Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 12 Đề 2

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Rút gọn biểu thức P

    Cho số thực a dương. Rút gọn biểu thức P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}

    Ta có:

    P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{{a^{\frac{3}{2}}}}}}}}} = {\left( {a\sqrt[4]{{a.{a^{\frac{1}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a\sqrt[4]{{{a^{\frac{3}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{5}}} = {\left( {{a^{\frac{{11}}{8}}}} ight)^{\frac{1}{5}}} = {a^{\frac{{11}}{{40}}}}

  • Câu 2: Nhận biết

    Tìm tập xác định của hàm số đã cho

    Cho hàm số y = {\left( {{x^2} - 2x + 1} ight)^{\frac{1}{3}}}. Tập xác định của hàm số đã cho là:

    Điều kiện xác đinh: {x^2} - 2x + 1 > 0 \Rightarrow x e 1

    => Tập xác định của hàm số là: D = \mathbb{R}\backslash \left\{ 1 ight\}

  • Câu 3: Vận dụng

    Tính V biết hình chiếu

    Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông tâm O, cạnh 2a. Mặt bên tạo với đáy góc 60^0. Gọi K là hình chiếu vuông góc của O trên SD. Tính theo a thể tích V của khối tứ diện DKAC.

     

    Gọi M là trung điểm CD, suy ra OM \bot CD nên

    {60^0} = \widehat {\left( {SCD} ight),\left( {ABCD} ight)} = \widehat {SM,OM} = \widehat {SMO}.

    Tam giác vuông SOM, có SO = OM.\tan \widehat {SMO} = a\sqrt 3.

    Kẻ KH \bot OD \Rightarrow KH\parallel SO nên KH \bot \left( {ABCD} ight)

    Tam giác vuông SOD, ta có \frac{{KH}}{{SO}} = \frac{{DK}}{{DS}} = \frac{{D{O^2}}}{{D{S^2}}}

    = \frac{{O{D^2}}}{{S{O^2} + O{D^2}}} = \frac{2}{5}\xrightarrow{{}}KH = \frac{2}{5}SO = \frac{{2a\sqrt 3 }}{5}

    Diện tích tam giác {S_{\Delta ADC}} = \frac{1}{2}AD.DC = 2{a^2}.

    Vậy {V_{DKAC}} = \frac{1}{3}{S_{\Delta ADC}}.KH = \frac{{4{a^3}\sqrt 3 }}{{15}}.

  • Câu 4: Nhận biết

    Tính đường kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;2;1)B(0 ;1 ; 1). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục hoành có đường kính là:

    Gọi I(t;0;0) trên Ox.IA = IB \Rightarrow t = 2 \Rightarrow
I(2;0;0)

    \Rightarrow R = IA = \sqrt{6}
\Rightarrow đường kính bằng 2\sqrt{6}

  • Câu 5: Thông hiểu

    Tính V biết khoảng cách

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 6: Nhận biết

    Rút gọn biểu thức P

    Rút gọn biểu thức P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} với x > 0

    Ta có: P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} = \frac{{{x^{\frac{1}{6}}}.{x^{\frac{4}{3}}}.{x^{\frac{5}{4}}}}}{{{x^{\frac{3}{2}}}}} = \frac{{{x^{\frac{{11}}{4}}}}}{{{x^{\frac{3}{2}}}}} = {x^{\frac{5}{4}}} 

  • Câu 7: Nhận biết

    Tìm số mặt của đa diện

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 8: Thông hiểu

    Chọn mệnh đề đúng

    Gọi y_{CT} là giá trị cực tiểu của hàm số f(x) = x^{2} +
\frac{2}{x} trên (0; +
\infty). Mệnh đề nào sau đây là đúng?

    Ta có:

    f'(x) = 2x - \frac{2}{x^{2}} =
\frac{2x^{3} - 2}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in (0; + \infty)

    Qua điểm x = 1 thì hàm số đổi dấu từ '' - '' sang '' + '' trong khoảng (0; + \infty).

    Suy ra trên khoảng (0; + \infty) hàm số chỉ có một cực trị và là giá trị cực tiểu nên đó cũng chính là giá trị nhỏ nhất của hàm số.

    Vậy y_{CT} = \min_{(0; +
\infty)}y.

  • Câu 9: Thông hiểu

    Chọn phương án đúng

    Hình vẽ sau đây là đồ thị của một trong bốn hàm số cho ở các đáp án A,\ B,\ C,\ D. Hỏi đó là hàm số nào?

    Dựa vào đồ thị, ta có \lim_{x ightarrow
+ \infty}y = + \infty, loại phương án y = - x^{3} + 2x + 1.

    Xét phương án y = x^{3} + 2x + 1y' = 3x^{2} + 2 > 0,\ \ \forall
x\mathbb{\in R}, hàm số không có cực tri, loại phương án y = x^{3} + 2x + 1.

    Xét phương án y = x^{3} - 2x^{2} +
1y' = 3x^{2} - 6xy' đổi dấu khi đi qua các điểm x = 0,\ \ x = 2 nên hàm số đạt cực tri tại x = 0x = 2, loại phương án y = x^{3} - 2x^{2} + 1.

    Vậy phương án đúng là y = x^{3} - 2x +
1.

  • Câu 10: Vận dụng cao

    Chọn đáp án chính xác

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ.

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f\left( \left| \frac{3sinx - \cos x - 1}{2cosx -
\sin x + 4} \right| + 2 \right) = f\left( \sqrt{(m + 2)^{2} + 4}
\right) có nghiệm?

    Ta có: - 1 \leq \sin x \leq 1,\ \  - 1
\leq \cos x \leq 1 nên suy ra 2cosx
- \sin x + 4 > 0,\ \ \forall x\mathbb{\in R}.

    Đặt t = \frac{3sinx - \cos x - 1}{2cosx -
\sin x + 4} \Rightarrow t(2cosx -
\sin x + 4) = 3sinx - \cos x - 1

    \Leftrightarrow (2t + 1)cosx - (t +
3)sinx = - (4t + 1).

    Phương trình trên có nghiệm khi

    (2t + 1)^{2} + (t + 3)^{2} \geq (4t +
1)^{2}

    \Leftrightarrow \frac{- 9}{11} \leq t
\leq 1 \Rightarrow 2 \leq |t| + 2 \leq 3.

    Nhìn vào hình trên ta thấy hàm số f(x) luôn đồng biến trên \lbrack 2\ ;\ 3brack nên phương trình f\left( \left| \frac{3sinx - \cos x -
1}{2cosx - \sin x + 4} ight| + 2 ight) = f\left( \sqrt{(m + 2)^{2} +
4} ight) hay phương trình f\left(
|t| + 2 ight) = f\left( \sqrt{(m + 2)^{2} + 4} ight) có nghiệm khi và chỉ khi phương trình |t| + 2 =
\sqrt{(m + 2)^{2} + 4} có nghiệm t thỏa mãn điều kiện 2 \leq |t| + 2 \leq 3

    \Leftrightarrow 2 \leq \sqrt{(m + 2)^{2}
+ 4} \leq 3 \Rightarrow m^{2} + 4m - 1 \leq 0 \Leftrightarrow - 2 -
\sqrt{5} \leq m \leq - 2 + \sqrt{5}

    m\mathbb{\in Z} nên có tất cả 5 giá trị m thỏa mãn.

  • Câu 11: Vận dụng

    Tổng các góc ở đỉnh

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {3;5} ight\} là:

    Khối đa diện đều loại \left\{ {3;5} ight\} là khối hai mươi mặt đều:

    Gồm 20 mặt là các tam giác đều nên tổng các góc bằng: 20.\pi  = 20\pi

  • Câu 12: Nhận biết

    Xác định tất cả các khẳng định sai

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Có bao nhiêu khẳng định sai trong các khẳng định dưới đây?

    (i) Đồ thị hàm số có ba đường tiệm cận.

    (ii) Hàm số có cực tiểu tại x =
2.

    (iii) Hàm số nghịch biến trên mỗi khoảng ( - \infty; - 1);(1; + \infty).

    (iv) Hàm số xác định trên \mathbb{R}.

    Do \lim_{x ightarrow - \infty}f(x) = -
1;\lim_{x ightarrow + \infty}f(x) = 2 nên đồ thị hàm số có hai đường tiệm cận ngang; \lim_{x
ightarrow 1^{\pm}}f(x) = \pm \infty nên đồ thị hàm số có một tiệm cận đứng. Do đó đồ thị hàm số có ba đường tiệm cận nên (i) đúng.

    Hàm số có cực tiểu tại x = 2 đúng nên (ii) đúng.

    Hàm số nghịch biến trên ( - \infty; -
1);(1;2) nên (iii) sai.

    Hàm số không xác định tại x = 1 nên (iv) sai.

    Vậy có 2 khẳng định sai.

  • Câu 13: Thông hiểu

    Tìm số tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hỏi đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

    Từ bảng biến thiên, ta có:

    \lim_{x ightarrow + \infty}y = + \infty
ightarrow đồ thị hàm số không có tiệm cận ngang;

    \lim_{x ightarrow \ ( - 2)^{+}}y = +
\infty ightarrow x = - 2 là TCĐ;

    \lim_{x ightarrow \ 1^{+}}y = - \infty
ightarrow x = 1 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng hai đường tiệm cận.

  • Câu 14: Thông hiểu

    BPT trở thành?

    Nếu đặt t = {\log _2}x thì bất phương trình \log _2^4x - \log _{\frac{1}{2}}^2\left( {\frac{{{x^3}}}{8}} ight) + 9{\log _2}\left( {\frac{{32}}{{{x^2}}}} ight) < 4\log _{{2^{ - 1}}}^2\left( x ight) trở thành bất phương trình nào?

     Điều kiện: x >0

    Ta có:

    \begin{gathered}  \log _2^4x - \log _{\frac{1}{2}}^2\left( {\frac{{{x^3}}}{8}} ight) + 9{\log _2}\left( {\frac{{32}}{{{x^2}}}} ight) < 4\log _{{2^{ - 1}}}^2\left( x ight) \hfill \\   \Leftrightarrow \log _2^4x - {\left( {3{{\log }_2}x - 3} ight)^2} + 9\left( {5 - 2{{\log }_2}x} ight) - 4\log _2^2x < 0 \hfill \\   \Leftrightarrow \log _2^4x - 13\log _2^2x + 36 < 0 \hfill \\ \end{gathered}

    Vậy thay t = {\log _2}x, ta được  {t^4} - 13{t^2} + 36 < 0.

  • Câu 15: Thông hiểu

    Giá trị biểu thức A

    Cho a,b,c > 0. Tính giá trị của biểu thức A = {\log _a}\left( {{b^2}} ight).{\log _b}\left( {\sqrt {bc} } ight) - {\log _a}\left( c ight)

    Ta có:

    \begin{matrix}  A = {\log _a}\left( {{b^2}} ight).{\log _b}\left( {\sqrt {bc} } ight) - {\log _a}\left( c ight) \hfill \\  A = 2{\log _a}\left( b ight).\dfrac{1}{2}.{\log _b}\left( {bc} ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight).{\log _b}\left( {bc} ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight).\left[ {{{\log }_b}\left( b ight) + {{\log }_b}\left( c ight)} ight] - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight).\left[ {1 + {{\log }_b}\left( c ight)} ight] - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight) + {\log _a}\left( b ight).{\log _b}\left( c ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight) + {\log _a}\left( c ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight) \hfill \\ \end{matrix}

  • Câu 16: Vận dụng

    Phương trình tiếp tuyến của đồ thị hàm số

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    Ta có: y = {x^{\frac{\pi }{2}}} \Rightarrow y' = \frac{\pi }{2}.{x^{\frac{\pi }{2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = 1} \\   {y'\left( 1 ight) = \dfrac{\pi }{2}} \end{array}} ight.

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    y = y'\left( 1 ight)\left( {x - 1} ight) + y\left( 1 ight) = \frac{\pi }{2}x - \frac{\pi }{2} + 1

  • Câu 17: Vận dụng cao

    Mệnh đề đúng

    Cho hình 20 mặt đều có cạnh bằng 2. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Hình 20 đều là hình có 20 mặt bằng nhau và mỗi mặt là một tam giác đều. 

    Gọi S_0 là diện tích tam giác đều cạnh 2 \xrightarrow{{}}\,{S_0} = \frac{{{2^2}.\sqrt 3 }}{4} = \sqrt 3

    Vậy diện tích S cần tính là: S = 20.{S_0} = 20\sqrt 3.

  • Câu 18: Nhận biết

    Hàm số nào sau đây đồng biến trên tập số thực

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Do \frac{{\sqrt 2  + \sqrt 3 }}{3} > 1 nên hàm số y = {\left( {\frac{{\sqrt 2  + \sqrt 3 }}{3}} ight)^x} đồng biến trên \mathbb{R} 

  • Câu 19: Thông hiểu

    Chọn mệnh đề đúng

    Mệnh đề nào sau đây là đúng về hàm số y =
\frac{x + 1}{\sqrt{x^{2} + 5}}trên tập xác định của nó.

    Tập xác định: D\mathbb{= R}.

    y' = \dfrac{\sqrt{x^{2} + 5} - (x +
1)\dfrac{2x}{2\sqrt{x^{2} + 5}}}{x^{2} + 5}

    = \frac{x^{2} + 5 - x^{2} -
x}{\sqrt{x^{2} + 5}\left( x^{2} + 5 ight)} = \frac{5 - x}{\sqrt{x^{2}
+ 5}\left( x^{2} + 5 ight)}.

    y' = 0 \Leftrightarrow \frac{5 -
x}{\sqrt{x^{2} + 5}\left( x^{2} + 5 ight)} = 0

    \Leftrightarrow 5 - x = 0
\Leftrightarrow x = 5

    Bảng biến thiên:

    Từ bảng biến thiên có \max_{\mathbb{R}}y
= y(5) = \frac{\sqrt{30}}{5} khi x
= 5.

    Hàm số y = \frac{x + 1}{\sqrt{x^{2} +
5}} không có giá trị nhỏ nhất.

    Vậy hàm số có giá trị lớn nhất và không có giá trị nhỏ nhất.

  • Câu 20: Thông hiểu

    Chọn đáp án đúng

    Cho điểm I(0;0;3) và đường thẳng d:\left\{ \begin{matrix}
x = - 1 + t \\
y = 2t \\
z = 2 + t \\
\end{matrix} \right.\ . Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A,\ B sao cho tam giác IAB vuông là:

    Gọi H( - 1 + t;2t;2 + t) \in d là hình chiếu vuông góc của I lên đường thẳng d \Rightarrow \overrightarrow{IH} = ( - 1 + t;2t; -
1 + t)

    Ta có vectơ chỉ phương của d: \overrightarrow{a_{d}} = (1;2;1)IH\bot d

    \Rightarrow
\overrightarrow{IH}.\overrightarrow{a_{d}} = 0 \Leftrightarrow - 1 + t +
4t - 1 + t = 0 \Leftrightarrow - 2 + 6t = 0 \Leftrightarrow t =
\frac{1}{3} \Rightarrow H\left( - \frac{2}{3};\frac{2}{3};\frac{7}{3}
\right)

    \Rightarrow IH = \sqrt{\left( \frac{2}{3}
\right)^{2} + \left( \frac{2}{3} \right)^{2} + \left( \frac{2}{3}
\right)^{2}} = \frac{2\sqrt{3}}{3}

    Vì tam giác IAB vuông tại IIA = IB =
R. Suy ra tam giác IAB vuông cân tại I, do đó bán kính:

    R = IA = ABcos45^{0} =
2IH.\frac{\sqrt{2}}{2} = \sqrt{2}IH = \sqrt{2}.\frac{2\sqrt{3}}{3} =
\frac{2\sqrt{6}}{3}

    Vậy phương trình mặt cầu (S):x^{2} +
y^{2} + (z - 3)^{2} = \frac{8}{3}.

  • Câu 21: Vận dụng cao

    Định giá trị gần nhất với kết quả

    Cho a,b,c là ba số thực dương, a > 1 thỏa mãn:

    \log_{a}^{2}(bc) + \log_{a}\left(b^{3}c^{3} + \dfrac{bc}{4} ight)^{2} + 4 + \sqrt{9 - c^{2}} =0

    Khi đó, giá trị của biểu thức T = a + 3b
+ 2c gần với giá trị nào nhất sau đây?

    Áp dụng bất đẳng thức (x + y)^{2} \geq
4xy, ta được:

    \left( b^{3}c^{3} + \dfrac{bc}{4}ight)^{2} \geq b^{4}c^{4} \Rightarrow \log_{a}\left( b^{3}c^{3} +\dfrac{bc}{4} ight)^{2} \geq 4\log_a(bc)

    Do đó với \forall a > 1,b,c >
0

    \log _a^2(bc) + {\log _a}{\left( {{b^3}{c^3} + \frac{{bc}}{4}} ight)^2} + 4 + \sqrt {9 - {c^2}}\geqslant \log _a^2(bc) + 4{\log _a}(bc) + 4 + \sqrt {9 - {c^2}}

    \Leftrightarrow \log _a^2(bc) + {\log _a}{\left( {{b^3}{c^3} + \frac{{bc}}{4}} ight)^2} + 4 + \sqrt {9 - {c^2}}\geqslant {\left[ {{{\log }_a}(bc) + 2} ight]^2} + \sqrt {9 - {c^2}}  \geqslant 0

    Dấu “=” xảy ra khi \left\{ \begin{matrix}b^{3}c^{3} = \dfrac{bc}{4} \\\log_{a}(bc) = - 2 \\c^{2} = 9 \\a > 1 \\b > 0 \\c > 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = \sqrt{2} \\b = \dfrac{1}{6} \\c = 3 \\\end{matrix} ight.

    Khi đó T = a + 3b + 2c = \sqrt{2} +
\frac{1}{2} + 6 \approx 7,91.

    Vậy giá trị của T gần 8 nhất.

  • Câu 22: Thông hiểu

    Tính đạo hàm của hàm số lũy thừa

    Tính đạo hàm của hàm số y = \left( {{x^2} + 2x - 2} ight){.5^x}

     Ta có:

    \begin{matrix}  y' = \left( {{x^2} + 2x - 2} ight)'{.5^x} + \left( {{5^x}} ight)'.\left( {{x^2} + 2x - 2} ight) \hfill \\   \Rightarrow y' = \left( {2x + 2} ight){.5^x} + \left( {{x^2} + 2x - 2} ight){.5^x}.\ln 5 \hfill \\ \end{matrix}

  • Câu 23: Vận dụng

    Tìm tọa độ giao điểm theo yêu cầu

    Cho mặt cầu (S): x^{2} + y^{2} + z^{2} -
4x + 6y + 2z - 2 = 0 và điểm A( -
6, - 1,3). Gọi M là tiếp điểm của (S) và tiếp tuyến di động (d) qua A. Tính tọa độ giao điểm của AI và mặt cầu (S).

    Ta có:

    \overrightarrow{AI} = 2(4, - 1, - 2)\Rightarrow AI:x = 2 + 4t;y = - 3 - t;z = - 1 - 2t,\ \ t\mathbb{\in
R}

    AI cắt (S) \Rightarrow(2 + 4t)^{2} + (3 + t)^{2} + (1 +
2t)^{2}- 4(2 + 4t) + 6( - 3 - t) + 2( - 1 - 2t) - 2 = 0

    \Leftrightarrow 21t^{2} - 16 = 0
\Leftrightarrow t = \pm \frac{4\sqrt{21}}{21}

    \Rightarrow Hai giao điểm \left( 2 \pm \frac{16\sqrt{21}}{21}; - 3 \mp
\frac{4\sqrt{21}}{21}; - 1 \mp \frac{8\sqrt{21}}{21}
\right)

  • Câu 24: Vận dụng

    Tìm tham số m để hàm số nghịch biến trên khoảng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Tính bán kính đáy

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 26: Nhận biết

    Giải BPT mũ

    Tập nghiệm của bất phương trình {\left( {\frac{1}{2}} ight)^x} > 32 là:

    Ta có: {\left( {\frac{1}{2}} ight)^x} > 32\Leftrightarrow {\left( {\frac{1}{2}} ight)^x} > {\left( {\frac{1}{2}} ight)^{ - 5}} \Leftrightarrow x <  - 5

  • Câu 27: Vận dụng

    Tìm tập nghiệm của BPT logarit

    Tập nghiệm của bất phương trình {\log _4}\left( {2{x^2} + 3x + 1} ight) > {\log _2}\left( {2x + 1} ight)  là:

    Điều kiện: \left\{ \begin{gathered}  2{x^2} + 3x + 1 > 0 \hfill \\  2x + 1 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x <  - 1 \vee x >  - \frac{1}{2} \hfill \\  x >  - \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow x >  - \frac{1}{2}.

    Ta có: {\log _4}\left( {2{x^2} + 3x + 1} ight) > {\log _2}\left( {2x + 1} ight)

    \Leftrightarrow {\log _4}\left( {2{x^2} + 3x + 1} ight) > {\log _4}{\left( {2x + 1} ight)^2}

    \Leftrightarrow 2{x^2} + 3x + 1 > 4{x^2} + 4x + 1

    \Leftrightarrow 2{x^2} + x < 0 \Leftrightarrow  - \frac{1}{2} < x < 0 (thỏa mãn điều kiện)

    Vậy tập nghiệm của bất phương trình đã cho là S = \left( { - \frac{1}{2};0} ight).

  • Câu 28: Nhận biết

    Chọn phương án thích hợp

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình f(x) = - 1 là:

    Số nghiệm thực của phương trình f(x) = -
1 chính là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = - 1.

    Từ hình vẽ suy ra 3 nghiệm.

  • Câu 29: Vận dụng

    Xác định tham số m thỏa mãn điều kiện

    Cho hàm số y = \frac{1}{3}x^{3} - (m +
2)x^{2} + (2m + 3)x + 2017 với m là tham số thực. Tìm tất cả các giá trị của m để x = 1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.

    Đạo hàm y' = x^{2} - 2(m + 2)x + (2m
+ 3)

    \ y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2m + 3 \\
\end{matrix} ight.

    Để hàm số có hai điểm cực trị x_{1},\
x_{2} khi và chỉ khi 2m + 3 eq 1
\Leftrightarrow m eq - 1. (*)

    Gọi A\left( x_{1};y_{1} ight)B\left( x_2;y_2 ight) là hai điểm cực trị của đồ thị hàm số.

    Khi đó theo định lí Viet, ta có x_{1} +
x_{2} = 2m + 4.

    Yêu cầu bài toán \Leftrightarrow \frac{2m
+ 4}{2} = 1 \Leftrightarrow m = - 1: không thỏa mãn (*).

    Nhận xét.

    Qua khảo sát 99% học sinh chọn đáp án A, lý do là quên điều kiện để có hai cực trị.

    Tôi cố tình ra giá trị m đúng ngay giá trị loại đi.

    Nếu gặp bài toán không ra nghiệm đẹp như trên thì ta giải như sau: ''x_{0} là hoành độ trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số bậc ba y = ax^{3} + bx^{2} + cx + d khi và chỉ khi y' = 0 có hai nghiệm phân biệt (\Delta > 0) và y''\left( x_{0} ight) =
0''.

  • Câu 30: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số y =
\frac{2x + 1}{x - 1}. Khẳng định nào sau đây đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y = \frac{2x + 1}{x - 1}
\Rightarrow y' = \frac{- 3}{(x - 1)^{2}} < 0;\forall x \in
D

    Suy ra hàm số nghịch biến trên tập xác định

    Hay hàm số nghịch biến trên các khoảng (
- \infty;1),(1; + \infty).

  • Câu 31: Nhận biết

    Tính thể tích

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 32: Thông hiểu

    Chọn khẳng định đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 33: Vận dụng cao

    Tìm Max và min

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Mặt phẳng \left( \alpha  ight) thay đổi luôn đi qua B, trung điểm I của SO và cắt các cạnh SA, SCSD lần lượt tại M, NP. Tính giá trị lớn nhất M và giá trị nhỏ nhất m của tỷ số \frac{{{V_{S.BMPN}}}}{{{V_{S.ABCD}}}}.

     

    Đặt \frac{{SA}}{{SM}} = x,\frac{{SC}}{{SN}} = y \Rightarrow x,y \geqslant 1.

    Ta có \frac{{SA}}{{SM}} + \frac{{SC}}{{SN}} = \frac{{SB}}{{SB}} + \frac{{SD}}{{SP}} = 2.\frac{{SO}}{{SI}} = 4

    Nên ta suy ra được: \frac{{SD}}{{SP}} = 3;\,\,x + y = 4.

    Do đó \frac{{{V_{S.BMPN}}}}{{{V_{S.ABCD}}}} = \frac{8}{{4.x.y.3.1}} = \frac{2}{{3xy}} = \frac{2}{{3x\left( {4 - x} ight)}}

    Từ x + y = 4 \Leftrightarrow x = 4 - y \leqslant 3\,y \geqslant 1

    Xét f\left( x ight) = \frac{2}{{3x\left( {4 - x} ight)}},\,\,1 \leqslant x \leqslant 3, tính đạo hàm của hàm số trên, ta được: f'\left( x ight) = \frac{{2\left( {4 - 2x} ight)}}{{{{\left[ {3x\left( {4 - x} ight)} ight]}^2}}} = 0 \Leftrightarrow x = 2

    Ta có f\left( 1 ight) = f\left( 3 ight) = \frac{2}{9};\,f\left( 2 ight) = \frac{1}{6}.

    Vậy đạt GTLN và GTNN của tỉ số lần lượt là M=\frac{2}{9} ; \, m=  \frac{1}{6}.

  • Câu 34: Thông hiểu

    Xác định số phần tử của tập hợp T

    Cho hàm số y = \frac{mx + 2m + 3}{x +
m} với m là tham số. Gọi T là tập hợp tất cả các giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (2; +
\infty). Hỏi tập hợp T có tất cả bao nhiêu phần tử?

    Ta có: y' = \frac{m^{2} - (2m +
3)}{(x + m)^{2}} = \frac{m^{2} - 2m - 3}{(x + m)^{2}}

    Theo yêu cầu bài toán \Leftrightarrow
y' < 0;\forall x \in (2; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 2m - 3 < 0 \\
- m \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 < m < 3 \\
m \geq - 2 \\
\end{matrix} ight.\  \Leftrightarrow - 1 < m < 3

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2 ight\}

    \Rightarrow T = \left\{ 0;1;2
ight\}

    Vậy tập hợp T có tất cả 3 phần tử.

  • Câu 35: Vận dụng

    Mệnh đề nào sau đây đúng?

    Cho các hàm số y = {\log _a}x;{\text{ }}y = {\log _b}x có đồ thị như hình vẽ. Đường thẳng x = 5 cắt trục hoành, đồ thị hàm số y = {\log _a}xy = {\log _b}x lần lượt tại A,B,C. Biết rằng CB = 2AB. Mệnh đề nào sau đây đúng?

    Mệnh đề nào sau đây đúng

    Ta có: A\left( {5;0} ight),B\left( {5;{{\log }_a}5} ight),C\left( {5;{{\log }_b}5} ight)

    Theo bài ra ta có: CB = 2AB

    \begin{matrix}   \Leftrightarrow {\log _b}5 - {\log _a}5 = 2{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = 3{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = \dfrac{1}{3}{\log _5}a \hfill \\   \Leftrightarrow a = {b^3} \hfill \\ \end{matrix}

  • Câu 36: Vận dụng

    Định giá trị m thỏa mãn bất phương trình

    Cho hàm số f(x) có đạo hàm trên \mathbb{R} và thỏa mãn f(x) > f'(x) + 1;\forall x\mathbb{\in
R}. Bất phương trình f(x) <
me^{x} + 1 nghiệm đúng với mọi x
\in (0; + \infty) khi và chỉ khi

    Ta có:

    f(x) < me^{x} + 1 \Leftrightarrow
f(x) - 1 < me^{x}

    \Leftrightarrow \frac{f(x) - 1}{e^{x}}
< m.

    Xét hàm số g(x) = \frac{f(x) -
1}{e^{x}}

    g'(x) = \frac{f'(x) -
\left\lbrack f(x) - 1 ightbrack}{e^{x}} < 0;\forall x \in (0; +
\infty)

    Bảng biến thiên

    Vậy bất phương trình f(x) < me^{x} +
1 nghiệm đúng với mọi x \in (0; +
\infty) khi và chỉ khi m \geq f(0)
- 1.

  • Câu 37: Nhận biết

    Điều kiện xác định

    Điều kiện xác định của phương trình {\log _5}(x - 1) = {\log _5}\frac{x}{{x + 1}} là: 

     Biểu thức {\log _5}(x - 1) = {\log _5}\frac{x}{{x + 1}} và xác định 

    \Leftrightarrow \left\{ \begin{gathered}  \frac{x}{{x + 1}} > 0 \hfill \\  x - 1 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x <  - 1 \vee x > 0 \hfill \\  x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 1

  • Câu 38: Vận dụng

    Tìm số tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1;2
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Số đường tiệm cận của đồ thị hàm số y =
\frac{1}{f(x) - 1} bằng:

    Dựa vào bảng biến thiên ta thấy f(x) - 1
= 0 có 4 nghiệm phân biệt nên đồ thị hàm số y = \frac{1}{f(x) - 1} có 4 đường tiệm cận đứng.

    Ngoài ra \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{f\left( x ight) - 1}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{f\left( x ight) - 1}} =  - \frac{1}{2} \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số y = \frac{1}{f(x) - 1} có hai đường tiệm cận ngang.

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{1}{f(x) - 1} bằng 6.

  • Câu 39: Nhận biết

    Xác định số cực trị của hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} và có bảng xét dấu đạo hàm f'(x) như sau:

    Hàm số y = f(x) có bao nhiêu điểm cực trị?

    Dựa vào bảng xét dấu đạo hàm ta thấy hàm số y = f(x) có 1 điểm cực trị.

  • Câu 40: Vận dụng

    Học sinh giải toán sai từ bước nào?

    Cho biết a,b > 0,a e 1;b e 1;n \in {\mathbb{N}^*}. Một học sinh đã thực hiện tính giá trị biểu thức P = \frac{1}{{{{\log }_a}b}} + \frac{1}{{{{\log }_{{a^2}}}b}} + ... + \frac{1}{{{{\log }_{{a^n}}}b}} như sau:

    Bước 1: P = {\log _b}a + {\log _b}{a^2} + ... + {\log _b}{a^n}

    Bước 2: P = {\log _b}\left( {a.{a^2}...{a^n}} ight)

    Bước 3: P = {\log _b}\left( {{a^{1 + 2 + 3 + .... + n}}} ight)

    Bước 4: P = n\left( {n - 1} ight){\log _b}\sqrt a

    Hỏi bạn học sinh giải toán sai từ bước nào?

    Ta có:

    \begin{matrix}  P = \dfrac{1}{{{{\log }_a}b}} + \dfrac{1}{{{{\log }_{{a^2}}}b}} + ... + \dfrac{1}{{{{\log }_{{a^n}}}b}} \hfill \\  P = {\log _b}a + {\log _b}{a^2} + ... + {\log _b}{a^n} \hfill \\  P = {\log _b}\left( {a.{a^2}...{a^n}} ight) \hfill \\  P = {\log _b}\left( {{a^{1 + 2 + 3 + .... + n}}} ight) \hfill \\  P = n\left( {n + 1} ight){\log _b}\sqrt a  \hfill \\ \end{matrix}

  • Câu 41: Thông hiểu

    Tìm tập nghiệm của PT logarit

    Phương trình \log _2^2x - 4{\log _2}x + 3 = 0 có tập nghiệm là?

    Điều kiện: x > 0

    \log _2^2x - 4{\log _2}x + 3 = 0 \Leftrightarrow \left[ \begin{gathered}  {\log _2}x = 1 \hfill \\  {\log _2}x = 3 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 2 \hfill \\  x = 8 \hfill \\ \end{gathered}  ight.

    Vậy PT có tập nghiệm là S={8;2}.

  • Câu 42: Vận dụng cao

    So sánh P và Q

    Cho P = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}}Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}} với x và y là các số thực khác 0. So sánh P và Q?

    Ta có: {x^2};{y^2};\sqrt[3]{{{x^4}{y^2}}};\sqrt[3]{{{x^2}{y^4}}} là những số thực dương

    Ta lại có:

    \begin{matrix}  Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}}  \hfill \\   = 2\sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   = \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  + \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  = P \hfill \\   \Rightarrow P < Q \hfill \\ \end{matrix}

  • Câu 43: Vận dụng cao

    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{x^{2} + mx +
1}{x + m}. Xét tính đúng sai của các khẳng định dưới đây:

    a) Khi m = 0, ta có \min_{(0; + \infty)}y = - 2. Sai||Đúng

    b) Hàm số đã cho luôn có 2 cực trị. Đúng||Sai

    c) Với mọi giá trị của m, ta luôn có \min_{( - m; + \infty)}y -
\underset{( - \infty; - m)}{max}y = 4. Đúng||Sai

    d) Khi m = - 3 thì giá trị lớn nhất của hàm số trên đoạn \lbrack -
1;2\rbrack bằng 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + mx +
1}{x + m}. Xét tính đúng sai của các khẳng định dưới đây:

    a) Khi m = 0, ta có \min_{(0; + \infty)}y = - 2. Sai||Đúng

    b) Hàm số đã cho luôn có 2 cực trị. Đúng||Sai

    c) Với mọi giá trị của m, ta luôn có \min_{( - m; + \infty)}y -
\underset{( - \infty; - m)}{max}y = 4. Đúng||Sai

    d) Khi m = - 3 thì giá trị lớn nhất của hàm số trên đoạn \lbrack -
1;2\rbrack bằng 1. Đúng||Sai

    Tổng quan đáp án

    a. Sai

    b. Đúng

    c. Đúng

    d. Đúng

    a) Khi m = 0 thì giá trị nhỏ nhất của hàm số trên khoảng (0; +
\infty) bằng 2.

    Thay m = 0 vào y = \frac{x^{2} + mx + 1}{x + m}, ta có

    y = \frac{x^{2} + 1}{x} \Rightarrow y' = \frac{x^{2} - 1}{x^{2}} = 0\Leftrightarrow x^{2} - 1 = 0

    \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = - 1 \notin (0; + \infty)\end{matrix} \right..

    Ta có bảng biến thiên như sau:

    b) Ta có y = \frac{x^{2} + mx + 1}{x + m}
\Rightarrow y' = \frac{x^{2} + 2mx + m^{2} - 1}{(x +
m)^{2}}.

    + y' = 0 \Leftrightarrow x^{2} + 2mx
+ m^{2} - 1 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - m - 1;\ (\ x \neq - m) \\
x = - m + 1;\ (\ x \neq - m)
\end{matrix} \right..

    \Rightarrow y' = 0 luôn có 2 nghiệm phân biệt thỏa mãn x \neq - m,\ \
\forall m.

    Vậy hàm số luôn có 2 cực trị.

    c) + y' = 0 \Leftrightarrow x^{2} +2mx + m^{2} - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - m - 1 \\x = - m + 1\end{matrix} \right..

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta có:

    \max_{( -\infty; - m)}y = - 2 - m;\min_{( - m; + \infty)}y = 2 - m

    \Rightarrow \min_{( - m; + \infty)}y - \underset{( - \infty; - m)}{max}y= 4

    d) Khi m = - 3thay vào y = \frac{x^{2} + mx + 1}{x + m}, ta có y = \frac{x^{2} - 3x + 1}{x -
3}.

    + Hàm số y = \frac{x^{2} - 3x + 1}{x -
3} là hàm phân thức hữu tỉ, liên tục trên các khoảng ( - \infty;3)(3; + \infty).

    Mặt khác \lbrack - 1;2\rbrack \subset ( -
\infty;3) \Rightarrow Hàm số liên tục trên đoạn \lbrack - 1;2\rbrack.

    + Ta có y' = \frac{x^{2} - 6x + 8}{(x
- 3)^{2}} > 0\ \ \forall x \in ( - 1;2)y(2) = 1.

    Vì hàm số tăng trên ( - 1;2) nên hàm số đạt giá trị lớn nhất \max_{\lbrack -
1;2\rbrack}y = y(2) = 1.

  • Câu 44: Thông hiểu

    Tính giá trị của biểu thức P

    Cho {\log _a}b = 2;{\log _a}c = 3. Tính giá trị của biểu thức P = {\log _a}\left( {a{b^3}{c^3}} ight)

    Ta có:

    \begin{matrix}  P = {\log _a}\left( {a{b^3}{c^3}} ight) \hfill \\   = {\log _a}a + {\log _a}{b^3} + {\log _a}{c^3} \hfill \\   = 1 + 3{\log _a}b + 5{\log _a}c \hfill \\   = 1 + 3.2 + 5.3 = 22 \hfill \\ \end{matrix}

  • Câu 45: Nhận biết

    Diện tích toàn phần

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:

    Do thiết diện đi qua trục hình trụ nên ta có h = 2R.

    Diện tích toàn phần là: {S_{tp}} = 2\pi R\left( {R + h} ight) = 6\pi {R^2} (đvdt).

  • Câu 46: Thông hiểu

    Chọn đáp án đúng

    Điểm cực tiểu của đồ thị hàm số y = -
x^{3} + x^{2} + 5x - 5

    y' = - 3x^{2} + 2x + 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = \frac{5}{3} \\
\end{matrix} ight..

    y'' = - 6x + 2.

    Ta có: y''( - 1) = 8 >
0 \Rightarrow Hàm số đạt cực tiểu tại x = - 1; y_{CT} = y( - 1) = - 8.

    Vậy điểm cực tiểu của đồ thị hàm số là (
- 1; - 8).

  • Câu 47: Nhận biết

    Tính giá trị biểu thức

    Tính giá trị của {a^{{{\log }_{\sqrt a }}4}} với  a > 0;a e 1

     Ta có: {a^{{{\log }_{\sqrt a }}4}} = {a^{2{{\log }_a}4}} = {a^{{{\log }_a}16}} = 16

  • Câu 48: Vận dụng cao

    Tính xác suất thỏa mãn yêu cầu đề bài

    Cho tập hợp A = \left\{ n\mathbb{\in Z}|0
\leq n \leq 20 ight\}F là tập hợp các hàm số f(x) = x^{3} + \left( 2m^{2} - 5 ight)x^{2} + 6x
- 8m^{2}m \in A. Chọn ngẫu nhiên một hàm số f(x) \in F. Tính xác suất để đồ thị hàm số y =
f(x) có hai điểm cực trị nằm khác phía đối với trục Ox?

    Không gian mẫu |\Omega| = 21

    Ta có: f(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \\
x^{2} + \left( 2m^{2} - 3 ight)x + 4m^{2} = 0(*) \\
\end{matrix} ight.

    Đồ thị của hàm số y = f(x) có hai điểm cực trị nằm khác phía đối với trục Ox suy ra phương trình (*) có hai nghiệm phân biệt khác 2.

    \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  {\left( {2{m^2} - 3} ight)^2} - 16{m^2} > 0 \hfill \\
  {2^2} + \left( {2{m^2} - 3} ight).2 + 4{m^2} e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  \left[ \begin{gathered}
  m > \sqrt {\dfrac{{7 + 2\sqrt {10} }}{2}}  \approx 2,58 \hfill \\
  0 \leqslant m < \sqrt {\dfrac{{7 - 2\sqrt {10} }}{2}}  \approx 0,58 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;3;4;...;20 ight\}

    Vậy xác suất cần tìm là P =
\frac{19}{21}.

  • Câu 49: Thông hiểu

    Tìm điều kiện của x để hàm số có nghĩa?

    Tìm điều kiện của x để hàm số y = {\left( {{x^2} - 3x + 2} ight)^\pi } có nghĩa?

     Ta có điều kiện xác định {x^2} - 3x + 2 > 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > 2} \end{array}} ight.

  • Câu 50: Nhận biết

    Điền đáp án

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo