Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 3: Phương pháp tọa độ trong không gian Toán 12 các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tìm tọa độ điểm Q

    Trong hệ trục tọa độ Oxyz, cho các điểm M(1; - 1;1)\ ,\ \ N(2;0; - 1)\ ,\ \
P( - 1;2;1). Xét điểm Q sao cho tứ giác MNPQ là một hình bình hành. Tọa độ Q

    Gọi Q(x;y;z). Ta có \overrightarrow{MN} = (1;1; - 2)\ \ ,\ \ \ \
\overrightarrow{QP} = ( - 1 - x;2 - y;1 - z).

    Tứ giác MNPQ là một hình bình hành \Leftrightarrow \overrightarrow{MN} =
\overrightarrow{QP}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 1 - x \\
1 = 2 - y \\
- 2 = 1 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 1 \\
z = 3 \\
\end{matrix} ight.\ .

    Vậy, Q( - 2;1;3).

  • Câu 2: Vận dụng

    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại A , B , C ( khác gốc toạ độ O ) sao cho M là trực tâm tam giác ABC . Mặt phẳng (\alpha) có phương trình là:

    Hình vẽ minh họa

    Cách 1: Gọi H là hình chiếu vuông góc của Ctrên AB, K là hình chiếu vuông góc B trên AC.M là trực tâm của tam giác ABC khi và chỉ khi M = BK \cap CH

    Ta có : \left. \ \begin{matrix}
AB\bot CH \\
AB\bot CO \\
\end{matrix} \right\} \Rightarrow AB\bot(COH) \Rightarrow AB\bot OM\
(1) (1)

    Chứng minh tương tự, ta có: AC\bot
OM (2).

    Từ (1) và (2), ta có: OM\bot(ABC)

    Ta có: \overrightarrow{OM}(1;2;3).

    Mặt phẳng (\alpha)đi qua điểm M(1;2;3) và có một VTPT\overrightarrow{OM}(1;2;3) nên có phương trình là:

    (x - 1) + 2(y - 2) + 3(z
- 3) = 0 \Leftrightarrow x + 2y + 3z - 14 = 0.

    Cách 2:

    +) Do A,B,C lần lượt thuộc các trục Ox,Oy,Oznên A(a;0;0),B(0;b;0),C(0;0;c)(a,b,c\ \  \neq 0).

    Phương trình đoạn chắn của mặt phẳng (ABC) là: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    +) Do M là trực tâm tam giác ABC nên \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BC} = 0 \\
\overrightarrow{BM}.\overrightarrow{AC} = 0 \\
M \in (ABC) \\
\end{matrix} \right. .

    Giải hệ điều kiện trên ta được a,b,c

    Vậy phương trình mặt phẳng: x + 2y + 3z -
14 = 0.

  • Câu 3: Nhận biết

    Chọn kết luận đúng

    Cho A( - 1;2;1) và hai mặt phẳng (P):2x + 4y - 6z - 5 = 0;(Q):x + 2y - 3z =
0. Khi đó:

    Thay tọa độ điểm A vào phương trình mặt phẳng (Q) thỏa mãn, do đó A ∈ (Q).

    {\overrightarrow{n}}_{(P)} = (2;4; -
6) = 2(1;2; - 3) = {\overrightarrow{n}}_{(Q)} nên (Q)//(P).

  • Câu 4: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A( - 2;3;4),B(8; - 5;6). Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng (Oyz) là điểm nào dưới đây?

    Vì I là trung điểm của đoạn AB nên I(3; -
1;5).

    Khi đó hình chiếu của I lên (Oyz) là M(0; - 1;5).

  • Câu 5: Vận dụng cao

    Ghi đáp án vào ô trống

    Biết rằng trong không gian với hệ tọa độ Oxyz có hai mặt phẳng (P)(Q) cùng thỏa mãn các điều kiện sau: đi qua hai điểm A(1;1;1),B(0; - 2;2) đồng thời cắt các trục tọa độ Ox,Oy tại hai điểm cách đều O. Giả sử (P) có phương trình x + b_{1}y + c_{1}z + d_{1} = 0(Q) có phương trình x + b_{2}y + c_{2}z + d_{2} = 0. Tính giá trị biểu thức U = b_{1}b_{2} +c_{1}c_{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết rằng trong không gian với hệ tọa độ Oxyz có hai mặt phẳng (P)(Q) cùng thỏa mãn các điều kiện sau: đi qua hai điểm A(1;1;1),B(0; - 2;2) đồng thời cắt các trục tọa độ Ox,Oy tại hai điểm cách đều O. Giả sử (P) có phương trình x + b_{1}y + c_{1}z + d_{1} = 0(Q) có phương trình x + b_{2}y + c_{2}z + d_{2} = 0. Tính giá trị biểu thức U = b_{1}b_{2} +c_{1}c_{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu

    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho các vectơ \overrightarrow{a}(2;m - 1;3)\overrightarrow{b}(1;3; - 2n). Xác định giá trị của m;n để hai vectơ đã cho có cùng hướng?

    Ta có: Hai vectơ \overrightarrow{a}(2;m -
1;3)\overrightarrow{b}(1;3; -
2n) cùng hướng nên

    \overrightarrow{a} =k.\overrightarrow{b};(k > 0) \Leftrightarrow \left\{ \begin{matrix}2 = k \\m - 1 = 3k \\3 = k( - 2n) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = k \\m = 7 \ = - \dfrac{3}{4} \\\end{matrix} ight.

    Vậy m = 7;n = - \frac{3}{4} là đáp án cần tìm.

  • Câu 7: Vận dụng

    Xác định mối liên hệ giữa các hệ số

    Cho hình chóp S.ABC Lấy các điểm A',B',C' lần lượt thuộc các tia SA,SB,SC sao cho SA = a.SA',\ SB = b.SB',\ SC =
c.SC', trong đó a,b,c là các số thay đổi. Tìm mối liên hệ giữa a,b,cđể mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC.

    Nếu a = b = c = 1 thì SA = SA',SB = SB',SC = SC' nên (ABC) \equiv
(A'B'C').

    Suy ra (A'B'C') đi qua trọng tâm của tam giác ABC

    =>a + b + c = 3 là đáp án đúng.

  • Câu 8: Thông hiểu

    Chọn phương án thích hợp

    Trong không gian với hệ toạ độ Oxyz,cho hai đường thẳng d_{1},d_{2}lần lượt có phương trình d_{1}:\frac{x - 2}{2} = \frac{y - 2}{1} = \frac{z
- 3}{3}, d_{2}:\frac{x - 1}{2} =
\frac{y - 2}{- 1} = \frac{z - 1}{4}. Phương trình mặt phẳng (\alpha) cách đều hai đường thẳng d_{1},d_{2} là:

    Ta có d_{1} đi qua A(2;2;3) và có \overrightarrow{u_{d_{1}}} = (2;1;3), d_{2} đi qua B(1;2;1) và có \overrightarrow{u_{d_{2}}} = (2; -
1;4)

    \overrightarrow{AB} = ( - 1;1; -
2);\left\lbrack \overrightarrow{u_{d_{1}}};\overrightarrow{u_{d_{2}}}
\right\rbrack = (7; - 2; - 4);

    \Rightarrow \left\lbrack
\overrightarrow{u_{d_{1}}};\overrightarrow{u_{d_{2}}}
\right\rbrack\overrightarrow{AB} = - 1 \neq 0 nên d_{1},d_{2} chéo nhau.

    Do (\alpha) cách đều d_{1},d_{2} nên (\alpha) song song với d_{1},d_{2} \Rightarrow
\overrightarrow{n_{\alpha}} = \left\lbrack
\overrightarrow{u_{d_{1}}};\overrightarrow{u_{d_{2}}} \right\rbrack =
(7; - 2; - 4)

    \Rightarrow (\alpha) có dạng 7x - 2y - 4z + d = 0

    Theo giả thiết thì d\left( A,(\alpha)
\right) = d\left( B,(\alpha) \right)

    \Leftrightarrow \frac{|d -
2|}{\sqrt{69}} = \frac{|d - 1|}{\sqrt{69}} \Leftrightarrow d =
\frac{3}{2}

    \Rightarrow (\alpha):14x - 4y - 8z + 3 =
0

  • Câu 9: Thông hiểu

    Tính tích vô hướng hai vectơ

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính tích vô hướng \overrightarrow{AC}.\overrightarrow{B'C'}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC} =
\overrightarrow{B'C'} nên \left(
\overrightarrow{AC};\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC};\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}

    Suy ra \overrightarrow{AC}.\overrightarrow{B'C'}= \left| \overrightarrow{AC} ight|.\left|\overrightarrow{B'C'} ight|.\cos\left(\overrightarrow{AC};\overrightarrow{B'C'} ight)

    =a\sqrt{2}.a.\cos45^{0} =a^{2}

  • Câu 10: Nhận biết

    Xác định vectơ chỉ phương

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;0)B(0;1;2). Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng AB?

    Ta có:

    \overrightarrow{AB} = ( - 1;0;2) là một vectơ chỉ phương của đường thẳng AB.

    Vậy đáp án cần tìm là: \overrightarrow{b}
= ( - 1;0;2).

  • Câu 11: Nhận biết

    Tính độ dài AB

    Trong không gian Oxyz có điểm A(1; - 3;1),B(3;0; - 2). Tính độ dài AB?

    Ta có: \overrightarrow{AB} = (3 - 1;0 +
3; - 2 - 1) = (2;3; - 3)

    Suy ra AB = \sqrt{2^{2} + 3^{2} + ( -
3)^{2}} = \sqrt{22}

    Vậy đáp án cần tìm là AB =
\sqrt{22}.

  • Câu 12: Vận dụng cao

    Xét tính đúng sai của các nhận định

    Trong không gian Oxyzcho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 1 + 2t \\
z = 3 + t \\
\end{matrix} \right. và mặt phẳng (P):x - y + 3 = 0.

    a) [NB] Đường thẳng d có một vectơ chỉ phương là: \overrightarrow{u} = ( - 1;2;1). Đúng||Sai

    b) [TH] Góc giữa đường thẳng d và mặt phẳng (P) bằng 30^{0}. Sai||Đúng

    c) [TH] Đường thẳng d cắt mặt phẳng (P) tại điểm M(a;b;c) với a + b - c = - 1. Đúng||Sai

    d) [VD,VDC] Phương trình đường thẳng \Delta chứa trong mặt phẳng (P), vuông góc và cắt đường thẳng d\frac{x}{1} = \frac{y - 3}{1} = \frac{z - 4}{-
1}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyzcho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 1 + 2t \\
z = 3 + t \\
\end{matrix} \right. và mặt phẳng (P):x - y + 3 = 0.

    a) [NB] Đường thẳng d có một vectơ chỉ phương là: \overrightarrow{u} = ( - 1;2;1). Đúng||Sai

    b) [TH] Góc giữa đường thẳng d và mặt phẳng (P) bằng 30^{0}. Sai||Đúng

    c) [TH] Đường thẳng d cắt mặt phẳng (P) tại điểm M(a;b;c) với a + b - c = - 1. Đúng||Sai

    d) [VD,VDC] Phương trình đường thẳng \Delta chứa trong mặt phẳng (P), vuông góc và cắt đường thẳng d\frac{x}{1} = \frac{y - 3}{1} = \frac{z - 4}{-
1}. Đúng||Sai

    a) Đúng. Đường thẳng d có một vec tơ chỉ phương \overrightarrow{u} = ( -
1;2;1).

    b) Sai. Mặt phẳng (P) có một vectơ pháp tuyến \overrightarrow{n} = (1; -
1;0).

    Gọi \alpha là góc giữa đường thẳng d và mặt phẳng (P) khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|}= \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{1}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha =
60^{0}.

    c) Đúng. Tọa độ giao điểm giữa đường thẳng d và mặt phẳng (P) là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
x = 1 - t \\
y = 1 + 2t \\
z = 3 + t \\
x - y + 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 - t \\
y = 1 + 2t \\
z = 3 + t \\
1 - t - 1 - 2t + 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
z = 4 \\
t = 1 \\
\end{matrix} ight..

    Vậy đường thẳng d cắt mặt phẳng (P) tại M(0;3;4).

    d) Đúng. Đường thẳng \Delta chứa trong mặt phẳng (P), vuông góc với đường thẳng d nên có 1 vectơ chỉ phương \overrightarrow{u_{\Delta}} =
\left\lbrack \overrightarrow{u},\overrightarrow{n} ightbrack = (1;1;
- 1).

    Mặt khác đường thẳng \Delta cắt đường thẳng d nên \Delta đi qua giao điểm M(0;3;4).

    Vậy phương trình của đường thẳng \Delta:\frac{x}{1} = \frac{y - 3}{1} = \frac{z -
4}{- 1}.

  • Câu 13: Vận dụng

    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = - 2 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và điểm A(1;0;2).

    a) Điểm B(2;1; - 1) không thuộc đường thẳng d. Đúng||Sai

    b) Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} =
(1;0;1). Sai||Đúng

    c) Đường thẳng \Delta đi qua điểm A(1;0;2), đồng thời vuông góc và cắt đường thẳng d\frac{x + 1}{2} = \frac{y}{1} = \frac{z + 2}{-
3}. Sai||Đúng

    d) M(a;b;c)là một điểm nằm trên đường thẳng d và cách điểm A một khoảng có độ dài bằng \sqrt{26}. Khi b > 0 thì a + b + c = 3. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = - 2 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và điểm A(1;0;2).

    a) Điểm B(2;1; - 1) không thuộc đường thẳng d. Đúng||Sai

    b) Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} =
(1;0;1). Sai||Đúng

    c) Đường thẳng \Delta đi qua điểm A(1;0;2), đồng thời vuông góc và cắt đường thẳng d\frac{x + 1}{2} = \frac{y}{1} = \frac{z + 2}{-
3}. Sai||Đúng

    d) M(a;b;c)là một điểm nằm trên đường thẳng d và cách điểm A một khoảng có độ dài bằng \sqrt{26}. Khi b > 0 thì a + b + c = 3. Sai||Đúng

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

    Phương án a) đúng: Thay tọa độ điểm B(1;2; - 1) vào phương trình đường thẳng d ta được: \left\{ \begin{matrix}
2 = 2 + t \\
1 = t \\
- 1 = - 2 + t
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 0 \\
t = 0
\end{matrix} \right.\  \Rightarrow B(1;2; - 1) \notin d.

    Phương án b) sai: Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} = (1;1;1).

    Phương án c) sai: Gọi H = d \cap \Delta
\Leftrightarrow H \in d nên H(2 +
t;t; - 2 + t).

    Ta có: \overrightarrow{AH} = (1 + t;t; -
4 + t) là một vectơ chỉ phương của đường thẳng \Delta.

    \Delta\bot d \Rightarrow
\overrightarrow{AH}.\overrightarrow{u} = 0 \Leftrightarrow 1(1 + t) + 1.t + 1( - 4 + t) = 0
\Leftrightarrow t = 1

    \Rightarrow \overrightarrow{AH} = (2;1;
- 3)

    Suy ra \Delta:\frac{x - 1}{2} =
\frac{y}{1} = \frac{z - 2}{- 3}

    Phương án d) sai: Ta có M \in d
\Rightarrow M(2 + t;t;2 + t) nên \overrightarrow{AM} = (1 + t;t; - 4 +
t).

    AM = \sqrt{26} \Leftrightarrow \sqrt{(1 +
t)^{2} + t^{2} + ( - 4 + t)^{2}} = \sqrt{26}

    \Leftrightarrow 3t^{2} - 6t - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = - 1 \\
t = 3
\end{matrix} \right.

    b > 0 \Rightarrow t >
0. Vậy M(5;3;1) \Rightarrow a + b +
c = 9.

  • Câu 14: Thông hiểu

    Tìm phương trình mặt phẳng (Q)

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 5z - 3 = 0 và hai điểm A(3;1;1),B(4;2;3). Gọi (Q) là mặt phẳng qua AB và vuông góc với (P). Phương trình nào là phương trình của mặt phẳng (Q)?

    (Q) là mặt phẳng đi qua A, B và vuông góc với (P) nên mặt phẳng (Q) nhận \overrightarrow{AB} =
(1;1;2);\overrightarrow{n_{(P)}} = (1;2; - 5) làm hai vectơ chỉ phương.

    Vectơ pháp tuyến của mặt phẳng (Q)\overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{n_{(P)}} ightbrack = ( -
9;7;1)

    Phương trình mặt phẳng

    (Q): - 9(x - 3) + 7(y - 1) + 1(z - 1) =
0

    \Leftrightarrow 9x - 7y - z - 19 =
0

  • Câu 15: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng chứa trục Oy và tạo với mặt phẳng y + z + 1 = 0 góc 60^{0}. Phương trình mặt phẳng (P) là:

    +) Mặt phẳng (P)chứa trục Oy nên có dạng: Ax + Cz = 0\ \ \ \ (A^{2} + C^{2} \neq
0).

    +) Mặt phẳng (P) tạo với mặt phẳng y + z + 1 = 0 góc 60^{0} nên cos60^{0} = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} \right|}{\left|
\overrightarrow{n_{(P)}} \right|.\left| \overrightarrow{n_{(Q)}}
\right|}.

    \Leftrightarrow \frac{1}{2} =
\frac{|C|}{\sqrt{A^{2} + C^{2}}.\sqrt{2}} \Leftrightarrow \sqrt{A^{2} +
C^{2}} = \sqrt{2}|C|

    \Leftrightarrow A^{2} - C^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
A = C \\
A = - C \\
\end{matrix} \right.

    Phương trình mặt phẳng (P) là: \left\lbrack \begin{matrix}
x - z = 0 \\
x + z = 0 \\
\end{matrix} \right.

  • Câu 16: Vận dụng

    Tính giá trị biểu thức

    Trong hệ tục toạ độ không gian Oxyz, cho A(1;0;0),B(0;b;0),C(0;0;c), biết b,c > 0, phương trình mặt phẳng (P):y - z + 1 = 0. Tính M = b + c biết (ABC)\bot(P),d\left( O;(ABC) ight) =
\frac{1}{3}?

    Ta có (ABC):\frac{x}{1} + \frac{y}{b} +
\frac{z}{c} = 1

    \Rightarrow (ABC):bcx + cy + bz - bc =
0

    Hai mặt phẳng(ABC);(P) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{1}} =
(bc;c;b),\overrightarrow{n_{2}} = (0;1; - 1)

    (P)\bot(ABC) nên c - b = 0 \Leftrightarrow b = c.

    Theo giả thiết

    d\left( O;(ABC) ight) = \frac{1}{3}
\Leftrightarrow \frac{| - bc|}{\sqrt{bc^{2} + c^{2} + b^{2}}} =
\frac{1}{3}

    \Leftrightarrow 3b^{2} = \sqrt{b^{4} +
2b^{2}} \Leftrightarrow 3b^{2} = b\sqrt{b^{2} + 2}

    \Leftrightarrow 3b = \sqrt{b^{2} + 2}
\Leftrightarrow 9b^{2} = b^{2} + 2 \Leftrightarrow b =
\frac{1}{2} (vì b >
0).

    Suy ra c = 2. Vậy M = b + c = 1.

  • Câu 17: Thông hiểu

    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = t \\
y = - 1 - 4t \\
z = 6 + 6t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và đường thẳng d_{2}:\frac{x}{2} = \frac{y - 1}{1} =
\frac{z + 2}{- 5}. Viết phương trình đường thẳng \Delta đi qua A(1; - 1;2), đồng thời vuông góc với cả hai đường thẳng d_{1}d_{2}.

    Đường thẳng d_{1}d_{2} có vectơ chỉ phương lần lượt là \left\{ \begin{matrix}
\overrightarrow{u_{1}} = (1; - 4;6)\  \\
\overrightarrow{u_{2}} = (2;1; - 5) \\
\end{matrix} ight.

    Gọi \overrightarrow{u} là vectơ chỉ phương của đường thẳng ∆.

    Do \left\{ \begin{matrix}
\Delta\bot\overrightarrow{u_{1}} \\
\Delta\bot\overrightarrow{u_{2}} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{u}\bot\overrightarrow{u_{1}} \\
\overrightarrow{u}\bot\overrightarrow{u_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack =
(14;17;9)

    Mà ∆ đi qua A(1; - 1;2) do đó ∆ có phương trình là \frac{x - 1}{14} =
\frac{y + 1}{17} = \frac{z - 2}{9}.

  • Câu 18: Nhận biết

    Hai đường thẳng chéo nhau

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) chéo nhau khi và chỉ khi:

     Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ;\,\overrightarrow b } ight].\,\overrightarrow {AB} \, e \,\,0

    Suy ra (D) và (d) chéo nhau.

  • Câu 19: Thông hiểu

    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 - 5t \\
y = 2t \\
z = - 3
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(2;2; - 3) thuộc đường thẳng (d). Sai||Đúng

    b) Khi t = - 2 đường thẳng (d) đi qua điểm A có tọa độ (12; - 4; - 3). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = ( - 5;2;0) là một vectơ chỉ phương. Đúng||Sai

    d) Điểm N(7; - 2;3) không nằm trên đường thẳng (d). Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 - 5t \\
y = 2t \\
z = - 3
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(2;2; - 3) thuộc đường thẳng (d). Sai||Đúng

    b) Khi t = - 2 đường thẳng (d) đi qua điểm A có tọa độ (12; - 4; - 3). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = ( - 5;2;0) là một vectơ chỉ phương. Đúng||Sai

    d) Điểm N(7; - 2;3) không nằm trên đường thẳng (d). Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Phương án a) sai vì:

    Thay M(2;2; - 3) vào đường thẳng (d), ta có \left\{ \begin{matrix}
2 = 2 - 5t \\
2 = 2t \\
- 3 = - 3
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 1
\end{matrix} \right.\  \Leftrightarrow M(2;2; - 3) \notin
(d)

    Phương án b) đúng vì:

    Khi thay t = - 2 vào phương trình tham số của (d), ta được:

    \left\{ \begin{matrix}
x = 2 - 5.( - 2) \\
y = 2.( - 2) \\
z = - 3
\end{matrix} \right.

    Vậy \Leftrightarrow A(12, - 4, - 3) \in
(d)

    Phương án c) đúng vì từ phương trình tham số ta có \overrightarrow{v} = ( - 5;2;0) là một vectơ chỉ phương của (d)\overrightarrow{v} = ( - 5;2;0) = - ( - 5;2;0) = -
\overrightarrow{u} do đó \overrightarrow{u} = ( - 5;2;0) cũng là một vectơ chỉ phương của đường thẳng (d).

    Phương án d) đúng vì đường thẳng (d) luôn đi qua điểm có cao độ bằng -3, ta có z_{N} = 3 \Rightarrow N \notin
(d)

  • Câu 20: Nhận biết

    Tìm m để hai mặt phẳng vuông góc

    Trong không gian Oxyz, cho mặt phẳng (P):2x - y + 2z - 3 = 0(Q):x + my + z - 1 = 0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2; - 1;2) \\
\overrightarrow{n_{(Q)}} = (1;m;1) \\
\end{matrix} ight.

    Để hai mặt phẳng (P)(Q) vuông góc với nhau thì

    \overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}}
= 0 \Leftrightarrow 2 - m + 2 = 0 \Leftrightarrow m = 4

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo