Tìm điều kiện của tham số m
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Kết luận nào sau đây đúng?
Quan sát đồ thị ta thấy
Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 nha!
Tìm điều kiện của tham số m
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Kết luận nào sau đây đúng?
Quan sát đồ thị ta thấy
Đếm số hình đa diện
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Chọn đáp án thích hợp
Tập hợp tất cả các giá trị thực của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có:
Hàm số nghịch biến trên khoảng khi
Đặt ta có:
. Ta có bảng biến thiên của
như sau:
Dựa vào bảng biến thiên ta thấy
Vậy là giá trị của tham số m cần tìm.
Chọn đáp án đúng
Cho hàm số bậc ba
có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình
là

Ta thấy đường thẳng cắt đồ thị hàm số
tại 3 điểm phân biệt nên phương trình
có 3 nghiệm.
Chọn phương án đúng
Cho hàm số
liên tục trên
và có bảng biến thiên như sau. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Tính
.

Trên đoạn ta có giá trị lớn nhất
khi
và giá trị nhỏ nhất
khi
.
Khi đó .
Tìm vật thể không là khối đa diện
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Chia khối lăng trụ
Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.
Tìm giá trị tham số m
Tính giá trị của tham số m biết rằng giá trị lớn nhất của hàm số
là
?
Ta có: có tập xác định
Ta có: . Theo bài ra ta có:
Vậy đáp án cần tìm là
Chọn phương án đúng
Tìm
để hàm số
đồng biến trên
.
Ta có:
Ta có: .
Để hàm số luôn đồng biến trên thì
.
Chọn đáp án đúng
Xác định số đường tiệm cận của đồ thị hàm số
?
Tập xác định
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận đứng.
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận ngang.
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận ngang.
vậy đồ thị hàm số có tổng số đường tiệm cận bằng 3.
Ghi đáp án vào ô trống
Để uốn
thanh kim loại thành hình như sau:

Gọi
bán kính của nửa đường tròn. Tìm
để diện tích tạo thành đạt giá trị lớn nhất?
Để uốn
thanh kim loại thành hình như sau:

Gọi
bán kính của nửa đường tròn. Tìm
để diện tích tạo thành đạt giá trị lớn nhất?
Tìm tiệm cận đứng
Tiệm cận đứng của đồ thị hàm số
là
Ta có và
nên đường thẳng
là tiệm cận đứng của đồ thị hàm số.
Mệnh đề nào sai
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Tìm m để hàm số có cực đại cực tiểu
Cho hàm số
với
là tham số thực, có đồ thị là
. Tìm tất cả các giá trị của
để
có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.
Đạo hàm .
Ta có .
Hàm số có cực đại và cực tiểu khi
Ta có
Gọi là hoành độ của hai điểm cực trị khi đó
Theo định lí Viet, ta có
Hai điểm cực trị nằm về hai phía trục hoành khi
: thỏa mãn.
Tính giá trị của biểu thức
Cho hàm số
có bảng biến thiên như hình vẽ.

Tính giá trị của biểu thức ![]()
Ta có:
Mặt khác
Tìm m thỏa mãn yêu cầu
Có bao nhiêu giá trị của tham số
để hàm số
có điểm cực đại là
?
Ta có:
Hàm số có điểm cực đại là khi
Thể tích khối chóp
Cho hình chóp
có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?

Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Tính thể tích khối chóp
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Định điều kiện của m
Tìm điều kiện cần và đủ của tham số thực ủa tham số
để đường thẳng
cắt đồ thị
tại ba điểm phân biệt là:
Phương trình hoành độ giao điểm của hai đồ thị:
(*) là phương trình hoành độ giao điểm của hai đồ thị
Xét hàm số có
Bảng biến thiên
Vậy theo yêu cầu bài toán
Chọn đáp án đúng
Cho hàm số
. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Ta có:
Hàm số đã cho nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Tìm khoảng nghịch biến của hàm số
Cho hàm số
có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:

Hàm số
nghịch biến trên khoảng nào trong các khoảng sau?
Quan sát hình vẽ ta thấy:
và
Vậy hàm số nghịch biến trên khoảng
.
Hình không phải đa diện lồi
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Chọn đáp án đúng
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn [2,4]. Khi đó M + m bằng:
Tính diện tích tam giác
Cho hình chóp đều
có tất cả các cạnh bằng
. Mặt phẳng
song song với mặt đáy
và cắt các cạnh bên
lần lượt tại
. Tính diện tích tam giác
biết mặt phẳng
chia khối chóp đã cho thành hai phần có thể tích bằng nhau.

Mặt phẳng và cắt các cạnh
lần lượt tại
.
Theo Talet, ta có .
Do đó .
Theo giả thiết .
Suy ra tam giác MNP là tam giác đều cạnh .
Vậy diện tích .
Tìm giá trị tham số m theo yêu cầu
Cho hàm số
với
là tham số. Gọi
là tập hợp các giá trị nguyên dương của
để hàm số đồng biến trên khoảng
. Tìm số phần tử của
.
Ta có:
Đặt , điều kiện
;
Để hàm số đồng biến trên
thì hàm số
đồng biến trên
là tập hợp các giá trị nguyên dương
.
Vậy số phần tử của tập là
.
Tính số tiệm cận đứng của đồ thị hàm số
Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

Đồ thị hàm số
có nhiều nhất bao nhiêu tiệm cận đứng:
Điều kiện
Để đồ thị hàm số có đường tiệm cận đứng
thì phải có nghiệm.
Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là với
Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

=> Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt
Vậy đồ thị hàm số có nhiều nhất ba đường tiệm cận đứng.
Chọn đáp án đúng
Số dân số của một thị trấn sau
năm kể từ năm 1970 được ước tính bởi công thức
(
được tính bằng nghìn người). Biết rằng đạo hàm của hàm số
biểu thị tốc độ gia tăng dân số của thị trấn ( đơn vị là nghìn người/ năm). Vào năm nào thì tốc độ gia tăng dân số là
nghìn người/ năm?
Ta có
Lại có
Vậy dự báo vào năm 1995 thì tốc độ gia tăng dân số là nghìn người/ năm.
Chọn mệnh đề đúng
Cho hàm số
có bảng biến thiên như sau

Mệnh đề nào dưới đây đúng?
Dựa vào bảng biến thiên.
Hàm số có đạo hàm trên và
đổi dấu từ âm sang dương khi đi qua
nên hàm số đạt cực tiểu tại
.
Xác định khoảng đồng biến của hàm số
Cho hàm số y = f(x) có đạo hàm
. Hàm số y = -2f(x) đồng biến trên khoảng
Ta có:
=> Hàm số y = -2f(x) đồng biến trên khoảng (0; 2)
Chọn đáp án thích hợp
Cho các hàm số sau:
. Có bao nhiêu hàm số có đúng một điểm cực trị?
Ta có:
có
và
đổi dấu khi
qua nghiệm đó nên hàm số có đúng 1 điểm cực trị.
có
và
đổi dấu khi
qua các nghiệm đó nên hàm số có 3 điểm cực trị.
; y’ không xác định khi
và y’ đổi dấu khi
qua
nên hàm số có hai điểm cực trị.
và y’ đổi dấu khi x qua các nghiệm đó nên hàm số có hai điểm cực trị.
Vậy chỉ có một hàm số có đúng một cực trị.
Chọn khẳng định đúng
Cho hàm số
xác định, liên tục trên tập số thực và đồ thị của hàm số
là đường cong như hình vẽ bên dưới.

Khẳng định nào sau đây là khẳng định đúng?
Từ đồ thị của hàm số ta có:
Vậy hàm số nghịch biến trên khoảng
.
Tình tổng các giá trị nguyên của tham số m
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số
có 3 điểm cực trị. Tổng các phần tử của S là:
Xét hàm số có đạo hàm
Để hàm số có 3 điểm cực trị thì
Vậy tổng các phần tử của S là 2
Điền đáp án
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Xác định cực tiểu của đồ thị hàm số
Cho hàm số
có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Quan sát đồ thị của hàm số ta có:
Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là .
Trục đối xứng
Gọi
lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng?
Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).
Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).
Khối lập phương có 9 trục đối xứng
(Loại 1: đi qua tâm của các mặt đối diện ;
Loại 2: đi qua trung điểm các cặp cạnh đối diện).
Tính thể tích
Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là
. Tính thể tích
của hình hộp chữ nhật đã cho.

Xét hình hộp chữ nhật có đáy
là hình chữ nhật.
Theo bài ra, ta có
Nhân vế theo vế, ta được
Vậy .
Xác định tính đúng sai của từng phương án
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là
. Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là
. Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
a) Điều kiện xác định của hàm số .
Vậy tập xác định của hàm số là .
b) Ta có: nên y = −1 là đường tiệm cận ngang.
nên y = 1 là đường tiệm cận ngang.
c) Do nên x = 1 là đường tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).
d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:
Miền giới hạn là hình chữ nhật có diện tích là
Tìm số mặt của đa diện
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Xác định tính đúng sai của từng phương án
Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi
(trăm nghìn) là số tiền tăng thêm.
a) Số căn hộ còn lại sau khi tăng giá là
. Đúng||Sai
b) Giá một căn hộ sau khi tăng là
(trăm nghìn). Sai||Đúng
c) Tổng số tiền công ty thu được là
(trăm nghìn). Đúng||Sai
d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng
Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi
(trăm nghìn) là số tiền tăng thêm.
a) Số căn hộ còn lại sau khi tăng giá là
. Đúng||Sai
b) Giá một căn hộ sau khi tăng là
(trăm nghìn). Sai||Đúng
c) Tổng số tiền công ty thu được là
(trăm nghìn). Đúng||Sai
d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng
a) Đúng. Số căn hộ bị bỏ trống là . Suy ra Số căn hộ còn lại sau khi tăng giá là
.
b) Sai. Giá một căn hộ sau khi tăng là (trăm ngìn).
c) Đúng. Tổng số tiền công ty thu được là
.
d) Sai. Ta có .
Phương trình .
Bảng biến thiên
Từ bảng biến thiên suy ra, công ty sẽ thu được nhiều tiền nhất khi giá căn hộ là 3,5 (triệu đồng).
Tìm số điểm cực đại của hàm số
Cho hàm số
có đạo hàm
. Số điểm cực đại của hàm số đã cho là
Ta có:
.
Lập bảng biến thiên của hàm số
Vậy hàm số đã cho có một điểm cực đại.
Tìm khoảng đồng biến của hàm số
Hàm số
đồng biến trên khoảng nào dưới dây?
Tập xác định
Ta có:
Ta có bảng xét dấu
Vậy hàm số đồng biến trên khoảng
Chọn đáp án thích hợp
Hàm số
nghịch biến trên
Tập xác định .
.
Cho .
Ta có bảng xét dấu của như sau:
Nhìn vào bảng xét dấu của ta thấy hàm số
nghịch biến trên khoảng
.
Vậy hàm số nghịch biến trên khoảng
.
Phân chia khối đa diện
Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.
Chọn kết luận đúng
Cho đồ thị hàm số như sau:

Đồ thị hàm số đã cho có phương trình tiệm cận đứng và tiệm cận ngang lần lượt là:
Dựa vào đồ thị hàm số ta thấy phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là .
Tính V lăng trụ tam giác đều
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: