Tính cosin của hai vectơ
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 3: Phương pháp tọa độ trong không gian Toán 12 các em nhé!
Tính cosin của hai vectơ
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Ghi đáp án vào ô trống
Trong không gian
, cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Trong không gian
, cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Ta có .
Suy ra .
.
Vậy
Tính giá trị biểu thức T
Trong không gian
, cho
,
. Điểm
thay đổi thuộc mặt phẳng
. Tính giá trị của biểu thức
khi
nhỏ nhất.
Gọi là điểm thỏa:
.
Ta có:
.
Do đó nhỏ nhất khi và chỉ khi
nhỏ nhất.
Điều này xảy ra khi và chỉ khi là hình chiếu của
lên mặt phẳng
.
Suy ra .
Vậy .
Tính giá trị lớn nhất của biểu thức
Cho điểm
và mặt phẳng
. Xét điểm
thay đổi trên
, giá trị lớn nhất của
bằng:
Hình vẽ minh họa
Xét là điểm thỏa mãn
thế thì
hay .
Ta có
=
Dấu " " xảy ra khi
là hình chiếu của
lên
.
Tìm phương trình mặt phẳng (P)
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng ![]()
. Viết phương trình của mặt phẳng
song song với trục
và chứa giao tuyến của
và
?
Mặt phẳng chứa giao tuyến của hai mặt phẳng
và
nên có dạng:
Mặt phẳng song song với trục
nên
.
Chọn n = 1 ta có
Chọn đáp án chưa chính xác
Trong không gian
, cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Xác định tích vô hướng
Trong không gian hệ trục tọa độ
, cho hai vectơ
và
. Xác định tích vô hướng
?
Ta có: nên
Tìm phương trình mặt phẳng thích hợp
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng
đi qua điểm
và cắt các trục Ox, Oy, Oz lần lượt tại
,
,
( khác gốc toạ độ
) sao cho
là trực tâm tam giác
. Mặt phẳng
có phương trình là:
Hình vẽ minh họa

Cách 1: Gọi là hình chiếu vuông góc của
trên
,
là hình chiếu vuông góc
trên
.
là trực tâm của tam giác
khi và chỉ khi
Ta có : (1)
Chứng minh tương tự, ta có: (2).
Từ (1) và (2), ta có:
Ta có: .
Mặt phẳng đi qua điểm
và có một VTPT là
nên có phương trình là:
.
Cách 2:
+) Do lần lượt thuộc các trục
nên
(
).
Phương trình đoạn chắn của mặt phẳng là:
.
+) Do là trực tâm tam giác
nên
.
Giải hệ điều kiện trên ta được
Vậy phương trình mặt phẳng: .
Xác định phương trình mặt phẳng
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua điểm
và vuông góc với hai mặt phẳng
và
. Phương trình của mặt phẳng
là
Ta có các vectơ pháp tuyến của (P) và (Q) là
Theo giả thiết mặt phẳng (α) vuông góc với (P) và (Q) do đó
Suy ra, phương trình mặt phẳng (α) có dạng
Hay
Tính diện tích toàn phần hình trụ
Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng
. Tính diện tích toàn phần của hình trụ đã cho.
Do thiết diện qua trục của hình trụ là một hình vuông có cạnh bằng nên ta có bán kính đáy
và độ dài đường sinh
.
Diện tích toàn phần hình trụ là:
Xác định vectơ pháp tuyến của mặt phẳng
Trong không gian với hệ tọa độ
, cho đường thẳng
và điểm
. Gọi
là mặt phẳng chứa
sao cho khoảng cách từ
đến
lớn nhất. Mặt phẳng
có một véctơ pháp tuyến là
Ta có
Khi hình chiếu của trên
cũng là hình chiếu của
trên
.
Gọi H là hình chiếu vuông góc của A trên d.
Ta có .
. (1) (với
là một véctơ chỉ phương của d)
Ta có .
Từ
.
Vậy mặt phẳng có một véctơ pháp tuyến là
cũng là một véc tơ pháp tuyến của mặt phẳng
.
Góc giữa 2 đường thẳng
Tính góc của hai đường thẳng
và
.
Theo đề bài, ta có (d’) và (d) có vec-tơ chỉ phương lần lượt là:
Áp dụng công thức cosin của góc giữa 2 đường thẳng, ta có:
Chọn đáp án đúng
Trong không gian với hệ tọa độ
, đường thẳng
đi qua điểm nào sau đây?
Thay tọa độ điểm vào phương trình đường thẳng
ta được
, do đó điểm này thuộc đường thẳng
.
Tìm đáp án chưa đúng
Trong không gian với hệ tọa độ
cho tam giác ABC có A(0;1;2), B(-2;-1;-2),C(2;-3;-3). Đường thẳng d đi qua điểm B và vuông góc với mặt phẳng (ABC). Phương trình nào sau đây không phải là phương trình của đường thẳng
.
Đường thẳng đi qua điểm
và có vectơ chỉ phương là
Tính khoảng cách từ điểm đến mặt phẳng
Trong không gian với hệ tọa độ
, cho bốn điểm
. Tính khoảng cách từ điểm
đến mặt phẳng
.
Ta có
Mặt phẳng đi qua
và nhận
là vectơ pháp tuyến có phương trình tổng quát là
.
Khoảng cách từ điểm đến mặt phẳng
là:
.
Viết phương trình đường thẳng d
Trong không gian
, cho đường thẳng
đi qua điểm
và có một vecto chỉ phương
. Phương trình của
là:
Đường thẳng đi qua điểm
và có một vectơ chỉ phương
, phương trình của
là
Tính tổng P
Trong không gian với hệ tọa độ
, cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Vì M ∈ (Oxy) nên .
Gọi G là trọng tâm của tam giác ABC.
Ta có G(2; 1; 3).
Khi đó:
Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).
Vậy P = 3
Viết phương trình mặt phẳng (MNP)
Trong không gian
, cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Tìm điều kiện cần và đủ để tạo thành hình bình hành
Trong không gian cho điểm
và bốn điểm
không thẳng hàng. Điều kiện cần và đủ để
tạo thành hình bình hành là:
Hình vẽ minh họa
Ta có:
Xác định phương trình tham số của đường thẳng
Viết phương trình tham số của đường thẳng (D) qua
và song song với đường thẳng ![]()
Ta có:
nên một vectơ chỉ phương của
hay
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: