Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 3: Phương pháp tọa độ trong không gian Toán 12 các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tính cosin của hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = ( -
3;4;0)\overrightarrow{b} =
(5;0;12). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 3}{13}

  • Câu 2: Thông hiểu

    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho A(0;3;5),B(0;2;5),C(1;1;5). Biết \widehat{ABC} = a^{0} trong đó a là số nguyên dương. Tìm a?

    Đáp án: 135

    Đáp án là:

    Trong không gian Oxyz, cho A(0;3;5),B(0;2;5),C(1;1;5). Biết \widehat{ABC} = a^{0} trong đó a là số nguyên dương. Tìm a?

    Đáp án: 135

    Ta có \overrightarrow{BA} =
(0;1;0),\overrightarrow{BC} = (1; - 1;0).

    Suy ra \overrightarrow{BA}.\overrightarrow{BC} = -
1,\left| \overrightarrow{BA} ight| = 1,\left| \overrightarrow{BC}
ight| = \sqrt{2}.

    \cos\widehat{ABC} =
\frac{\overrightarrow{BA}.\overrightarrow{BC}}{\left|
\overrightarrow{BA} ight|.\left| \overrightarrow{BC} ight|} = -
\frac{1}{\sqrt{2}} \Rightarrow \widehat{ABC} = 135^{0}.

    Vậy a = 135

  • Câu 3: Vận dụng

    Tính giá trị biểu thức T

    Trong không gian Oxyz, cho A(3;2; - 1), B( - 1;0;5). Điểm M(a;b;c) thay đổi thuộc mặt phẳng (Oxy). Tính giá trị của biểu thức T = a + b + c khi \left| \overrightarrow{MA} + \overrightarrow{MB}
\right| nhỏ nhất.

    Gọi K là điểm thỏa: \overrightarrow{KA} + \overrightarrow{KB} =
\overrightarrow{0} \Leftrightarrow K(1;1;2).

    Ta có:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} \right| = \left| \left( \overrightarrow{MK} +
\overrightarrow{KA} \right) + \left( \overrightarrow{MK} +
\overrightarrow{KB} \right) \right|

    = \left| 2\overrightarrow{MK} + \left(
\overrightarrow{KA} + \overrightarrow{KB} \right) \right| = \left|
2\overrightarrow{MK} \right| = 2MK.

    Do đó \left| \overrightarrow{MA} +
\overrightarrow{MB} \right| nhỏ nhất khi và chỉ khi MK nhỏ nhất.

    Điều này xảy ra khi và chỉ khi M là hình chiếu của K lên mặt phẳng (Oxy).

    Suy ra M(1;1;0).

    Vậy T = a + b + c = 1 + 1 + 0 =
2.

  • Câu 4: Vận dụng cao

    Tính giá trị lớn nhất của biểu thức

    Cho điểm A( - 3;5; - 5),B(5; -
3;7) và mặt phẳng (\alpha):x + y +
z = 0. Xét điểm M thay đổi trên (\alpha), giá trị lớn nhất của MA^{2} - 2MB^{2} bằng:

    Hình vẽ minh họa

    Xét N là điểm thỏa mãn \overrightarrow{NA} - 2\overrightarrow{NB} =
0 thế thì

    \overrightarrow{OA} -
\overrightarrow{ON} - 2\overrightarrow{OB} + 2\overrightarrow{ON} = 0
\Leftrightarrow \overrightarrow{ON} = 2\overrightarrow{OB} -
\overrightarrow{OA}

    hay N(13; - 11;19).

    Ta có

    MA^{2} - 2MB^{2}== {\overrightarrow{MA}}^{2} -
2{\overrightarrow{MB}}^{2}

    = (\overrightarrow{MN} +
\overrightarrow{NA})^{2} - 2(\overrightarrow{MN} +
\overrightarrow{NB})^{2}

    = - {\overrightarrow{MN}}^{2} +
{\overrightarrow{NA}}^{2} - 2\overrightarrow{NB}\ ^{2} +
2\overrightarrow{MN}(\overrightarrow{NA} -
2\overrightarrow{NB})

    = - MN^{2} + NA^{2} - 2NB^{2}(\
\text{do~}\overrightarrow{NA} - 2\overrightarrow{NB} = 0)

    \leq - HN^{2} + NA^{2} - 2NB^{2}(H\
\text{là\ hình\ chiếu\ của~}N\ \text{lên~}(\alpha))

    = - d^{2}\lbrack N,(\alpha)brack +
NA^{2} - 2NB^{2} = 397

    Dấu " = " xảy ra khi M là hình chiếu của N lên (\alpha).

  • Câu 5: Thông hiểu

    Tìm phương trình mặt phẳng (P)

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + y - z - 3 = 0,(\beta):2x - y + 5 =0. Viết phương trình của mặt phẳng (P) song song với trục Oz và chứa giao tuyến của (\alpha)(\beta)?

    Mặt phẳng (P) chứa giao tuyến của hai mặt phẳng (\alpha)(\beta) nên có dạng:

    m(2x + y - z - 3) + n(2x - y + 5) =
0

    \Leftrightarrow (2m + 2n)x + (m - n)y -
mz - 3m + 5n = 0

    Mặt phẳng (P) song song với trục Oz nên m = 0.

    Chọn n = 1 ta có (P):2x - y + 5 =
0

  • Câu 6: Nhận biết

    Chọn đáp án chưa chính xác

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(1;2;3) và có véc-tơ chỉ phương là \overrightarrow{u} = (2;4;6). Phương trình nào sau đây không phải là của đường thẳng \Delta?

    Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình \left\{ \begin{matrix}
x = 3 + 2t \\
y = 6 + 4t \\
z = 12 + 6t \\
\end{matrix} ight..

  • Câu 7: Nhận biết

    Xác định tích vô hướng

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

  • Câu 8: Vận dụng

    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại A , B , C ( khác gốc toạ độ O ) sao cho M là trực tâm tam giác ABC . Mặt phẳng (\alpha) có phương trình là:

    Hình vẽ minh họa

    Cách 1: Gọi H là hình chiếu vuông góc của Ctrên AB, K là hình chiếu vuông góc B trên AC.M là trực tâm của tam giác ABC khi và chỉ khi M = BK \cap CH

    Ta có : \left. \ \begin{matrix}
AB\bot CH \\
AB\bot CO \\
\end{matrix} \right\} \Rightarrow AB\bot(COH) \Rightarrow AB\bot OM\
(1) (1)

    Chứng minh tương tự, ta có: AC\bot
OM (2).

    Từ (1) và (2), ta có: OM\bot(ABC)

    Ta có: \overrightarrow{OM}(1;2;3).

    Mặt phẳng (\alpha)đi qua điểm M(1;2;3) và có một VTPT\overrightarrow{OM}(1;2;3) nên có phương trình là:

    (x - 1) + 2(y - 2) + 3(z
- 3) = 0 \Leftrightarrow x + 2y + 3z - 14 = 0.

    Cách 2:

    +) Do A,B,C lần lượt thuộc các trục Ox,Oy,Oznên A(a;0;0),B(0;b;0),C(0;0;c)(a,b,c\ \  \neq 0).

    Phương trình đoạn chắn của mặt phẳng (ABC) là: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    +) Do M là trực tâm tam giác ABC nên \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BC} = 0 \\
\overrightarrow{BM}.\overrightarrow{AC} = 0 \\
M \in (ABC) \\
\end{matrix} \right. .

    Giải hệ điều kiện trên ta được a,b,c

    Vậy phương trình mặt phẳng: x + 2y + 3z -
14 = 0.

  • Câu 9: Thông hiểu

    Xác định phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha) đi qua điểm A(2; - 1;5) và vuông góc với hai mặt phẳng (P):3x - 2y + z + 7 = 0(Q):5x - 4y + 3z + 1 = 0. Phương trình của mặt phẳng (\alpha)

    Ta có các vectơ pháp tuyến của (P) và (Q) là \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (3; - 2;1) \\
\overrightarrow{n_{(Q)}} = (5; - 4;3) \\
\end{matrix} ight.

    Theo giả thiết mặt phẳng (α) vuông góc với (P) và (Q) do đó

    \overrightarrow{n_{(\alpha)}}\bot\left(
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ight) \Rightarrow
\overrightarrow{n_{(\alpha)}} = \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack =
(1;2;1)

    Suy ra, phương trình mặt phẳng (α) có dạng 1(x - 2) + 2(y + 1) + 1(z - 5) = 0

    Hay x + 2y + z - 5 = 0

  • Câu 10: Thông hiểu

    Tính diện tích toàn phần hình trụ

    Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a. Tính diện tích toàn phần của hình trụ đã cho.

    Do thiết diện qua trục của hình trụ là một hình vuông có cạnh bằng 3anên ta có bán kính đáy R = \frac{3a}{2} và độ dài đường sinh l=3a.

    Diện tích toàn phần hình trụ là: \frac{27\pi a^{2}}{2}

  • Câu 11: Vận dụng cao

    Xác định vectơ pháp tuyến của mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{- 2} = \frac{y + 2}{1} =
\frac{z}{2} và điểm A(1;4;2). Gọi (\alpha) là mặt phẳng chứa d sao cho khoảng cách từ A đến (\alpha) lớn nhất. Mặt phẳng (\alpha) có một véctơ pháp tuyến là

    Ta có d \subset (\alpha) \Rightarrow
d\left( A;(\alpha) \right) \leq d(A;d) \Rightarrow d\left( A;(\alpha)
\right)_{\max} = d(A;d)

    Khi hình chiếu của A trên d cũng là hình chiếu của A trên (\alpha).

    Gọi H là hình chiếu vuông góc của A trên d.

    Ta có H \in d:\frac{x - 1}{- 2} = \frac{y
+ 2}{1} = \frac{z}{2} \Rightarrow H(1 - 2t; - 2 + t;2t).

    AH\bot d \Rightarrow
\overrightarrow{AH}.\overrightarrow{u_{d}} = 0. (1) (với \overrightarrow{u_{d}} là một véctơ chỉ phương của d)

    Ta có \left\{ \begin{matrix}
\overrightarrow{AH} = ( - 2t;t - 6;2t - 2) \\
\overrightarrow{u_{d}} = ( - 2;1;2) \\
\end{matrix} \right..

    Từ (1) \Rightarrow 4t + t - 6 + 2(2t - 2)
= 0 \Leftrightarrow 9t - 10 = 0
\Leftrightarrow t = \frac{10}{9} \Rightarrow H\left( -
\frac{11}{9};\frac{- 8}{9};\frac{20}{9} \right).

    Vậy mặt phẳng (\alpha) có một véctơ pháp tuyến là \overrightarrow{AH} =
\left( \frac{- 20}{7};\frac{- 44}{7};\frac{2}{7} \right)

    \Rightarrow
\overrightarrow{n_{\alpha}}(10;22; - 1) cũng là một véc tơ pháp tuyến của mặt phẳng (\alpha).

  • Câu 12: Vận dụng

    Góc giữa 2 đường thẳng

    Tính góc của hai đường thẳng \left( {d'} ight):\frac{{x - 1}}{2} = \frac{{y + 3}}{4} = \frac{{z + 2}}{4}\left( d ight):x = 3 + 2t;\,\,y = 2t - 4;\,\,z = 2\,\,\,\left( {t \in R} ight).

    Theo đề bài, ta có (d’) và (d) có vec-tơ chỉ phương lần lượt là:\overrightarrow a  = \left( {2,4,4} ight);\overrightarrow b  = \left( {2,2,0} ight)

    Áp dụng công thức cosin của góc giữa 2 đường thẳng, ta có:

    \Rightarrow \cos \alpha  = \frac{{\left| {2.2 + 4.2 + 4.0} ight|}}{{6.2\sqrt 2 }} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha  = {45^0}

  • Câu 13: Nhận biết

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\frac{x - 1}{3} = \frac{y + 2}{- 4} = \frac{z -
3}{- 5} đi qua điểm nào sau đây?

    Thay tọa độ điểm (1; - 2;3) vào phương trình đường thẳng d ta được \frac{0}{3} = \frac{0}{- 4} = \frac{0}{-
5}, do đó điểm này thuộc đường thẳng d.

  • Câu 14: Thông hiểu

    Tìm đáp án chưa đúng

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(0;1;2), B(-2;-1;-2),C(2;-3;-3). Đường thẳng d đi qua điểm B và vuông góc với mặt phẳng (ABC). Phương trình nào sau đây không phải là phương trình của đường thẳng d.

    \overrightarrow{AB} = ( - 2; - 2; -
4)

    \overrightarrow{AC} = (2; - 4; -
5)

    Đường thẳng d đi qua điểm B( - 2; - 1; - 2) và có vectơ chỉ phương là \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 6; - 18;12)
= - 6(1;3; - 2)

  • Câu 15: Thông hiểu

    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A( - 1; - 2;1),B( - 4;2; - 2), C( - 1; - 1; - 2),D( - 5; - 5;2). Tính khoảng cách từ điểm D đến mặt phẳng (ABC).

    Ta có \overrightarrow{\ AB} = ( - 3;4; -
3),\overrightarrow{AC} = (0;1; - 3)

    \Rightarrow \left\lbrack
\overrightarrow{\ AB};\overrightarrow{AC} ightbrack = ( - 9; - 9; -
3)

    Mặt phẳng (ABC) đi qua A( - 1; - 2;1) và nhận \overrightarrow{n} = (3;3;1) là vectơ pháp tuyến có phương trình tổng quát là 3x +
3y + z + 8 = 0.

    Khoảng cách từ điểm D đến mặt phẳng (ABC) là:

    d = d\left( D;(ABC) ight) = \frac{| -
15 - 15 + 2 + 8|}{\sqrt{3^{2} + 3^{2} + 1^{2}}} =
\frac{20}{\sqrt{19}}.

  • Câu 16: Nhận biết

    Viết phương trình đường thẳng d

    Trong không gian Oxyz, cho đường thẳng d đi qua điểm A(4; - 1;3) và có một vecto chỉ phương \overrightarrow{u} = (2;5; - 6). Phương trình của d là:

    Đường thẳng d đi qua điểm A(4; - 1;3) và có một vectơ chỉ phương \overrightarrow{u} = (2;5; - 6), phương trình của d\left\{ \begin{matrix}
x = 4 + 2t \\
y = - 1 + 5t \\
z = 3 - 6t \\
\end{matrix} \right.

  • Câu 17: Vận dụng

    Tính tổng P

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;2;5),B(0;4; - 3),C(2; - 3;7). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tính tổng P = x + y + z.

    Vì M ∈ (Oxy) nên M(x;y;0).

    Gọi G là trọng tâm của tam giác ABC.

    Ta có G(2; 1; 3).

    Khi đó:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \left|
\overrightarrow{MG} + \overrightarrow{GA} + \overrightarrow{MG} +
\overrightarrow{GB} + \overrightarrow{MG} + \overrightarrow{GC}
ight|

    = \left| 3\overrightarrow{MG} ight| =
3MG = 3\sqrt{(x - 2)^{2} + (y - 1)^{2} + 3^{2}} \geq 9

    Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).

    Vậy P = 3

  • Câu 18: Nhận biết

    Viết phương trình mặt phẳng (MNP)

    Trong không gian Oxyz, cho ba điểm M(0;1;0),N(2;0;0),P(0;0; - 3). Phương trình nào dưới đây là phương trình mặt phẳng (MNP)?

    Phương trình đoạn chắn của mặt phẳng (MNP) là: \frac{x}{2} + \frac{y}{1} + \frac{z}{- 3} =
1

  • Câu 19: Thông hiểu

    Tìm điều kiện cần và đủ để tạo thành hình bình hành

    Trong không gian cho điểm O và bốn điểmA,B,C,D không thẳng hàng. Điều kiện cần và đủ để A,B,C,D tạo thành hình bình hành là:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{OA} +
\overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} +
\overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OA} +
\overrightarrow{AB} + \overrightarrow{OA} +
\overrightarrow{BC}

    \Leftrightarrow \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{BC}

  • Câu 20: Thông hiểu

    Xác định phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng (D) qua I(1, - 3,2) và song song với đường thẳng (d):x = 3 + 4t;y = 2 - 2t;z = 3t - 1\left(
t\mathbb{\in R} \right)

    Ta có:

    (D)//(d) nên một vectơ chỉ phương của (D):\overrightarrow{a} =
\overrightarrow{e_{1}} = (1,0,0)\ \ hay\ \ \overrightarrow{a} = - ( -
1,0,0)

    \left\{ \begin{matrix}
x = 1+4t \\
y = -3-2t \\
z = 2+3t \\
\end{matrix} \right.\ \ \ ;t\mathbb{\in R} hay (D)\left\{ \begin{matrix}
x = 1 - 4m \\
y = 2m - 3 \\
z = 2 - 3m \\
\end{matrix} \right.\ ;m\mathbb{\in R}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo