Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 1 Hàm số - Sự biến thiên của hàm số

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút về Hàm số - Sự biến thiên của hàm số

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 0 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn đáp án chính xác

    Đồ thị sau đây là của hàm số nào?

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 2: Thông hiểu

    Tìm số giá trị nguyên của tham số m

    Cho hàm số y = \frac{mx + 9}{4x +
m} với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (0;4)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{- m}{4} ight\}

    Ta có: y' = \frac{m^{2} - 36}{(4x +
m)^{2}}

    Hàm số nghịch biến trên (0;4) khi và chỉ khi

    \left\{ \begin{matrix}
m^{2} - 36 < 0 \\
- \frac{m}{4} otin (0;4) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 6 < m < 6 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 16 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2;...;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 3: Vận dụng

    Ghi đáp án vào ô trống

    Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ Oxy(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?

    Đáp án: 0,84 dặm

    Đáp án là:

    Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ Oxy(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?

    Đáp án: 0,84 dặm

    Gọi hàm số mô phỏng đường bay của máy bay là y = ax^{3} + bx^{2} + cx + d\ (a eq0).

    Đồ thị hàm số đi qua điểm O(0;0) nên ta có d = 0.

    Đồ thị hàm số đi qua điểm ( -4;1) nên ta có phương trình - 64a +16b - 4c = 1\ \ (1).

    Mặt khác, ta có ( - 4;1)O(0;0) là hai điểm cực trị của đồ thị hàm số nên ta có y'( - 4) = 0;\y'(0) = 0 tức là \left\{\begin{matrix}48a - 8b + c = 0 \\c = 0 \\\end{matrix} ight. (2).

    Từ (1)(2) ta có a =\frac{1}{32};\ b = \frac{3}{16};\ c = 0.

    Suy ra y = \frac{1}{32}x^{3} +\frac{3}{16}x^{2}.

    Thay x = - 3 ta được y = \frac{27}{32} \approx 0,84.

    Vậy khi máy bay ha cánh theo phương ngang 3 dặm thì máy bay cách mặt đất khoảng 0,84 dặm.

  • Câu 4: Vận dụng

    Tìm số cực trị của hàm số

    Cho hàm số f\left( x ight) = {x^2}\left( {x - 1} ight).{e^{3x}} có một nguyên hàm là hàm số F(x). Số điểm cực trị của hàm số F(x) là

    TXĐ: D = \mathbb{R} có một nguyên hàm là hàm số F(x)

    => F’(x) = f(x), \forall x \in \mathbb{R}

    => F'\left( x ight) = 0 \Leftrightarrow f\left( x ight) = 0 \Leftrightarrow {x^2}\left( {x - 1} ight){e^{3x}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \end{array}} ight.

    Ta có bảng xét dấu F’(x) như sau:

    Tìm số cực trị của hàm số

    Dựa vào bảng trên ta thấy hàm số F(x) có một điểm cực trị.

  • Câu 5: Vận dụng

    Giá trị lớn nhất của hàm số

    Gọi M là giá trị lớn nhất của hàm số y = f\left( x ight) = 4\sqrt {{x^2} - 2x + 3}  + 2x - {x^2}. Tính tích các nghiệm của phương trình f(x) = M.

    Đặt t = \sqrt {{x^2} - 2x + 3}  = \sqrt {{{\left( {x - 1} ight)}^2} + 2}

    \begin{matrix}   \Rightarrow t \in \left[ {\sqrt 2 ;\infty } ight) \hfill \\   \Rightarrow {x^2} - 2x = {t^2} - 3 \hfill \\ \end{matrix}

    Xét hàm số f\left( t ight) = 4t - {t^2} + 3,t \in \left[ {\sqrt 2 ;\infty } ight) ta có:

    \begin{matrix}  f\left( t ight) =  - {\left( {t - 2} ight)^2} + 7 \leqslant 7;t \in \left[ {\sqrt 2 ;\infty } ight) \hfill \\   \Rightarrow f\left( t ight) = M \Rightarrow f\left( t ight) = 7 \Rightarrow t = 2 \hfill \\   \Rightarrow {x^2} - 2x - 1 = 0 \Rightarrow {x_1}.{x_2} =  - 1 \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Tìm mệnh đề đúng

    Cho hàm số y = \frac{x - 1}{\sqrt{2x^{2}
- 1} - 1}. Gọi d,n lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số. Mệnh đề nào sau đây là đúng?

    Để căn thức có nghĩa khi 2x^{2} - 1 \geq
0 \Leftrightarrow x \in \left( - \infty; - \frac{1}{\sqrt{2}}
ightbrack \cup \left\lbrack \frac{1}{\sqrt{2}}; + \infty
ight)

    Xét \sqrt{2x^{2} - 1} - 1 =
0

    \Leftrightarrow \sqrt{2x^{2} - 1} = 1
\Leftrightarrow 2x^{2} - 1 = 1

    \Leftrightarrow x = \pm 1 \in \left( -
\infty; - \frac{1}{\sqrt{2}} ightbrack \cup \left\lbrack
\frac{1}{\sqrt{2}}; + \infty ight)

    Do đó tập xác định của hàm số:

    D = \left(
- \infty; - \frac{1}{\sqrt{2}} ightbrack \cup \left\lbrack
\frac{1}{\sqrt{2}}; + \infty ight)\backslash\left\{ - 1;1
ight\}.

    Ta có

    \lim_{x ightarrow - 1}y = \lim_{x
ightarrow - 1}\frac{(x - 1)\left( \sqrt{2x^{2} - 1} + 1
ight)}{2\left( x^{2} - 1 ight)}= \lim_{x ightarrow -1}\frac{\sqrt{2x^{2} - 1} + 1}{2(x + 1)} = \infty ightarrow x = -1 là TCĐ;

    \lim_{x ightarrow 1}y = \lim_{x
ightarrow 1}\frac{(x - 1)\left( \sqrt{2x^{2} - 1} + 1 ight)}{2\left(x^{2} - 1 ight)}= \lim_{x ightarrow 1}\frac{\sqrt{2x^{2} - 1} +
1}{2(x + 1)} = \frac{1}{2} ightarrow x = 1 không là TCĐ;

    \lim_{x ightarrow + \infty}\frac{x -
1}{\sqrt{2x^{2} - 1} - 1} = \frac{1}{\sqrt{2}} ightarrow y =
\frac{1}{\sqrt{2}} là TCN;

    \lim_{x ightarrow - \infty}\frac{x -
1}{\sqrt{2x^{2} - 1} - 1} = - \frac{1}{\sqrt{2}} ightarrow y = -
\frac{1}{\sqrt{2}} là TCN.

    Vậy d = 1,n = 2 ightarrow n + d =
3.

  • Câu 7: Thông hiểu

    Chọn biểu thức chính xác

    Hệ thức liên hệ giữa giá trị cực đại y_{CÐ} và giá trị cực tiểu y_{CT} của hàm số y = x^{3} - 3x là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Lại có y'' = 6x \Rightarrow
y''(1) = 6 > 0 nên x =
1 là điểm cực tiểu của hàm số.

    y''( - 1) = - 6 < 0 nên x = - 1 là điểm cực đại của hàm số.

    Do đó \left\{ \begin{matrix}
y_{CÐ} = y( - 1) = 2 \\
y_{CT} = y(1) = - 2 \\
\end{matrix} ight.\  \Rightarrow y_{CT} + y_{CÐ} = 0.

  • Câu 8: Nhận biết

    Xác định khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x) có đạo hàm trên \mathbb{R}f'(x) = x^{2}(x - 1). Hàm số y = f(x) đồng biến trên khoảng nào sau đây?

    Ta có: f'(x) = 0 \Leftrightarrow
x^{2}(x - 1) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.. Lập bảng xét dấu như sau:

    Suy ra hàm số y = f(x) đồng biến trên khoảng (1; + \infty)

  • Câu 9: Vận dụng cao

    Chọn đáp án đúng

    Cho hàm số  y = \frac{1}{3} x^{3} - \frac{1}{2} mx^{2} + 4x-2021, m là tham số; gọi x1, x2 là các điểm cực trị của hàm số đã cho. Tính giá trị lớn nhất của biểu thức P = (x_{1}^{2}-1) (x_{2}^{2} -1).

  • Câu 10: Vận dụng

    Tìm số phần tử của tập hợp S

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x không có cực trị. Số phần tử của S là:

    Xét hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x ta có:

    \begin{matrix}  y' = 3{x^2} - 6\left( {m + 1} ight)x + 3\left( {7m - 3} ight) \hfill \\  y' = 0 \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + 7m - 3 = 0 \hfill \\ \end{matrix}

    Hàm số đã cho không có cực trị

    => Phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép

    => \Delta ' \leqslant 0 \Rightarrow {\left( {m + 1} ight)^2} - 1\left( {7m - 3} ight) \leqslant 0 \Rightarrow 1 \leqslant m \leqslant 4

    Do m là số nguyên nên m \in \left\{ {1;2;3;4} ight\}

    Vậy tập S có 4 phần tử.

  • Câu 11: Nhận biết

    Xác định hàm số

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

    Đồ thị của hàm số y = - x^{3} + 3x +
1 thỏa mãn bài toán.

  • Câu 12: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Giá trị cực tiểu của hàm số đã cho bằng:

    Dựa vào đồ thị của hàm số ta thấy giá trị cực tiểu của hàm số bằng -2.

  • Câu 13: Thông hiểu

    Xác định số mệnh đề đúng

    Cho hàm số y = x^{4} - 2x^{2} +
1. Xét các mệnh đề sau đây

    1) Hàm số có 3 điểm cực trị.

    2) Hàm số đồng biến trên các khoảng ( -
1;0); (1; + \infty).

    3) Hàm số có 1 điểm cực trị.

    4) Hàm số nghịch biến trên các khoảng ( -
\infty; - 1); (0;1).

    Có bao nhiêu mệnh đề đúng trong bốn mệnh đề trên?

    Ta có:

    y' = 4x^{3} - 4x \Rightarrow y'
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0\ \ \ \ \  \Rightarrow y = 1 \\
x = 1\ \ \ \ \ \  \Rightarrow y = 0 \\
x = - 1\ \ \  \Rightarrow y = 0 \\
\end{matrix} ight.

    Bảng xét dấu:

    Hàm số có 3 điểm cực trị, đồng biến trên khoảng ( - 1;0); (1; + \infty) và nghịch biến trên khoảng ( - \infty; - 1); (0;1). Vậy mệnh đề 1, 2, 4 đúng.

  • Câu 14: Vận dụng

    Xét tính đúng sai của các nhận định

    Để làm một cửa sổ có dạng một hình bán nguyệt và một hình chữ nhật ghép lại như hình vẽ bên dưới, người ta dùng 8m dây thép để làm các đường viền. Gọi x,y là độ dài cạnh của khung hình chữ nhật.

    A window with a diagramDescription automatically generated with medium confidence

    Xét tính đúng sai của các khẳng định sau:

    a) Chiều dài dây để uốn ra bán nguyệt là \frac{\pi x}{2}. Đúng||Sai

    b) Giá trị của y tính theo x4 -
\frac{x(4 + \pi)}{4}. Đúng||Sai

    c) Diện tích của cửa sổ là S = 4x -
x^{2}. Sai||Đúng

    d) Khi diện tích của cửa sổ lớn nhất thì y = \frac{16}{8 + \pi}. Đúng||Sai

    Đáp án là:

    Để làm một cửa sổ có dạng một hình bán nguyệt và một hình chữ nhật ghép lại như hình vẽ bên dưới, người ta dùng 8m dây thép để làm các đường viền. Gọi x,y là độ dài cạnh của khung hình chữ nhật.

    A window with a diagramDescription automatically generated with medium confidence

    Xét tính đúng sai của các khẳng định sau:

    a) Chiều dài dây để uốn ra bán nguyệt là \frac{\pi x}{2}. Đúng||Sai

    b) Giá trị của y tính theo x4 -
\frac{x(4 + \pi)}{4}. Đúng||Sai

    c) Diện tích của cửa sổ là S = 4x -
x^{2}. Sai||Đúng

    d) Khi diện tích của cửa sổ lớn nhất thì y = \frac{16}{8 + \pi}. Đúng||Sai

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

    a) Bán kính của hình bán nguyệt là \frac{x}{2} nên nửa chu vi bán nguyệt là \frac{\pi x}{2}

    b) Ta có 2(x + y) + \frac{\pi x}{2} = 8
\Leftrightarrow y = 4 - \frac{x(4 + \pi)}{4}.

    c) Diện tích của cửa sổ:

    S = xy +\frac{1}{2}\pi\left( \frac{x}{2} \right)^{2}= x\left( 4 - x - \frac{\pi x}{4} \right) + \frac{\pi x^{2}}{8}= 4x - x^{2} - \frac{\pi x^{2}}{8}.

    d) S đạt giá trị lớn nhất khi x = \frac{4}{2 + \frac{\pi}{4}} =
\frac{16}{8 + \pi} nên y = 4 - x -
\frac{\pi x}{4} = \frac{16}{8 + \pi}.

  • Câu 15: Thông hiểu

    Xác định số phần tử của tập hợp T

    Cho hàm số y = \frac{mx + 2m + 3}{x +
m} với m là tham số. Gọi T là tập hợp tất cả các giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (2; +
\infty). Hỏi tập hợp T có tất cả bao nhiêu phần tử?

    Ta có: y' = \frac{m^{2} - (2m +
3)}{(x + m)^{2}} = \frac{m^{2} - 2m - 3}{(x + m)^{2}}

    Theo yêu cầu bài toán \Leftrightarrow
y' < 0;\forall x \in (2; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 2m - 3 < 0 \\
- m \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 < m < 3 \\
m \geq - 2 \\
\end{matrix} ight.\  \Leftrightarrow - 1 < m < 3

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2 ight\}

    \Rightarrow T = \left\{ 0;1;2
ight\}

    Vậy tập hợp T có tất cả 3 phần tử.

  • Câu 16: Nhận biết

    Tìm GTNN của hàm số trên khoảng

    Cho hàm số y = f\left( x ight) = \frac{{{x^2} + 3}}{{x - 1}}. Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].

    Xét hàm số y = f\left( x ight) = \frac{{{x^2} + 3}}{{x - 1}} trên [2; 4] ta có:

    \begin{matrix}  f'\left( x ight) = \dfrac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \in \left[ {2;4} ight]} \\   {{x^2} - 2x - 3 = 0} \end{array}} ight. \Rightarrow x = 3 \hfill \\ \end{matrix}

    Tính f(2) = 7; f(3) = 6; f(4) = 19/3

    Vậy \mathop {\min }\limits_{\left[ {2;4} ight]} f\left( x ight) = f\left( 3 ight) = 6

  • Câu 17: Vận dụng

    Xác định số TCĐ và TCN của đồ thị hàm số

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d;\left( {a,b,c,d \in \mathbb{R}} ight) có đồ thị như hình vẽ dưới đây.

    Xác định số TCĐ và TCN của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{1}{{f\left( {4 - {x^2}} ight) - 3}} có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.

    Đặt t = 4 - {x^2} khi đó x \to  \pm \infty thì t \to \infty

    Khi đó \mathop {\lim }\limits_{x \to  \pm \infty } g\left( x ight) = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{1}{{f\left( t ight) - 3}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số g(x)

    Mặt khác

    \begin{matrix}  f\left( {4 - {x^2}} ight) - 3 = 0 \hfill \\   \Leftrightarrow f\left( {4 - {x^2}} ight) = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {4 - {x^2} =  - 2} \\   {4 - {x^2} = 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm \sqrt 6 } \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Đồ thị hàm số g(x) có ba đường tiệm cận đứng.

    Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.

  • Câu 18: Vận dụng cao

    Ghi đáp án vào ô trống

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Nhận biết

    Tìm khoảng đồng biến của hàm số

    Cho hảm số có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào sau đây?

    Trên ( - 1;1) đồ thị hàm số đi lên từ trái sang phải nên hàm số đã cho đồng biến.

  • Câu 20: Thông hiểu

    Ghi đáp án vào ô trống

    Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua x điện thoại thì giá tiền của mỗi điện thoại là 4000-2x(nghìn đồng), x \in N^{*},x < 2000. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?

    Đáp án: 1000||1 000

    Đáp án là:

    Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua x điện thoại thì giá tiền của mỗi điện thoại là 4000-2x(nghìn đồng), x \in N^{*},x < 2000. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?

    Đáp án: 1000||1 000

    Số tiền hãng thu được khi đại lí nhập x chiếc điện thoại là f(x) = x(4000 - 2x).

    Ta có: f'(x) = - \ 4x +
4000.

    Khi đó, f'(x) = 0 \Leftrightarrow x =
1\ 000 \Rightarrow f(x) = 2000000

    Học sinh tự vẽ bảng biến thiên

    Ta suy ra:

    Đại lí nhập cùng lúc 1\ 000 chiếc điện thoại thì hãng có thể thu nhiều tiền nhất từ đại lí đó với 2 000 000 000(đồng).

    Đáp số: 1000.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Hàm số - Sự biến thiên của hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo