta có:
, suy ra hàm số đồng biến trên khoảng
.
Gọi m, n, p lần lượt là số đường tiệm cận của đồ thị các hàm số sau:
![]()
Bất đẳng thức nào sau đây đúng?
Tính thể tích
Cho hình chóp
có đáy
là tam giác vuông tại A và có
,
. Mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính theo
thể tích
của khối chóp
.

Gọi là trung điểm của
, suy ra
.
Do theo giao tuyến
nên
.
Tam giác là đều cạnh
nên
.
Tam giác vuông , có
.
Diện tích tam giác vuông .
Vậy .
Tìm số nguyên m để đồ thị hàm số có tiệm cận ngang
Cho hàm số y = f(x) liên tục trên tập số thực và
. Có bao nhiêu giá trị nguyên của tham số m thuộc [-2020; 2020] để đồ thị hàm số
có tiệm cận ngang nằm bên dưới đường thẳng y = -1.
Điều kiện
Do
Từ đó
Khi đó hàm số g(x) có tiệm cận ngang là đường thẳng
Để tiệm cận ngang tìm được ở trên nằm dưới đường thẳng y = - thì
Vì
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: