Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 3: Phương pháp tọa độ trong không gian Toán 12 các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Chọn khẳng định đúng

    Trong hệ tọa độ Oxyz, cho mặt phẳng (\alpha):2x + y - 2z + 9 = 0 và ba điểm A(2; 1; 0), B(0; 2; 1), C(1; 3;-1). Điểm M ∈ (α) sao cho \left| 2\overrightarrow{MA} +
3\overrightarrow{MB} - 4\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?

    Xét điểm I(a; b; c) thỏa mãn: 2\overrightarrow{IA} + 3\overrightarrow{IB} -
4\overrightarrow{IC} = \overrightarrow{0}

    Khi đó

    \left\{ \begin{matrix}
2(2 - a) - 3a - 4(1 - a) = 0\  \\
2(1 - b) + 3(2 - b) - 4(3 - b) = 0\  \\
- 2c + 3(1 - c) - 4( - 1 - c) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 0\  \\
b = - 4\  \\
c = 7 \\
\end{matrix} ight.\  \Rightarrow I(0; - 4;7)

    Khi đó:

    \left| 2\overrightarrow{MA} +
3\overrightarrow{MB} - 4\overrightarrow{MC} ight| = \left|
2\overrightarrow{MI} + 3\overrightarrow{MI} - 4\overrightarrow{MI} +
2\overrightarrow{IA} + 3\overrightarrow{IB} - 4\overrightarrow{IC}
ight| = IM

    Do đó \left| 2\overrightarrow{MA} +
3\overrightarrow{MB} - 4\overrightarrow{MC} ight| đạt giá trị nhỏ nhất thì M là hình chiếu của I trên mặt phẳng (\alpha).

    Do M(x;y;z) là hình chiếu của I trên mặt phẳng (\alpha) nên ta có:

    \left\{ \begin{matrix}
\overrightarrow{IM} = k.\overrightarrow{n} \\
M \in (\alpha) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2k\  \\
y + 4 = k\  \\
z - 7 = - 2k\  \\
2x + y - 2z + 9 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = 1 \\
x = 2\  \\
y = - 3\  \\
z = 5 \\
\end{matrix} ight.

    Vậy M = (2; - 3;5) \Rightarrow x_{M} +
y_{M} + z_{M} = 4.

  • Câu 2: Thông hiểu

    Tính độ dài vecto

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} thỏa mãn điều kiện \left| \overrightarrow{a} \right| =
\left| \overrightarrow{b} \right| = 1\overrightarrow{a}.\overrightarrow{b} =
3. Độ dài vectơ 3\overrightarrow{a}
+ 5\overrightarrow{b}:

    Ta có:

    \left( 3\overrightarrow{a} +
5\overrightarrow{b} ight)^{2} = 9{\overrightarrow{a}}^{2} +
30\overrightarrow{a}\overrightarrow{b} +
25{\overrightarrow{b}}^{2}

    = 9 + 90 + 25 = 124.

    \Rightarrow \left| 3\overrightarrow{a} +
5\overrightarrow{b} ight| = \sqrt{124}

  • Câu 3: Nhận biết

    Xác định tọa độ vectơ

    Cho A(1;\ \ 1;\  - 2)B(2;\ \  - 1;\ \ 0). Hãy xác định tọa độ của \overrightarrow{AB}?

    Ta có:

    \overrightarrow{AB} = (1;\  - \ 2;\ \
2)

  • Câu 4: Thông hiểu

    Tìm mặt phẳng cách đều hai mặt phẳng cho trước

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x + y - 2z + 5 = 0(Q): - x - y + 2z + 9 = 0. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?

    Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì (P)//(Q)//(R)

    Do đó (R) có dạng x + y − 2z + m = 0.

    Gọi A(1; 0; 3) ∈ (P) , B(1; 0; −4) ∈ (Q).

    Khi đó trung điểm M của đoạn AB nằm trên (R), tức M\left( 1;0; - \frac{1}{2} ight) \in
(R).

    Suy ra 1 + 0 - 2.\left( - \frac{1}{2}
ight) + m = 0 \Leftrightarrow m = - 2.

    Vậy (R): x + y − 2z − 2 = 0 hay (R): −x − y + 2z + 2 = 0.

  • Câu 5: Nhận biết

    Tìm tọa độ biểu thức vectơ

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;1)\overrightarrow{b} = ( - 1;3;0). Vectơ \overrightarrow{c} = 2\overrightarrow{a} +
\overrightarrow{b} có tọa độ là

    \overrightarrow{c} =
2\overrightarrow{a} + \overrightarrow{b}, gọi \overrightarrow{c} = \left( c_{1};c_{2};c_{3}
ight)

    \Rightarrow \left\{
\begin{matrix}
c_{1} = 2.1 + ( - 1) = 1 \\
c_{2} = 2.2 + 3 = 7 \\
c_{3} = 2.1 + 0 = 2 \\
\end{matrix} ight.

    Vậy \overrightarrow{c} =
(1;7;2)

  • Câu 6: Vận dụng

    Chọn kết luận đúng

    Cho tứ diện ABCD, M là một điểm nằm trong tứ diện. Các đường thẳng AM,BM,CM,DM cắt các mặt (BCD),(CDA),(DAB),(ABC) lần lượt tại A',B',C',D'. Mặt phẳng (\alpha) đi qua M và song song với (BCD) lần lượt cắt A'B',A'C',A'D' tại các điểm B_{1},C_{1},D_{1}.Khẳng định nào sau đây là đúng nhất. Chứng minh M là trọng tâm của tam giác B_{1}C_{1}D_{1}.

    Hình vẽ minh họa

    M nằm trong tứ diện ABCD nên

    tồn tại x,y,z,t > 0 sao cho x\overrightarrow{MA} + y\overrightarrow{MB}
+ z\overrightarrow{MC} + t\overrightarrow{MD} = \overrightarrow{0}\ \ \
(1)

    Gọi (\alpha) là mặt phẳng đi qua M và song song với mặt phẳng (BCD).

    Ta có \left\{ \begin{matrix}
(\alpha)//(BCD) \\
(BB'A') \cap (\alpha) = MB_{1} \\
(BB'A') \cap (BCD) = BA' \\
\end{matrix} \right.\  \Rightarrow MB_{1}//BA'.

    Do đó \frac{MB_{1}}{BA'} =
\frac{MB'}{BB'} \Rightarrow \overrightarrow{MB_{1}} =
\frac{MB'}{BB'}\overrightarrow{BA'}\ \ \ (2)

    Trong (1), chiếu các vec tơ lên đường thẳng BB' theo phương (ACD) ta được:

    x\overrightarrow{MB'} +
y\overrightarrow{MB} + z\overrightarrow{MB'} +
t\overrightarrow{MB'} = \overrightarrow{0} \Rightarrow (x + y + z)\overrightarrow{MB'} +
y\overrightarrow{MB} = \overrightarrow{0}

    \Rightarrow (x + y + z +t)\overrightarrow{MB'} = y\overrightarrow{BB'}\Rightarrow\frac{MB'}{BB'} = \frac{y}{x + y + z + t}

    Từ (2) suy ra \overrightarrow{MB_{1}} = \frac{y}{x + y + z +
t}\overrightarrow{BA'}\ \ \ (3)

    Tương tự ta có \overrightarrow{MC_{1}} =
\frac{z}{x + y + z + t}\overrightarrow{CA'}\ \ (4)

    \overrightarrow{MD_{1}} = \frac{z}{x + y
+ z + t}\overrightarrow{DA'}\ \ (5)

    Mặt khác chiếu các vec tơ trong (1) lên mặt phẳng (BCD) theo phương AA' tì thu được y\overrightarrow{A'B} +
z\overrightarrow{A'C} + t\overrightarrow{A'D} =
\overrightarrow{0}.

    Vậy từ (3),(4),(5) ta có \overrightarrow{MB_{1}} + \overrightarrow{MC_{1}}+ \overrightarrow{MD_{1}}= \frac{1}{x + y + z + t}\left(y\overrightarrow{BA'} + z\overrightarrow{CA'} +t\overrightarrow{DA'} \right) = \overrightarrow{0}, hay M là trọng tâm của tam giác B_{1}C_{1}D_{1}.

  • Câu 7: Vận dụng cao

    Chọn phương án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \Delta_{1}:\frac{x + 1}{1} = \frac{y + 2}{2} =
\frac{z}{1}\Delta_{2}:\frac{x -
2}{2} = \frac{y - 1}{1} = \frac{z - 1}{1}. Đường thẳng d song song với (P):x + y - 2z + 5 = 0 và cắt hai đường thẳng \Delta_{1};\Delta_{2} lần lượt tại A,B sao cho AB ngắn nhất. Phương trình đường thẳng d

    Gọi A = d \cap \Delta_{1},B = d\cap\Delta_{2}

    \begin{matrix}
A \in \Delta_{1} \Rightarrow A( - 1 + a; - 2 + 2a;a) \\
B \in \Delta_{2} \Rightarrow B(2 + 2b;1 + b;1 + b) \\
\overrightarrow{AB} = ( - a + 2b + 3; - 2a + b + 3; - a + b + 1) \\
d//(P) \Rightarrow \overrightarrow{AB}.\overrightarrow{n_{P}} = 0
\Leftrightarrow b = a - 4 \\
\overrightarrow{AB} = (a - 5; - a - 1; - 3) \\
AB = \sqrt{2(a - 2)^{2} + 27} \geq 3\sqrt{3};\forall a\mathbb{\in R} \\
\end{matrix}

    Dấu " = " xảy ra khi a = 2 \Rightarrow A(1;2;2),B( - 2; - 1; -
1)

    \overrightarrow{AB} = (- 3; - 3; -3)

    d đi qua điểm A(1;2;2) và có vectơ chỉ phương \overrightarrow{a_{d}} = (1;1;1)

    Vậy phương trình của dx - 1 = y - 2 = z - 2

  • Câu 8: Thông hiểu

    Xác định số cặp mặt phẳng song song với nhau

    Trong không gian với hệ trục tọa độ Oxyz, cho 4 mặt phẳng (P):x - 2y + 4x - 3 = 0, (Q) - 2x + 4y - 8z + 5 = 0, (R):3x - 6y + 12z - 10 = 0, (W):4x - 8y + 8z - 12 = 0. Có bao nhiêu cặp mặt phẳng song song với nhau.

    Hai mặt phẳng song song khi \frac{a}{a'} = \frac{b}{b'} =
\frac{c}{c'} \neq \frac{d}{d'}

    Xét (P)(Q): \frac{1}{- 2} = \frac{- 2}{4} = \frac{4}{- 8} \neq
\frac{- 3}{5} \Rightarrow (P) \parallel (Q)

    Xét (P)(R): \frac{1}{3} = \frac{- 2}{- 6} = \frac{4}{12} \neq
\frac{- 3}{- 10} \Rightarrow (P) \parallel (R)

    \Rightarrow (Q) \parallel(R)

    Xét (P)(W): \frac{1}{4} = \frac{- 2}{- 8} \neq
\frac{4}{8}

    Xét (Q)(W): \frac{-
2}{4} = \frac{4}{- 8} \neq \frac{- 8}{8}

    Xét (R)(W): \frac{3}{4} = \frac{- 6}{- 8} \neq
\frac{12}{8}.

    Vậy có 3 cặp mặt phẳng song song.

  • Câu 9: Thông hiểu

    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm B(1;2; - 3),C(7;4 - 2). Tìm tọa độ điểm E thỏa mãn đẳng thức \overrightarrow{CE} =
2\overrightarrow{EB}?

    Gọi E(x;y;z)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CE} = (x - 7;y - 4;z + 2) \\
2\overrightarrow{EB} = (2 - 2x;4 - 2y; - 6 - 2z) \\
\end{matrix} ight.

    Theo bài ra ta có:

    \overrightarrow{CE} =2\overrightarrow{EB} \Leftrightarrow \left\{ \begin{matrix}x - 7 = 2 - 2x \\y - 4 = 4 - 2y \\z + 2 = - 6 - 2z \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = \dfrac{8}{3} \\z = - \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow E\left( 3;\frac{8}{3}; - \dfrac{8}{3}ight)

    Vậy điểm E có tọa độ là E\left(
3;\frac{8}{3}; - \frac{8}{3} ight).

  • Câu 10: Thông hiểu

    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ tọa độ Oxyz, khoảng cách từ điểm M(2; - 4; - 1) tới đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. bằng:

    Đường thẳng \Delta đi qua N(0;2;3), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1;2).

    Ta có \overrightarrow{MN} = ( -
2;6;4)\left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack = (16;8; -
4).

    Vậy khoảng cách từ M đến đường thẳng \Delta là:

    d(M;\Delta) = \frac{\left| \left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack ight|}{\left|
\overrightarrow{u} ight|} = \frac{\sqrt{336}}{\sqrt{6}} =
2\sqrt{14}

  • Câu 11: Nhận biết

    Viết phương trình đường thẳng

    Trong không gian Oxyz, phương trình đường thẳng d đi qua hai điểm A(0;1;2),B(1;3;4) là:

    Ta có \overrightarrow{AB} =
(1;2;2) là một vectơ chỉ phương của đường thẳng d.

    d đi qua điểm B(1;3;4), nên có phương trình là: \left\{ \begin{matrix}
x = 1 + t \\
y = 3 + 2t \\
z = 4 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 12: Vận dụng

    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;1) và cắt các tia Ox,Oy,Oz lần lượt tại A,B,C sao cho độ dài OA,OB,OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O đến mặt phẳng (\alpha).

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0.

    Phương trình mặt phẳng (α) có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    Ta có (α) đi qua điểm M(1; 2; 1) nên ta có \frac{1}{a} + \frac{2}{b} + \frac{1}{c} =
1 (∗)

    OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên c = 2b = 4a.

    Thay vào (∗), ta được \frac{1}{a} +
\frac{2}{2a} + \frac{1}{4a} = 1 \Leftrightarrow a =
\frac{9}{4}

    Suy ra phương trình mặt phẳng (α) là \frac{x}{1} + \frac{y}{2} + \frac{z}{4} =
\frac{9}{4} hay 4x + 2y + z - 9 =
0

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{| - 9|}{\sqrt{4^{2} + 2^{2} + 1^{2}}} =
\frac{3\sqrt{21}}{7}.

  • Câu 13: Thông hiểu

    Xác định phương trình đường thẳng

    Trong không gian Oxyz cho A(0\ ;\ 0\ ;2\ )\ ,\ B(2\ ;\ 1\ ;\ 0)\ ,\ C(1\ ;\
2\ ;\  - 1)D(2\ ;\ 0\ ;\  -
2). Đường thẳng đi qua A và vuông góc với (BCD) có phương trình là

    Gọi d là đường thẳng đi qua A và vuông góc với (BCD)\ .

    Ta có \overrightarrow{BC} = ( - 1\ ;\ 1\
;\  - 1)\ ;\ \overrightarrow{BD} = (0\ ; - 1\ ;\  - 2).

    Mặt phẳng (BCD) có vec tơ pháp tuyến là {\overrightarrow{n}}_{(BCD)} =\left\lbrack \overrightarrow{BD}\ ,\ \overrightarrow{BC}\  \right\rbrack= (3 ; 2 ;  - 1) .

    Gọi {\overrightarrow{u}}_{d} là vec tơ chỉ phương của đường thẳng d.

    d\bot(BCD) nên \overrightarrow{u_{d}} =
{\overrightarrow{n}}_{(BCD)} = (3\ ;\ 2\ ;\  - 1).

    Đáp \left\{ \begin{matrix}x = 3\\y = 2 \\z = - 1 + 2t \\\end{matrix} \right. và \left\{
\begin{matrix}
x = 3t \\
y = 2t \\
z = 2 + t \\
\end{matrix} \right. có VTCP \overrightarrow{u_{d}} = (3\ ;\ 2\ ;\  -
1) nên loại \left\{ \begin{matrix}
x = 3 + 3t \\
y = 2 + 2t \\
z = 1 - t \\
\end{matrix} \right.\left\{
\begin{matrix}
x = 3 + 3t \\
y = - 2 + 2t \\
z = 1 - t \\
\end{matrix} \right..

    Ta thấy điểm A(0\ ;\ 0\ ;2\
) thuộc đáp án \left\{
\begin{matrix}
x = 3t \\
y = 2t \\
z = 2 + t \\
\end{matrix} \right. nên loại \left\{ \begin{matrix}x = 3 \\y =2 \\z = - 1 + 2t \\\end{matrix} \right..

  • Câu 14: Nhận biết

    Tính diện tích hình bình hành

    Trong không gian với hệ trục tọa độ Oxyz, cho hình bình hành ABCD. Biết A(2;1; - 3),B(0; - 2;5)C(1;1;3). Diện tích hình bình hành ABCD là:

    Ta có: \overrightarrow{AB} = ( - 2; -
3;8),\overrightarrow{AC} = ( - 1;0;6)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 18;4; -
3)

    Suy ra diện tích ABCD là:

    S_{ABCD} = \left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\sqrt{349}

  • Câu 15: Vận dụng cao

    Tính tổng?

    Trong không gian hệ tọa độ Oxyz, cho điểm A(1;4;5), B(3;4;0), C(2;-1;0) và mặt phẳng (P): 3x-3y-2z-12=0. Gọi M(a; b; c) thuộc (P) sao cho MA^2+MB^2+3MC^2 đạt giá trị nhỏ nhất. Tính tổng a+b+c.

    Giả sử I(x;y;z) là điểm thỏa mãn \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\vec{0} .

    Khi đó \overrightarrow{IA}(1-x;4-y;5-z), \overrightarrow{IB}(3-x;4-y;-z), \overrightarrow{IC}(2-x;-1-y;-z) ;

    \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=(10-5x;5-5y;5-5z); ;

    \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0} \Rightarrow \left\{\begin{matrix} x=2 \\ y=1 \\ z=1 \end{matrix}ight. \Rightarrow I (2;1;1);

    MA^2+MB^2+3MC^2 = \overrightarrow{MA}^2+\overrightarrow{MB}^2+3\overrightarrow{MC}^2

    = (\overrightarrow{MI}+\overrightarrow{IA})^2+(\overrightarrow{MI}+\overrightarrow{IB})^2+3(\overrightarrow{MI}+\overrightarrow{IC})^2

    =5MI^2+2\vec{MI}(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC})+IA^2+IB^2+IC^2

    =5MI^2+IA^2+IB^2+IC^2   (vì \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\vec{0})

    Vì I cố định nên MA^2+MB^2+3MC^2 đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên (P) .

    Gọi \triangle là đường thẳng qua I và vuông góc với (P)

    Phương trình đường thẳng \triangle:\left\{\begin{matrix} x=2+3t \\ y=1-3t \\ z=1-2t \end{matrix}ight..

    Tọa độ của M là nghiệm hệ phương trình:

     \left\{\begin{matrix} x=2+3t \\ 1-3t \\ z=1-2t \\3x-3y-2z-12=0 \end{matrix}ight. \Leftrightarrow\left\{\begin{matrix} t=\dfrac{1}{2} \\ x=\dfrac{7}{2} \\ y=\dfrac{-1}{2} \\ z=0\end{matrix}ight.

    \Rightarrow M(\frac{7}{2};\frac{-1}{2};0)  \Rightarrow a+b+c=3.

  • Câu 16: Thông hiểu

    Tính khoảng cách giữa hai mặt phẳng

    Trong không gian Oxyz khoảng cách giữa hai mặt phẳng (P):x + 2y + 2z - 10
= 0(Q):x + 2y + 2z - 3 =
0 bằng:

    Dựa vào phương trình (P);(Q) có vectơ pháp tuyến là \overrightarrow{n} =
(1;2;2) nên (P)//(Q)

    Ta có: \left\{ \begin{matrix}\left| \overrightarrow{n} ight| = \sqrt{1^{2} + 2^{2} + 2^{2}} = 3 \\d\left( O;(P) ight) = \dfrac{10}{3} \\d\left( O;(Q) ight) = \dfrac{3}{3} = 1 \\\end{matrix} ight. suy ra d\left( (P);(Q) ight) = d\left( O;(P) ight) -
d\left( O;(Q) ight) = \frac{7}{3}

  • Câu 17: Nhận biết

    Định tọa độ hình chiếu của A trên Ox

    Trong không gian Oxyz, hình chiếu vuông góc của điểm A(8;1;2) trên trục Ox có tọa độ là

    Hình chiếu vuông góc của điểm A(8;1;2) trên trục Ox (8;0;0).

  • Câu 18: Vận dụng

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;1),B(3; - 2;0),C(1;2; - 2). Gọi (P) là mặt phẳng đi qua A sao cho tổng khoảng cách từ BC đến (P) lớn nhất, biết rằng (P) không cắt đoạn BC. Khi đó vectơ pháp tuyến của mặt phẳng (P) là:

    Kiểm tra \overrightarrow{n} = (2; - 2; -
1): Mặt phẳng (P) có phương trình 2x − 2y − z − 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = (2; - 2; -
1).

    Kiểm tra \overrightarrow{n} =
(1;0;2): Mặt phẳng (P) có phương trình x+ 2z −3 = 0.

    Thay tọa độ B, C vào (P) ta thấy B ∈ (P) nên loại \overrightarrow{n} = (1;0;2).

    Kiểm tra \overrightarrow{n} = ( - 1;2; -
1): Mặt phẳng (P) có phương trình −x + 2y − z + 2 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = ( - 1;2; -
1).

    Kiểm tra v: Mặt phẳng (P) có phương trình x − 2z + 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về cùng phía (P) nên chọn \overrightarrow{n} = (1;0; -
2).

  • Câu 19: Nhận biết

    Viết phương trình mặt phẳng (MNP)

    Trong không gian Oxyz, cho ba điểm M(0;1;0),N(2;0;0),P(0;0; - 3). Phương trình nào dưới đây là phương trình mặt phẳng (MNP)?

    Phương trình đoạn chắn của mặt phẳng (MNP) là: \frac{x}{2} + \frac{y}{1} + \frac{z}{- 3} =
1

  • Câu 20: Thông hiểu

    Chọn đáp án thích hợp

    Trong không gian cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Khi đó \overrightarrow{SA} + \overrightarrow{SB} +
\overrightarrow{SC} + \overrightarrow{SD} bằng.

    Do O là tâm của hình bình hành ABCD nên \overrightarrow{OA} + \overrightarrow{OB} +
\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}.

    Áp dụng quy tắc ba điểm, ta có

    \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC} +
\overrightarrow{SD}

    = \left( \overrightarrow{SO} +
\overrightarrow{OA} ight) + \left( \overrightarrow{SO} +
\overrightarrow{OB} ight) + \left( \overrightarrow{SO} +
\overrightarrow{OC} ight) + \left( \overrightarrow{SO} +
\overrightarrow{OD} ight)

    = 4\overrightarrow{SO}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo