Tìm tham số m để hàm số nghịch biến trên khoảng
Giá trị của tham số m sao cho hàm số
nghịch biến trên khoảng (0; 2)?
Ta có:
Hàm số nghịch biến trên khoảng (0; 2)
=>
=>
Xét hàm số
Ta có:
=> g(x) đồng biến trên đoạn [0; 2]
Ta có:
Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 nha!
Tìm tham số m để hàm số nghịch biến trên khoảng
Giá trị của tham số m sao cho hàm số
nghịch biến trên khoảng (0; 2)?
Ta có:
Hàm số nghịch biến trên khoảng (0; 2)
=>
=>
Xét hàm số
Ta có:
=> g(x) đồng biến trên đoạn [0; 2]
Ta có:
Tính tổng số cạnh
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Xác định tham số m thỏa mãn điều kiện
Cho hàm số
với
là tham số thực. Tìm tất cả các giá trị của
để
là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.
Đạo hàm
Để hàm số có hai điểm cực trị khi và chỉ khi
Gọi và
là hai điểm cực trị của đồ thị hàm số.
Khi đó theo định lí Viet, ta có
Yêu cầu bài toán : không thỏa mãn
.
Nhận xét.
Qua khảo sát 99% học sinh chọn đáp án A, lý do là quên điều kiện để có hai cực trị.
Tôi cố tình ra giá trị đúng ngay giá trị loại đi.
Nếu gặp bài toán không ra nghiệm đẹp như trên thì ta giải như sau: là hoành độ trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số bậc ba
khi và chỉ khi
có hai nghiệm phân biệt (
) và
Định giá trị m thỏa mãn bất phương trình
Cho hàm số
có đạo hàm trên
và thỏa mãn
. Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi
Ta có:
.
Xét hàm số có
Bảng biến thiên
Vậy bất phương trình nghiệm đúng với mọi
khi và chỉ khi
.
Chọn khẳng định đúng
Cho hàm số
có bảng biến thiên sau:

Khẳng định nào sau đây là đúng?
"Hàm số có hai điểm cực trị" sai vì hàm số có ba điểm cực trị là
"Hàm số đạt giá trị lớn nhất bằng " sai vì hàm số không có giá trị lớn nhất.
"Hàm số có một điểm cực tiểu" sai vì hàm số có hai điểm cực tiểu là và
Chọn đáp án thích hợp
Cho hàm số
có đồ thị như hình vẽ. Hàm số đã cho nghịch biến trên khoảng nào?

Trên khoảng đồ thị hướng đi xuống là hàm số nghịch biến nên chọn.
Trên khoảng đồ thị có đoạn hướng đi lên là hàm số đồng biến và có đoạn hướng xuống là hàm số đồng nghịch biến nên loại.
Trên khoảng đồ thị có hướng đi xuống là hàm số nghịch biến và có đoạn hướng đi lên là hàm số đồng biến nên loại.
Trên khoảng đồ thị có hướng đi lên là hàm số đồng biến nên loại.
Khẳng định sai?
Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho
trùng với
trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại đều đúng dựa vào khái niệm hình đa diện.
Xác định khoảng đồng biến của hàm số
Tìm tất cả các khoảng đồng biến của hàm số ![]()
Tập xác định
Ta có:
=> Hàm số đồng biến trên (-3; 0)
Tìm số mặt của đa diện
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Chọn hàm số thích hợp với yêu cầu
Đồ thị hàm số nào trong các hàm số dưới đây có tiệm cận đứng?
Nhận thấy các đáp án ;
;
là các hàm số có TXĐ:
nên không có TCĐ.
Dùng phương pháp loại trừ thì đúng.
(Thật vậy; hàm số có
là TCĐ)
Khối đa diện là gì?
Khái niệm chính xác nhất về khối đa diện là:
Áp dụng định nghĩa khối đa diện, ta có:
“Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”
Xác định phương trình các đường tiệm cận
Cho hàm số
có đồ thị như sau:

Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:
Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là và đường tiệm cận ngang là
.
Tìm hình không phải đa diện
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Tìm giá trị lớn nhất của hàm số
Cho hàm số
với
là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên
bằng
. Khi đó giá trị lớn nhất của hàm số đó là:
Ta có: do xét trên
nên nhận
Vì
Từ đó .
Chọn khoảng nghịch biến của hàm số
Cho hàm số
có đạo hàm
với mọi
. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Ta có: .
Bảng xét dấu:
Vậy hàm số đã cho nghịch biến trên khoảng .
Chọn khẳng định đúng
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Chọn đáp án đúng
Hàm số nào sau đây không có điểm cực trị?
Các hàm số ;
;
đều có một điểm cực trị.
Xét hàm số ta có:
nên hàm số không có cực trị.
Tìm m nguyên thỏa mãn yêu cầu
Số giá trị nguyên của tham số
để hàm số
không có điểm cực đại là:
Hàm số không có điểm cực đại
Vì
Vậy có bốn giá trị nguyên của tham số thỏa mãn yêu cầu đề bài.
Tìm tổng số đường tiệm cận
Cho hàm số
. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Ta có:
suy ra đồ thị hàm số có tiệm cận đứng là
suy ra đồ thị hàm số có tiệm cận ngang là
Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đườn tiệm cận ngang bằng 2.
Tính V biết hình chiếu
Cho hình chóp tứ giác đều
có đáy
là hình vuông tâm
, cạnh
. Mặt bên tạo với đáy góc
. Gọi
là hình chiếu vuông góc của
trên
. Tính theo
thể tích
của khối tứ diện
.

Gọi là trung điểm
, suy ra
nên
.
Tam giác vuông , có
.
Kẻ nên
.
Tam giác vuông , ta có
Diện tích tam giác .
Vậy .
Tìm khoảng nghịch biến của hàm số
Cho hàm số
có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:

Hàm số
nghịch biến trên khoảng nào trong các khoảng sau?
Quan sát hình vẽ ta thấy:
và
Vậy hàm số nghịch biến trên khoảng
.
Số điểm cực đại của hàm số
Cho hàm số f(x) có bảng xét dấu đạo hàm f’(x) như sau:

Hàm số f(x) có bao nhiêu điểm cực đại?
Dựa vào bảng xét dấu đạo hàm f’(x) ta thấy đạo hàm f’(x) đổi dấu từ dương sang âm 2 lần nên f(x) có 2 điểm cực đại.
Tính V lăng trụ tam giác đều
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Chọn phương án thích hợp
Cho hàm số bậc ba
có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình
là:

Số nghiệm thực của phương trình chính là số giao điểm của đồ thị hàm số
và đường thẳng
.
Từ hình vẽ suy ra nghiệm.
Tính số tiệm cận đứng của đồ thị hàm số
Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

Đồ thị hàm số
có nhiều nhất bao nhiêu tiệm cận đứng:
Điều kiện
Để đồ thị hàm số có đường tiệm cận đứng
thì phải có nghiệm.
Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là với
Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

=> Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt
Vậy đồ thị hàm số có nhiều nhất ba đường tiệm cận đứng.
Mệnh đề nào sai
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Tính V hộp chữ nhật
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Mp đối xứng trong lăng trụ
Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?
Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).
Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

Chọn kết luận đúng
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Kết luận nào sau đây đúng?
Quan sát đồ thị ta thấy
Chọn đáp án chính xác
Cho hàm số
với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã cho đồng biến trên
?
Tập xác định
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Hay
Vậy giá trị tham số m thỏa mãn yêu cầu bài toán là .
Tìm giá trị cực đại và giá trị cực tiểu của hàmsố
Cho hàm số
có bảng biến thiên như sau:

Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.
Từ bảng biến thiên ta có: .
Tính xác suất thỏa mãn yêu cầu đề bài
Cho tập hợp
và
là tập hợp các hàm số
có
. Chọn ngẫu nhiên một hàm số
. Tính xác suất để đồ thị hàm số
có hai điểm cực trị nằm khác phía đối với trục
?
Không gian mẫu
Ta có:
Đồ thị của hàm số có hai điểm cực trị nằm khác phía đối với trục
suy ra phương trình (*) có hai nghiệm phân biệt khác
.
Mà
Vậy xác suất cần tìm là .
Tính thể tích
Cho hình chóp
có tam giác
là tam giác vuông cân tại S,
và khoảng cách từ A đến mặt phẳng
bằng
. Tính theo a thể tích V của khối chóp
.
Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Tâm đối xứng
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Tính V
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Xác định khoảng nghịch biến của hàm số
Cho hàm số
có bảng xét dấu
như sau:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Ta có:
Vậy khoảng nghịch biến của hàm số là:
Tìm các giá trị thực tham số m thỏa mãn điều kiện
Tìm tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm
phân biệt sao ![]()
Ta có phương trình hoành độ giao điểm là:
.
Để đường thẳng cắt đồ thị hàm số tại ba điểm phân biệt thì phương trình có hai nghiệm phân biệt khác
.
Với thì phương trình
có ba nghiệm phân biệt là
(
là nghiệm của
).
Mà suy ra điểm có hoành độ
luôn là trung điểm của hai điểm còn lại nên luôn có 3 điểm A,B,C thoả mãn
Vậy
Ghi đáp án vào ô trống
Cho hàm số
. Tập hợp các giá trị của tham số
để hàm số
nghịch biến trên
là
. Tính giá trị biểu thức
?
Cho hàm số
. Tập hợp các giá trị của tham số
để hàm số
nghịch biến trên
là
. Tính giá trị biểu thức
?
Chọn đáp án đúng
Cho hàm số
có đạo hàm
. Hỏi hàm số có bao nhiêu điểm cực tiểu?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên suy ra hàm số có một điểm cực tiểu.
Chọn khẳng định đúng
Cho đồ thị hàm số có đồ thị như hình vẽ:

Chọn khẳng định đúng?
Đồ thị hàm số có tiệm cận đứng là: và tiệm cận ngang là
ta có:
=>
Đồ thị hàm số cắt Ox tại , cắt Oy tại
=>
Với
Với
Chọn đáp án đúng
Cho đồ thị hàm số
như hình vẽ:

Hàm số
đồng biến trên khoảng:
Ta có:
Nên suy ra hàm số cũng đồng biến trên .
Chọn khẳng định đúng
Cho hàm số
liên tục và có bảng biến thiên trên đoạn
như hình vẽ bên. Khẳng định nào sau đây đúng?

Dựa vào bảng biến thiên ta thấy: tại
.
Suy ra .
Xác định tính đúng sai của từng phương án
Cho hàm số
xác định trên
và có bảng biến thiên như sau:

Xét tính đúng sai của các khẳng định sau.
a) Hàm số không có điểm cực trị. Đúng||Sai
b)
. Sai||Đúng
c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai
d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng
Cho hàm số
xác định trên
và có bảng biến thiên như sau:

Xét tính đúng sai của các khẳng định sau.
a) Hàm số không có điểm cực trị. Đúng||Sai
b)
. Sai||Đúng
c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai
d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng
Dựa vào bảng biến thiên ta thấy
a) Hàm số không có điểm cực trị.
b) lim .
c) . Suy ra đồ thị có đúng 1 đường tiệm cận ngang là
.
d) và
nên đồ thị hàm số có đúng 2 đường tiệm cận đứng
.
Tìm m để bất phương trình nghiệm đúng với mọi m
Cho hàm số
. Hàm số
có đồ thị như hình bên. Biết
. Tìm tất cả các giá trị của
để bất phương trình
nghiệm đúng với mọi
.

Ta có .
Xét hàm số trên
.
Có .
Trên có
và
nên
Hàm số
đồng biến trên
.
Vậy nên nghiệm đúng với mọi
.
Chọn phương án đúng
Giá trị nhỏ nhất của hàm số
trên khoảng ![]()
Hàm số xác định và liên tục trên khoảng
Bảng biến thiên:
Vậy
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: