Tìm m thỏa mãn yêu cầu bài toán
Điều kiện của tham số
để hàm số
nghịch biến trên từng khoảng xác định là:
Xét hàm số ta có:
Tập xác định
Ta có:
Hàm số nghịch biến trên từng khoảng xác định
Vậy đáp án cần tìm là .
Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 nha!
Tìm m thỏa mãn yêu cầu bài toán
Điều kiện của tham số
để hàm số
nghịch biến trên từng khoảng xác định là:
Xét hàm số ta có:
Tập xác định
Ta có:
Hàm số nghịch biến trên từng khoảng xác định
Vậy đáp án cần tìm là .
Tính V lăng trụ tam giác đều
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Chọn mệnh đề đúng
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên ta suy ra mệnh đề đúng là: “Điểm cực tiểu của đồ thị hàm số là ”.
Chọn đáp án đúng
Điểm cực đại của đồ thị hàm số
có tổng hoành độ và tung độ bằng
Ta có:
Bảng biến thiên
Khi đó:
Mp đối xứng của hình hộp chữ nhật
Hình hộp chữ nhật có ba kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng?
Hình hộp chữ nhật (không là hình lập phương) có các mặt phẳng đối xứng là các mặt các mặt phẳng trung trực của các cặp cạnh đối.

Tìm giá trị cực đại của hàm số
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực đại của hàm số đã cho bằng
Giá trị cực đại của hàm số đã cho bằng 2.
Tìm m tham số m thỏa mãn yêu cầu
Tất cả giá trị của tham số
để đồ thị hàm số
cắt các trục tọa độ
lần lượt tại
sao cho diện tích tam giác
bằng 8 là
Giao điểm của đồ thị hàm số đã cho với trục tung là
Phương trình hoành độ giao điểm của đồ thị đã cho với trục hoành là:
Giao điểm của đồ thị đã cho với trục hoành là .
Diện tích tam giác là:
Chọn mệnh đề đúng
Cho hàm số
có đạo hàm
. Mệnh đề nào sau đây đúng?
Xét ta có bảng xét dấu
như sau:
Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng , hàm số đồng biến trên khoảng
.
Xác định giá trị nhỏ nhất của hàm số
Tìm giá trị nhỏ nhất
của hàm số
trên đoạn
?
Hàm số đã cho liên tục trên
Ta có:
Khi đó:
Vậy giá trị nhỏ nhất của hàm số là .
Mệnh đề nào sau đây đúng
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Tìm số mặt của đa diện
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Tìm tham số m thỏa mãn yêu cầu
Hàm số
đạt cực tiểu tại
khi:
Hàm số xác định với mọi
Ta có:
Hàm số đạt cực tiểu tại khi
Vậy thỏa mãn yêu cầu bài toán.
Khối đa diện là gì?
Khái niệm chính xác nhất về khối đa diện là:
Áp dụng định nghĩa khối đa diện, ta có:
“Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”
Tính thể tích
Cho khối chóp S.ABC có SA vuông góc với đáy,
và
. Tính thể tích V của khối chóp
.
32
Cho khối chóp S.ABC có SA vuông góc với đáy,
và
. Tính thể tích V của khối chóp
.
32

Xét tam giác , có:
Suy ra tam giác vuông tại A
Vậy thể tích khối chóp
Xác định khoảng nghịch biến của hàm số
Cho hàm số
có bảng biến thiên như sau:

Hàm số nghịch biến trong khoảng nào?
Từ bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng .
Khẳng định sai?
Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho
trùng với
trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại đều đúng dựa vào khái niệm hình đa diện.
Điền đáp án
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Chọn phương án thích hợp
Giá trị nhỏ nhất của hàm số
trên khoảng
bằng bao nhiêu?
Áp dụng bất đẳng thức Cô – si ta có:
Dấu bằng xảy ra khi (vì
).
Vậy
Cho các khẳng định sau:
i) Hàm số
luôn đồng biến trên
.
ii) Hàm số
luôn đồng biến trên mỗi khoảng xác định của nó.
iii) Hàm số
luôn nghịch biến trên
.
iv) Hàm số
luôn nghịch biến trên mỗi khoảng xác định của nó.
Số khẳng định sai là:
Tính V cắt bởi mp song song
Cho hình chóp
có đáy
là tam giác vuông cân ở
,
,
và vuông góc với đáy
. Gọi
là trọng tâm tam giác
. Mặt phẳng
qua
và song song với
cắt
lần lượt tại
. Tính theo
thể tích
của khối chóp
.

Từ giả thiết suy ra .
Diện tích tam giác . Do đó
.
Gọi là trung điểm
.
Do là trọng tâm
nên
.
Vì song song với giao tuyến
theo tỉ số
Vậy thể tích khối chóp .
Xét tính đúng sai của các kết luận
Cho hàm số ![]()
a) [NB] Hàm số
đồng biến trong khoảng
. Đúng||Sai
b) [TH] Hàm số
đạt cực đại tại
. Sai|||Đúng
c) [TH] Phương trình
có 2 nghiệm phân biệt. Đúng||Sai
d) [VD, VDC] Hàm số
có 3 điểm cực trị. Sai|||Đúng
Cho hàm số ![]()
a) [NB] Hàm số
đồng biến trong khoảng
. Đúng||Sai
b) [TH] Hàm số
đạt cực đại tại
. Sai|||Đúng
c) [TH] Phương trình
có 2 nghiệm phân biệt. Đúng||Sai
d) [VD, VDC] Hàm số
có 3 điểm cực trị. Sai|||Đúng
Hàm số có đồ thị như hình vẽ dưới đây:
a) Đúng. Hàm số đồng biến trong khoảng
là mệnh đề đúng.
b) Sai. Hàm số đạt cực đại tại
là mệnh đề sai.
c) Đúng. Phương trình
d) Sai.
Giữ nguyên phần đồ thị hàm số nằm phía trên trục hoành, phần đồ thị nằm phía dưới trục hoành thay bằng phần đối xứng với nó qua trục hoành ta có đồ thị hàm số
do đó hàm số
có 5 điểm cực trị.
Chọn mệnh đề đúng
Cho hàm số
. Mệnh đề nào sau đây là đúng?
TXĐ: . Ta có:
là TCN;
là TCĐ;
là TCĐ.
Vậy hàm số có hai tiệm cận đứng và một tiệm cận ngang.
Tính tổng P
Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số
đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Tổng độ dài các cạnh của một tứ diện đều
Tổng độ dài
của tất cả các cạnh của một tứ diện đều cạnh
.

Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Tìm giá trị nhỏ nhất của hàm số
Tìm giá trị nhỏ nhất của hàm số
trên đoạn
.
Đạo hàm
Ta có
Cách 2: Sử dụng công cụ TABLE (MODE 7).
Bước 1: Bấm tổ hợp phím MODE 7.
Bước 2: Nhập
Sau đó ấn phím (nếu có
thì ấn tiếp phím
) sau đó nhập
(Chú ý: Thường ta chọn )
Bước 3: Tra bảng nhận được và tìm GTNN:
Dựa vào bảng giá trị ở trên, ta thấy
Tìm số phần tử của tập hợp S
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số
không có cực trị. Số phần tử của S là:
Xét hàm số ta có:
Hàm số đã cho không có cực trị
=> Phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép
=>
Do m là số nguyên nên
Vậy tập S có 4 phần tử.
Tính giá trị biểu thức
Cho hàm số
. Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Khi đó giá trị của biểu thức
là:
Ta có:
Vậy
Chọn đáp án thích hợp
Cho hàm số
có đồ thị như hình vẽ. Phương trình đường tiệm cận xiên của đồ thị hàm số đã cho là:

Dựa vào đồ thị hàm số, ta thấy đường tiệm cận xiên của đồ thị hàm số đi qua 2 điểm và
nên đường tiệm cận xiên của đồ thị hàm số có phương trình
.
Tính giá trị của biểu thức
Cho hàm số
có bảng biến thiên như hình vẽ.

Tính giá trị của biểu thức ![]()
Ta có:
Mặt khác
Xác định các giá trị nguyên dương của m
Có bao nhiêu giá trị nguyên dương của tham số
để hàm số
đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Theo yêu cầu bài toán ta có:
Mà
Suy ra có tất cả 10 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Chọn kết luận đúng
Đồ thị hàm số
có bao nhiêu điểm cực trị có tung độ là số dương?
Tập xác định .
Khi đó .
Suy ra đồ thị có hàm số có
điểm cực trị có tung độ là số dương.
Tìm hàm số nghịch biến trên R
Hàm số nào dưới dây nghịch biến trên tập số thực?
Ta thấy hàm số có tập xác định
và đạo hàm
nên nghịch biến trên
.
Tính giá trị biểu thức
Tập giá trị của hàm số
với
là đoạn
. Tính
.
Ta có:
Ta có
V lăng trụ tam giác
Cho lăng trụ đứng
có đáy
là tam giác với
. Tính thể tích
của khối lăng trụ đã cho.

Diện tích tam giác là
.
Vậy thể tích khối lăng trụ
Tìm câu sai
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây là sai?
Từ bảng biến thiên, ta có:
là TCN;
là TCĐ;
là TCĐ.
Vậy đồ thị hàm số có tất cả ba đường tiệm cận. Do đó “Đồ thị hàm số có tất cả hai đường tiệm cận” sai.
Chu vi tam giác IAB nhỏ nhất
Cho hàm số
có đồ thị (C). Gọi I là giao điểm của hai đường tiệm cận của (C). Tiếp tuyến của (C) cắt hai đường tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Đồ thị hàm số có tiệm cận đứng là x = 2 và tiệm cận ngang là y = 1 => I(2; 1)
Gọi khi đó ta có phương trình tiếp tuyến tại M là
Ta có:
Khi đó
Ta lại có tam giác IAB vuông tại I nên bán kính đường tròn ngoại tiếp tam giác IAB là
Mặt khác
Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Chọn đáp án đúng
Cho hình chóp tam giác đều
. Mặt bên
là tam giác gì?
Hình chóp tam giác đều có các mặt bên là các tam giác cân.
Ghi đáp án vào ô trống
Cho hàm số
liên tục trên
và có đạo hàm
với mọi
. Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Cho hàm số
liên tục trên
và có đạo hàm
với mọi
. Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Tìm tiệm cận đứng đường thẳng
Tiệm cận đứng của đồ thị hàm số
là đường thẳng
Ta có nên đồ thị hàm số có tiệm cận đứng là
.
Tính thể tích
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1

Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Chọn đáp án thích hợp
Cho hàm số
có bảng xét dấu như sau:

Hỏi hàm số
nghịch biến trên các khoảng nào dưới đây?
Ta có:
Xét
Bảng xét dấu là:
Căn cứ vào bảng xét dấu ta thấy
Hàm số nghịch biến trên khoảng
.
Định m để hàm số đồng biến trên R
Tìm tất cả các giá trị của tham số m để hàm số
; (
là tham số) đồng biến trên tập số thực?
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Xét sự đúng sai của các nhận định
Cho hàm số
liên tục trên
và có đồ thị trên đoạn
như hình vẽ bên dưới.

Xét tính đúng sai của các khẳng định dưới đây:
a) Hàm số có ba điểm cực trị trên đoạn
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
Sai||Đúng
c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
bằng 1. Đúng||Sai
d) Giá trị lớn nhất của hàm số
trên đoạn
bằng 1. Đúng||Sai
Cho hàm số
liên tục trên
và có đồ thị trên đoạn
như hình vẽ bên dưới.

Xét tính đúng sai của các khẳng định dưới đây:
a) Hàm số có ba điểm cực trị trên đoạn
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
Sai||Đúng
c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
bằng 1. Đúng||Sai
d) Giá trị lớn nhất của hàm số
trên đoạn
bằng 1. Đúng||Sai
Hàm số có hai điểm cực trị trên đoạn .
Hàm số đồng biến trên khoảng
Trên đoạn hàm số
có GTLN là 3; GTNN là -2.
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số bằng 1.
Giá trị lớn nhất của hàm số trên đoạn
bằng 1.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Tìm hình đa diện
Cho các hình sau: 
Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho trùng với trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Chọn phương án thích hợp
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

Đây là hình dáng của đồ thị hàm bậc bốn trùng phương có hệ số
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: