Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa học kì 2 Toán 12 - Đề 4

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Xác định nguyên hàm của hàm số

    Tìm một nguyên hàm F(x) của hàm số f(x) = 2 - x^{2} biết F(2) = \frac{7}{3}

    Ta có: \int_{}^{}{f(x)dx} = 2x -
\frac{x^{3}}{3} + C = F(x)

    Mặt khác F(2) = \frac{7}{3}

    \Leftrightarrow 2.2 - \frac{2^{3}}{3} +
C = \frac{7}{3}

    \Leftrightarrow C = 1

    Vậy đáp án cần tìm là: F(x) = 2x -
\frac{x^{3}}{3} + 1

  • Câu 2: Vận dụng

    Diện tích của thiết diện

    Một hình nón có bán kính đáy R, góc ở đỉnh là 60^0. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo 90^0 . Diện tích của thiết diện là:

     Diện tích của thiết diện

    Vì góc ở đỉnh là 60^0nên thiết diện qua trục SAC là tam giác đều cạnh 2R.

    Suy ra đường cao của hình nón là SI = R\sqrt 3.

    Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng 90^0 nên IAB là tam giác vuông cân tại I, suy ra AB = R\sqrt 2.

    Gọi M là trung điểm của AB thì \left\{ \begin{array}{l}IM \bot AB\\SM \bot AB\end{array} ight.IM = \frac{{R\sqrt 2 }}{2}.

    Trong tam giác vuông SIM, ta có SM = \sqrt {S{I^2} + I{M^2}}  = \frac{{R\sqrt {14} }}{2}

    Vậy {S_{\Delta SAB}} = \frac{1}{2}AB.SM = \frac{{{R^2}\sqrt 7 }}{2} (đvdt).

  • Câu 3: Nhận biết

    Diện tích toàn phần

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 4: Nhận biết

    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) =
\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}}dx} =
\int_{}^{}\frac{d\left( e^{x} + 1 ight)}{\left( e^{x} + 1 ight)^{2}}
= - \frac{1}{e^{x} + 1} + C.

  • Câu 5: Nhận biết

    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có một nguyên hàm là hàm số F(x). Mệnh đề nào sau đây đúng?

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 6: Nhận biết

    Tìm nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = - 3x^{2} +2x - 1 bằng

    Ta có: \int_{}^{}{f(x)}\ dx = - x^{3} +x^{2} - x + C

  • Câu 7: Thông hiểu

    Định các giá trị tham số m

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm M(2;3; - 1),N( - 1;1;1),P(1;m - 1;2). Tìm giá trị của tham số m để tam giác MNP vuông tại N?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN} = ( - 3; - 2;2) \\
\overrightarrow{NP} = (2;m - 2;1) \\
\end{matrix} ight..

    Tam giác MNP vuông tại N \Leftrightarrow
\overrightarrow{MN}.\overrightarrow{NP} = 0 \Leftrightarrow - 6 - 2(m -
2) + 2 = 0 \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m = 0.

  • Câu 8: Thông hiểu

    Tìm khẳng định sai

    Cho tứ diệnABCD. Gọi M,\ N lần lượt là trung điểm của AB,\ CDG là trung điểm củaMN. Trong các khẳng định sau, khẳng định nào sai?

    M,\ N,\ \ G lần lượt là trung điểm của AB,\ CD,MN theo quy tắc trung điểm:

    \overrightarrow{GA} +
\overrightarrow{GB} = 2\overrightarrow{GM};\overrightarrow{GC} +
\overrightarrow{GD} = 2\overrightarrow{GN};\overrightarrow{GM} +
\overrightarrow{GN} = \overrightarrow{0}

    Suy ra:\overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0} hay \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = - \overrightarrow{GD}.

  • Câu 9: Thông hiểu

    Tính diện tích thiết diện

    Tính diện tích S của hình phẳng giới hạn bởi các đường y = e^{x};y = 2;x = 0;x = 1?

    Phương trình hoành độ giao điểm e^{x} = 2
\Leftrightarrow x = ln2 \in (0;1)

    Do đó, diện tích hình phẳng giới hạn bởi các đường y = e^{x};y = 2;x = 0;x = 1

    S = \int_{0}^{1}{\left| e^{x} - 2
ight|dx}

    = - \int_{0}^{\ln2}{\left( e^{x} - 2ight)dx} + \int_{\ln2}^{1}{\left( e^{x} - 2 ight)dx}

    = - \left. \ \left( e^{x} - 2x ight)ight|_{0}^{\ln2} + \left. \ \left( e^{x} - 2x ight)ight|_{\ln2}^{1}

    = - (2 - 2\ln2 - 1) + (e - 2 - 2 +2\ln2)

    = 4\ln2 + e - 5

  • Câu 10: Nhận biết

    Xác định tích vô hướng

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

  • Câu 11: Thông hiểu

    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(5;1;3),B(1;2;6),C(5;0;4),D(4;0;6). Viết phương trình mặt phẳng qua D và song song với mặt phẳng (ABC).

    Phương pháp tự luận

    +)\overrightarrow{AB} = ( - 4;1;3),\ \
\overrightarrow{AC} = (0; - 1;1) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} \right\rbrack =
(4;4;4).

    +) Mặt phẳng đi qua Dcó VTPT \overrightarrow{n} = (1;1;1)có phương trình: x + y + z - 10 =
0.

    +) Thay tọa độ điểm A vào phương trình mặt phẳng thấy không thỏa mãn.

    Vậy phương trình mặt phẳng thỏa mãn yêu cầu bài toán là: x + y + z - 10 = 0.

    Phương pháp trắc nghiệm

    Gọi phương trình mặt phẳng(ABC) có dạng Ax + By + Cz + D = 0.

    Sử dụng MTBT giải hệ bậc nhất 3 ẩn, nhập tọa độ 3 điểmA,B,Cvào hệ, chọn D = 1 ta được A = \frac{1}{9},B = \frac{1}{9},C =
\frac{1}{9}. (Trong trường hợp chọn D = 1 vô nghiệm ta chuyển sang chọn D = 0).

    Suy ra mặt phẳng(ABC) có VTPT \overrightarrow{n} = (1;1;1)

    Mặt phẳng đi qua Dcó VTPT \overrightarrow{n} = (1;1;1)có phương trình: x + y + z - 10 = 0.

    Thay tọa độ điểm A vào phương trình mặt phẳng thấy không thỏa mãn.

  • Câu 12: Thông hiểu

    Tính tổng các nghiệm phương trình

    Giả sử \int_{}^{}\frac{(2x + 3)dx}{x(x +
1)(x + 2)(x + 3) + 1} = - \frac{1}{g(x)} + C với C là hằng số. Tổng các nghiệm của phương trình g(x) = 0 bằng:

    Ta có: \int_{}^{}\frac{(2x + 3)dx}{x(x +
1)(x + 2)(x + 3) + 1} = \int_{}^{}\frac{(2x + 3)dx}{\left( x^{2} + 3x +
2 ight)\left( x^{2} + 3x ight) + 1}

    Đặt t = x^{2} + 3x \Rightarrow dt = (2x +
3)dx

    \int_{}^{}\frac{dt}{(t + 2)t + 1} =
\int_{}^{}\frac{dt}{(t + 1)^{2}} = - \frac{1}{t + 1} + C = -
\frac{1}{x^{2} + 3x + 1} + C

    \Rightarrow g(x) = x^{2} + 3x +
1

    Theo định lí Vi – et ta thấy phương trình g(x) = 0 có hai nghiệm x_{1};x_{2}x_{1} + x_{2} = - 3.

  • Câu 13: Thông hiểu

    Xác định số nghiệm nguyên âm của phương trình

    Số nghiệm nguyên âm của phương trình: x^{3} - ax + 2 = 0 với a = \int_{1}^{3e}{\frac{1}{x}dx} là:

    Ta có:

    a = \int_{1}^{3e}{\frac{1}{x}dx} =
\left. \ \left( \ln|x| ight) ight|_{1}^{3e} = 3 \Rightarrow x^{3} -
3x + 2 = 0

    \Leftrightarrow (x - 1)^{2}(x + 2) = 0
\Leftrightarrow x = 1 \vee x = - 2

    Số nghiệm nguyên âm của phương trình: x^{3} - ax + 2 = 0 với a = \int_{1}^{3e}{\frac{1}{x}dx} là: 2

  • Câu 14: Nhận biết

    Chọn khẳng định sai

    Trong không gian cho tứ diện ABCD, gọi M;N lần lượt là trung điểm của AD;BC. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của AD;BC suy ra \left\{ \begin{matrix}
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AB} +
\overrightarrow{DC} ight) \\
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{BD} +
\overrightarrow{AC} ight) \\
\end{matrix} ight.

    Xét các phương án như sau:

    \overrightarrow{AB};\overrightarrow{DC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{DC}
ight)

    \overrightarrow{AB};\overrightarrow{AC};\overrightarrow{MN} không đồng phẳng đúng vì MN không nằm trong (ABC)

    \overrightarrow{AN};\overrightarrow{CM};\overrightarrow{MN} đồng phẳng sai vì AN không nằm trong (MNC)

    \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{BD} + \overrightarrow{AC}
ight).

  • Câu 15: Thông hiểu

    Tính thể tích khối chóp

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x - 6y - 4z + 36 = 0. Gọi A,B,C lần lượt là giao điểm của mặt phẳng (P) với các trục tọa độ Ox,Oy,Oz. Tính thể tích V của khối chóp O.ABC.

    Ta có: (P):3x - 6y - 4z + 36 = 0
\Leftrightarrow \frac{x}{- 12} + \frac{y}{6} + \frac{z}{9} =
1

    (P) cắt các trục tọa độ tại A( - 12;0;0),B(0;6;0),C(0;0;9)

    Do OA,OB,OC đôi một vuông góc nên V = \frac{1}{6}.OA\ .OB\ OC =
\frac{1}{6}.12.6.9 = 108

  • Câu 16: Vận dụng cao

    Ghi đáp án đúng vào ô trống

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đáp án là:

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.

    Đồ thị của hàm số y = f(x)nhận trục Oy làm trục đối xứng đi qua hai điểm A(
- 1;0)A(2;1) có dạng hàm số (P_{1}):y = \frac{1}{2}x^{2} -
1.

    Đồ thị của hàm số y = g(x)nhận trục Oy làm trục đối xứng đi qua hai điểm C(1;0)D(2;
- 1) có dạng hàm số (P_{1}):y = -
\frac{1}{2}x^{2} + 1.

    Giao điểm của hai parabol tại x_{1} = -
\sqrt{2};x_{2} = \sqrt{2}

    Do đó, diện tích của con cá là S =
\int_{- \sqrt{2}}^{2}{\left| x^{2} - 2 ight|dx} \approx
4,32m^{2}

  • Câu 17: Thông hiểu

    Tìm tích phân

    Biết \int_{1}^{2}{\left\lbrack 4f(x) - 2x
ightbrack dx} = 1. Khi đó \int_{1}^{2}{f(x)dx} bằng:

    Ta có:

    \int_{1}^{2}{\left\lbrack 4f(x) - 2x
ightbrack dx} = 1 \Leftrightarrow 4\int_{1}^{2}{f(x)dx} -
2\int_{1}^{2}{xdx} = 1

    \Leftrightarrow 4\int_{1}^{2}{f(x)dx} -
2\left. \ .x^{2} ight|_{1}^{2} = 1 \Leftrightarrow
4\int_{1}^{2}{f(x)dx} = 4 \Leftrightarrow \int_{1}^{2}{f(x)dx} =
1

  • Câu 18: Vận dụng

    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian Oxyz, cho điểm M( - 1;0;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại A,B,C sao cho 3OA = 2OB = OC eq 0?

    Từ giả thiết, ta có thể coi A(2a;0;0),B(0;3b;0),C(0;0;6c) (với |a| = |b| = |c| eq 0).

    Khi đó, phương trình mặt phẳng (P) là \frac{x}{2a} + \frac{y}{3b} + \frac{z}{6c} =1.

    Do (P) đi qua M(−1; 0; 3) nên -\frac{1}{2a} + \frac{1}{2c} = 1.

    Theo trên có c = ±a, kết hợp với phương trình vừa thu được, ta suy ra a = −1, c = 1.

    Cũng theo trên, b = ±a, nên có 2 giá trị của b.

    Suy ra có 2 bộ (a, b, c) thỏa mãn, hay có 2 mặt phẳng thỏa yêu cầu đề bài.

  • Câu 19: Thông hiểu

    Tính khoảng cách

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 20: Nhận biết

    Chọn đáp án đúng

    Nguyên hàm \int_{}^{}{\left( sin2x + \cos x
\right)dx} là:

    Ta có:

    \int_{}^{}{\left( sin2x + \cos x
\right)dx} = - \frac{1}{2}cos2x + \sin x + C.

  • Câu 21: Nhận biết

    Chọn kết luận đúng

    Họ tất cả các nguyên hàm của f(x) = x^{2}
+ sin2x

    Ta có \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( x^{2} + sin2x \right)dx} = \frac{x^{3}}{3} -
\frac{1}{2}cos2x + C.

  • Câu 22: Thông hiểu

    Tìm cosin góc giữa hai đường thẳng

    Cho tứ diện đều ABCD với I;J lần lượt là trung điểm của AB;CD. Tính cosin của góc giữa hai đường thẳng CI;AJ?

    Hình vẽ minh họa

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    \overrightarrow{AB}.\overrightarrow{AC}
= \overrightarrow{AC}.\overrightarrow{AD} =
\overrightarrow{AD}.\overrightarrow{AB} = \frac{a^{2}}{2}

    Ta có: \overrightarrow{AJ} =
\frac{1}{2}\overrightarrow{AD} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CI} =
\overrightarrow{AI} - \overrightarrow{AC} =
\frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}

    Do đó: \overrightarrow{CI}.\overrightarrow{AJ} =
\frac{1}{4}\left( \overrightarrow{AB} - 2\overrightarrow{AC}
ight)\left( \overrightarrow{AC} + \overrightarrow{AD} ight) = -
\frac{1}{2}a^{2}

    Ta lại có AJ = CI =
\frac{a\sqrt{3}}{2} suy ra \cos\left( \overrightarrow{CI};\overrightarrow{AJ}
ight) = - \frac{2}{3}

    Vậy đáp án cần tìm là \frac{2}{3}.

  • Câu 23: Nhận biết

    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(2;3;1)và vectơ \overrightarrow{n} = (1;2; - 3). Viết phương trình mặt phẳng (\alpha) qua A và nhận vectơ \overrightarrow{n} làm vectơ pháp tuyến:

    Viết phương trình mặt phẳng qua A(2;3;1) và có vectơ pháp tuyến \overrightarrow{n} = (1;2; - 3)

    \Rightarrow 1.(x - 2) + 2(x - 3) - 3(z -
1) = 0

    \Leftrightarrow x + 2y - 3z - 5 =
0

    Vậy phương trình mặt phẳng cần tìm là: x
+ 2y - 3z - 5 = 0.

  • Câu 24: Thông hiểu

    Tính F(x)

    Cho F(x) là một nguyên hàm của hàm số f(x) = 4\cos^{2}x - 5 thỏa mãn F(\pi) = 0. Tìm F(x)?

    Ta có: F(x) = \int_{}^{}{\left( 4\cos^{2}x- 5 ight)dx} \Leftrightarrow F(x) = \int_{}^{}{(2\cos2x -3)dx}

    \Leftrightarrow F(x) = \sin2x - 3x +C

    Lại có F(\pi) = 0 \Leftrightarrow - 3\pi
+ C = 0 \Leftrightarrow C = 3\pi

    Vậy F(x) = - 3x + \sin2x +3\pi.

  • Câu 25: Vận dụng cao

    Chọn câu đúng

    Cho ba mặt phẳng \left( P ight):2x + 2y - 6z + 5 = 0;\,\,\,\,\left( Q ight):3x + 4y + 2z - 6 = 0(R) qua hai điểm A\left( {1,3, - 1} ight);\,\,\,\,B\left( { - 2,4, - 1} ight) và vuông góc với (R)  . Câu nào sau đây đúng? (Có thể chọn nhiều hơn 1 đáp án)

    Theo đề bài ta có \left( R ight) \bot \left( P ight) \Rightarrow Một vecto chỉ phương của (R) là: \overrightarrow {{n_P}}  = \left( {2,2, - 6} ight) \Rightarrow \overrightarrow a  = \left( { - 1, - 1,3} ight)

    => A đúng

    Vecto chỉ phương thứ hai của (R) là: \overrightarrow b  = \overrightarrow {AB}  = \left( { - 3,1,1} ight)

    Một vecto pháp tuyến của (R) là: \overrightarrow {{n_R}}  = \left[ {\overrightarrow a ,\overrightarrow b } ight] =  - 4\left( {1,2,1} ight)

    \Rightarrow \overrightarrow n  = 4\left( {1,2,1} ight)

    => B đúng.

    Vecto chỉ phương của (D) là: \overrightarrow d  = 2\left( {14, - 11,1} ight)

    Ta có: \frac{1}{{14}} e  - \frac{2}{{11}} e \frac{1}{1},nên (R) không vuông góc với (D).

  • Câu 26: Nhận biết

    Chọn kết luận đúng

    Xét hai khẳng định sau:

    (I) Mọi hàm số f(x) liên tục trên đoạn \lbrack a;b\rbrack đều có đạo hàm trên đoạn đó.

    (II) Mọi hàm số f(x) liên tục trên đoạn \lbrack a;b\rbrack đều có nguyên hàm trên đoạn đó.

    Trong hai khẳng định trên:

    Trong hai khẳng định trên chỉ có khẳng định "(II) Mọi hàm số f(x) liên tục trên đoạn \lbrack a;b\rbrack đều có nguyên hàm trên đoạn đó” là khẳng định đúng."

  • Câu 27: Nhận biết

    Tìm nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = - 3x^{2} +2x - 1 bằng

    Ta có: \int_{}^{}{f(x)}\ dx = - x^{3} +x^{2} - x + C

  • Câu 28: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =\cos3x.

    Ta có \int_{}^{}{\cos3xdx =
\frac{1}{3}\int_{}^{}{d(\sin3x)} = \frac{\sin3x}{3}} + C

  • Câu 29: Thông hiểu

    Diện tích toàn phần

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 30: Vận dụng

    Tìm nguyên hàm của hàm số f(x)

    Nguyên hàm của hàm số f(x) = \frac{2x}{(1
- x)^{3}}?

    Nhận thấy x = 1 là nghiệm bội ba của phương trình (x - 1)^{3} = 0, do đó ta biến đổi:

    \frac{2x}{(1 - x)^{3}} =
\frac{A}{1 - x} + \frac{B}{(1 - x)^{2}} + \frac{C}{(1 - x)^{3}}

    =\frac{A\left( x^{2} - 2x + 1 ight) + B(1 - x) + C}{(1 -
x)^{3}}

    = \frac{Ax^{2} + ( - 2A - B)x + A + B +
C}{(1 - x)^{3}}

    Từ đây ta có \left\{ \begin{matrix}
A = 0 \\
- 2A - B = 2 \\
A + B +C=0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 0 \\
B = -2 \\
C = 2 \\
\end{matrix} ight.

    Ta có \int_{}^{}{\frac{2x}{(1 - x)^{3}}dx
= \int_{}^{}\left( \frac{- 2}{(1 - x)^{2}} + \frac{2}{(1 - x)^{3}}
ight)dx }= \frac{2}{x - 1} - \frac{1}{(x - 1)^{2}} + C

  • Câu 31: Thông hiểu

    Chọn đáp án đúng

    Tích phân I = \int_{- 2}^{- 1}\left(
2ax^{3} + \frac{1}{x} \right)dx có giá trị là:

    Ta có:

    I = \int_{- 2}^{- 1}\left( 2ax^{3} +
\frac{1}{x} ight)dx= \left. \ \left( \frac{a}{2}x^{4} + \ln|x|
ight) ight|_{- 2}^{- 1} = - \frac{15a}{16} - ln2.

    Đáp án đúng là I = \frac{15a}{16} +
ln2.

  • Câu 32: Nhận biết

    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi các đường y = (x + 2)^{2};y = 0;x = 1;x = 3 bằng:

    Gọi S là diện tích hình phẳng cần tìm. Khi đó

    S = \int_{1}^{3}{(x + 2)^{2}dx} = \left.
\ \frac{1}{3}(x + 2)^{3} ight|_{1}^{3} = \frac{98}{3}

  • Câu 33: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng

    Phương trình tổng quát của mặt phẳng là : 2x + y = 0.

  • Câu 34: Thông hiểu

    Chọn kết luận đúng

    Cho \int_{0}^{\frac{1}{2}}{x^{n}dx} =
\frac{1}{64}\int_{1}^{5}\frac{dx}{2x - 1} = \ln m, với n, m là các số nguyên dương. Khi đó:

    Ta có:

    \int_{0}^{\frac{1}{2}}{x^{n}dx} =
\frac{1}{64} \Rightarrow \left( \frac{1}{2} ight)^{n + 1}.\frac{1}{n +
1} = \frac{1}{64} \Rightarrow n = 3

    \int_{1}^{5}\frac{dx}{2x - 1} =
\frac{1}{2}\int_{1}^{5}\frac{d(2x - 1)}{2x - 1} = \left. \
\frac{1}{2}\ln|2x - 1| ight|_{1}^{5}

    = \frac{1}{2}ln9 - \frac{1}{2}ln1 =
ln3

    \Rightarrow m = n = 3

  • Câu 35: Thông hiểu

    Chọn đáp án đúng

    Cho F(x) = (x - 1)e^{x} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}.

    Cách 1: Sử dụng tính chất của nguyên hàm \int_{}^{}{f(x)dx = F(x) \Rightarrow F'(x) =
f(x)}.

    Từ giả thiết, ta có \int_{}^{}{f(x)e^{2x}dx = F(x) \Rightarrow
f(x)e^{2x} = F'(x) = \left\lbrack (x - 1)e^{x} ightbrack' =
xe^{x}}

    \Rightarrow f(x) = \frac{xe^{x}}{\left(
e^{x} ight)^{2}} = \frac{x}{e^{x}}.

    Suy ra f'(x) = \frac{(x)'.e^{x} -
x.\left( e^{x} ight)'}{\left( e^{x} ight)^{2}} = \frac{e^{x} -
x.e^{x}}{\left( e^{x} ight)^{2}} = \frac{e^{x}(1 - x)}{\left( e^{x}
ight)^{2}} = \frac{1 - x}{e^{x}}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx =
\int_{}^{}{\frac{1 - x}{e^{x}}.e^{2x}dx = \int_{}^{}{(1 -
x)e^{x}dx}}}.

    Đặt \left\{ \begin{matrix}
u = 1 - x \\
dv = e^{x}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = - dx \\
v = e^{x} \\
\end{matrix} ight..

    \Rightarrow \int_{}^{}{(1 - x)e^{x}dx =
(1 - x)e^{x} + \int_{}^{}{e^{x}dx}}= (1 - x)e^{x} + e^{x} + C = (2 -x)e^{x} + C.

    Cách 2: Sử dụng công thức nguyên hàm từng phần.

    Ta có \int_{}^{}{e^{2x}.f'(x)dx =
e^{2x}.f(x) - \int_{}^{}{f(x).2e^{2x}dx = f(x)e^{2x} -
2\int_{}^{}{f(x)e^{2x}dx}}}

    Từ giả thiết: \int_{}^{}{f(x)e^{2x}dx =
F(x) = (x - 1)e^{x}}

    \Rightarrow f(x)e^{2x} = F'(x) =
\left\lbrack (x - 1)e^{x} ightbrack' = xe^{x}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx = xe^{x}
- 2(x - 1)e^{x} + C = (2 - x)e^{x} + C}.

  • Câu 36: Nhận biết

    Độ dài đường sinh

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 37: Thông hiểu

    Tìm nguyên hàm của hàm số

    Biết \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C. Khi đó \int_{}^{}{f\left( e^{x}
ight)}dx tương ứng bằng

    Ta có: \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C \Rightarrow f(x) = 6x - 4

    \Rightarrow f\left( e^{x} ight) =
6e^{x} - 4

    \Rightarrow \int_{}^{}{f\left( e^{x}
ight)}dx = \int_{}^{}{\left( 6e^{x} - 4 ight)dx} = 6e^{x} - 4e^{x} +
C

  • Câu 38: Thông hiểu

    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0ight\} thỏa mãn 2xf(x) +x^{2}f'(x) = 1f(1) =0. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có: 2xf(x) + x^{2}f'(x) =1

    \Leftrightarrow \left( x^{2}ight)'f(x) + x^{2}f'(x) = 1

    \Leftrightarrow \left( x^{2}f'(x)ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( x^{2}f'(x)ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow x^{2}f(x) = x +C

    Lại có f(1) = 0 \Rightarrow 1.f(1) = 1 +C \Rightarrow C = - 1

    Từ đó suy ra x^{2}f(x) = x - 1\Leftrightarrow f(x) = \frac{x - 1}{x^{2}}

    Xét phương trình hoành độ giao điểm \frac{x - 1}{x^{2}} = 0 \Leftrightarrow x =1(tm)

    Ta có: f'(x) = \frac{2 - x}{x^{3}}\Rightarrow f'(1) = 1

    Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.

  • Câu 39: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = 3x^2 + 1

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 40: Nhận biết

    Tìm vectơ pháp tuyến của mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + 4z - 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

    Mặt phẳng ax + by + cz + d = 0 có vectơ pháp tuyến \overrightarrow{n} =
(a;b;c)

    Mặt phẳng (P):2x - 3y + 4z - 5 =
0 có vectơ pháp tuyến là: \overrightarrow{n} = (2; - 3;4)

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 4 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo