Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Nguyên hàm (Trung bình)

Hãy cùng Luyện tập củng cố các bài tập Trắc nghiệm Nguyên hàm các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{{2x + 1}}{{ - x + 1}}. Mệnh đề nào dưới dây là đúng?

    Hướng dẫn:

    Tập xác định của hàm số D = \mathbb{R}\backslash \left\{ 1 ight\}

    Ta có: y' = \frac{3}{{{{\left( { - x + 1} ight)}^2}}} > 0,\forall x e 1

    Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)

  • Câu 2: Thông hiểu
    Chọn các khẳng định đúng

    Trong các hàm số sau, hàm số nào vừa có khoảng đồng biến vừa có khoảng nghịch biến trên tập xác định của nó. (I) y = \frac{{2x + 1}}{{x + 1}}; (II) y =  - {x^4} + {x^2} - 2; (III)

    Hướng dẫn:

     (I) Tập xác định D = \mathbb{R}\backslash \left\{ { - 1} ight\}

    y' = \frac{1}{{{{\left( {x + 1} ight)}^2}}} > 0,\forall x \in \mathbb{R}\backslash \left\{ { - 1} ight\}

    => (I) không thỏa mãn 

    (II) Tập xác định D = \mathbb{R}

    y' =  - 4{x^3} + 2x \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \dfrac{{\sqrt 2 }}{2}} \\   {x =  - \dfrac{{\sqrt 2 }}{2}} \end{array}} ight.

    Bảng xét dấu

    Chọn các khẳng định đúng

    => (II) thỏa mãn

    (III) Tập xác định D = \mathbb{R}

    y' = 3{x^2} + 3 > 0,\forall x \in \mathbb{R}

    => Hàm số nghịch biến trên tập số thực

    => (III) không thỏa mãn

  • Câu 3: Vận dụng cao
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2}\left( {x - 9} ight){\left( {x - 4} ight)^2}. Khi đó hàm số y = f\left( {{x^2}} ight) nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = \left[ {f\left( {{x^2}} ight)} ight]\prime  \hfill \\   = \left( {{x^2}} ight)'{x^4}\left( {x - 9} ight)\left( {{x^2} - 4} ight) \hfill \\   = 2{x^5}\left( {x - 3} ight)\left( {x - 3} ight){\left( {x - 2} ight)^2}.{\left( {x + 2} ight)^2} \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x =  \pm 2} \\   {x =  \pm 3} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng xét dấu như sau:

    Tìm khoảng nghịch biến của hàm số

    Dựa vào bảng xét dấu, hàm số y = f\left( {{x^2}} ight) nghịch biến trên các khoảng (-∞; -3) và (-0; 3)

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Hàm số nào sau đây nghịch biến trên khoảng (1; 3)?

    Hướng dẫn:

    Xét hàm số y = \frac{1}{3}{x^3} - 2{x^2} + 3x + 1y' = {x^2} - 4x + 3

    => y’ = 0 => \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 3} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Chọn đáp án đúng

    Do đó hàm số nghịch biến trên khoảng (1; 3)

  • Câu 5: Thông hiểu
    Xác định khoảng đồng biến của hàm số

    Tìm tất cả các khoảng đồng biến của hàm số y = \sqrt {9 - {x^2}}

    Hướng dẫn:

    Tập xác định D = \left[ { - 3;3} ight]

    Ta có:

    \begin{matrix}  y' = \dfrac{{ - x}}{{\sqrt {9 - {x^2}} }} \hfill \\  y' < 0,\forall x \in \left( {0;3} ight) \hfill \\ \end{matrix}

    => Hàm số đồng biến trên (-3; 0)

  • Câu 6: Vận dụng
    Tính tổng P

    Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m - 2} ight){x^2} + 12x + 1 đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:

    Hướng dẫn:

    Ta có: y' = 3{x^2} - 6\left( {m - 2} ight)x + 12

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 9{{\left( {m - 2} ight)}^2} - 36 \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    => m \in \left\{ {0;1;2;3;4} ight\}

    => Tổng P bằng 10

  • Câu 7: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = \frac{{x + 1}}{{1 - x}}. Khẳng định nào dưới đây là khẳng định đúng?

    Hướng dẫn:

    Hàm số y = \frac{{x + 1}}{{1 - x}} có tập xác định D = \mathbb{R}\backslash \left\{ 1 ight\} và có đạo hàm

    y' = \frac{2}{{{{\left( {x - 1} ight)}^2}}} > 0,\forall x \in D

    => A là khẳng định đúng

  • Câu 8: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có đạo hàm f’(x) = x2 + 1, \forall x \in \mathbb{R}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Ta có:

    f’(x) = x2 + 1 > 0, \forall x \in \mathbb{R}

    => Hàm số đống biến trên khoảng (-∞; +∞)

  • Câu 9: Thông hiểu
    Xác định hàm số đồng biến trên R

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Hàm số y = \frac{1}{3}{x^3} - \frac{1}{2}{x^2} + 3x + 1

    y' = {x^2} - x + 3 = {\left( {x - \frac{1}{2}} ight)^2} + \frac{{11}}{4} > 0,\forall x \in \mathbb{R}

  • Câu 10: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \sqrt {{x^2} - 6x + 5}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Tập xác định của hàm số là: D = \left( { - \infty ;1} ight] \cup \left[ {5; + \infty } ight)

    Ta có: y' = \frac{{x - 3}}{{\sqrt {{x^2} - 6x + 5} }} > 0,\forall x \in \left( {5; + \infty } ight)

    Vậy hàm số đồng biến trên khoảng (5; +∞)

  • Câu 11: Vận dụng
    Tìm tham số m để hàm số nghịch biến trên khoảng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Hướng dẫn:

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

  • Câu 12: Nhận biết
    Chọn đáp án đúng trong các đáp án dưới đây

    Cho hàm số f\left( x ight) = \frac{{{x^3}}}{3} - \frac{{{x^2}}}{2} - 6x + \frac{3}{4}

    Hướng dẫn:

    Ta có: f'\left( x ight) = {x^2} - x - 6 có hai nghiệm phân biệt là -2 và 3

    => f’(x) < 0 => x \in \left( { - 2;3} ight)

    Vậy hàm số nghịch biến trên khoảng (-2; 3)

  • Câu 13: Vận dụng
    Xác định tham số m để hàm số nghịch m trên khoảng

    Cho hàm số y =  - {x^3} + 3{x^2} + 3mx - 1. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)

    Hướng dẫn:

    Ta có: y' =  - 3{x^2} + 6x + 3m

    Hàm số đã cho nghịch biến trên khoảng (0; +∞)

    =>  y' \leqslant 0,\forall x \in \left( {0; + \infty } ight)

    => m \leqslant {x^2} - 2x = g\left( x ight),\forall x \in \left( {0; + \infty } ight)

    => m \leqslant \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight)

    Xét  g\left( x ight) = {x^2} - 2x;\forall x \in \left( {0; + \infty } ight) ta có:

    \begin{matrix}  g'\left( x ight) = 2x - 2 \hfill \\  g'\left( x ight) = 0 \Rightarrow x = 1 \hfill \\ \end{matrix}

    Ta lại có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to 0} g\left( x ight) = 0} \\   {\mathop {\lim }\limits_{x \to \infty } g\left( x ight) =  + \infty } \\   {g\left( 1 ight) =  - 1} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight) =  - 1 \Rightarrow m \leqslant  - 1

  • Câu 14: Vận dụng
    Tìm m nguyên để hàm số đồng biến trên R

    Số giá trị nguyên của tham số m để hàm số y = 2{x^3} - 3m{x^2} + 6mx + 2 đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có: y' = 6{x^2} - 6mx + 6m

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 6 > 0} \\   {\Delta ' = 9{m^2} - 36m \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.

  • Câu 15: Nhận biết
    Chọn hàm số thỏa mãn điều kiện

    Trong các hàm số sau đây, hàm số nào không nghịch biến trên \mathbb{R}?

    Hướng dẫn:

    Với y =  - \frac{1}{{{x^2} + 1}} \Rightarrow y' = \frac{{2x}}{{{{\left( {{x^2} + 1} ight)}^2}}}

    y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên \mathbb{R}

  • Câu 16: Vận dụng
    Tìm m nguyên thỏa mãn điều kiện

    Số giá trị nguyên của tham số m \in \left[ { - 20;20} ight] để hàm số y = \frac{1}{3}{x^3} + 2{x^2} + \left( {m + 3} ight)x + 2 đồng biến trên \mathbb{R} là:

    Hướng dẫn:

    Ta có: y' = {x^2} + 4x + m + 3

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 4 - \left( {m + 3} ight) < 0} \end{array}} ight. \Leftrightarrow m \geqslant 1 \hfill \\ \end{matrix}

    Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \left[ { - 20;20} ight]} \\   {m \in \mathbb{Z}} \end{array}} ight.

    => Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 17: Nhận biết
    Khoảng đồng biến của hàm số

    Hàm số y = 2{x^4} - 4 đồng biến trên khoảng

    Hướng dẫn:

    Ta có y’ = 8x => y’ = 0 => x = 0

    => y’ > 0 => x > 0

    => y’ < 0 => x < 0

    Vậy hàm số đồng biến trên khoảng \left( {0; + \infty } ight)

  • Câu 18: Vận dụng cao
    Xác định khoảng đồng biến của hàm số

    Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.

    Hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến trên khoảng nào trong các đáp án dưới đây?

    Hướng dẫn:

    Ta có: y = f\left( {x - 1} ight) + {x^2} - 2x

    => y' = f'\left( {x - 1} ight) + 2x - 2

    Hàm số đồng biến khi y' \geqslant 0 \Leftrightarrow f'\left( {x - 1} ight) + 2\left( {x - 1} ight) \geqslant 0\left( * ight)

    Đặt t = x – 1 thì (*) trở thành

    f'\left( t ight) + 2t \geqslant 0 \Leftrightarrow f'\left( t ight) \geqslant  - 2t

    Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

    Xác định khoảng đồng biến của hàm số

    Khi đó ta thấy với t \in \left( {0;1} ight) thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t

    => f'\left( t ight) + 2t > 0,\forall t \in \left( {1;2} ight)

    Do đó với \forall x \in \left( {1;2} ight) thì hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến.

  • Câu 19: Thông hiểu
    Xác định hàm số đồng biến trên R

    Trong các hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có: y = {x^3} + {x^2} + 2x + 1 \Rightarrow y' = 3{x^2} - 6x + 3 \geqslant 0,\forall x \in \mathbb{R}

    Ta có: y’ = 0 chỉ tại x = 1

    Vậy y = {x^3} + {x^2} + 2x + 1 đồng biến trên

  • Câu 20: Thông hiểu
    Chọn hàm số thỏa mãn điều kiện đề bài

    Trong các hàm số sau, hàm số nào nghịch biến trên tập xác định của nó?

    Hướng dẫn:

    Hàm trùng phương không nghịch biến trên tập xác định của nó

    Với y = \frac{{x + 1}}{{ - x + 3}} \Rightarrow y' = \frac{4}{{{{\left( { - x + 3} ight)}^2}}} > 0,\forall x e 3

    Hàm số đã cho đồng biến trên từng khoảng xác định

    Với y =  - 2{x^3} - 3x + 5 \Rightarrow y' =  - 6{x^2} - 3 < 0,\forall x \in \mathbb{R}

    => Hàm số nghịch biến trên \mathbb{R}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (35%):
    2/3
  • Vận dụng (25%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 12 (cũ)

Xem thêm