Cho hàm số y = f(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị thực của tham số m để hàm số có đúng 6 điểm cực trị?

Xét hàm số
Yêu cầu bài toán xảy ra khi phương trình đạo hàm phải có 6 nghiệm bội lẻ:
Ta có:
Phương trình (*) luôn có hai nghiệm phân biệt => Hai phương trình còn lại phải cho đúng 4 nghiệm nghiệm bội lẻ.
Nhận thấy hai phương trình (1), (2) luôn cho hai nghiệm phân biệt vafcacs nghiệm của hai phương trình này không trùng nhau.
Để hai phương trình có đúng 4 nghiệm bội lẻ thì:
TH1: x = 1 là nghiệm của (x – 1)[x2 – (m – 1)x – m – 1] = 0 và x = -1 không phải là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0
TH2: x = -1 là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0 và x = 1 không phải là nghiệm của (x – 1)[x2 – (m – 1)x - m – 1] = 0
=>
Vậy có hai giá thực của m thỏa mãn












