Tập xác định của hàm số f(x)
Tập xác định của hàm số
là:
Hàm số xác định khi
Vậy tập xác định của hàm số là
Cùng nhau thử sức với bài kiểm tra 15 phút Hàm số lũy thừa
Tập xác định của hàm số f(x)
Tập xác định của hàm số
là:
Hàm số xác định khi
Vậy tập xác định của hàm số là
Rút gọn biểu thức P
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](/data/image/holder.png)
Ta có:
Tính đạo hàm của hàm số lũy thừa
Tính đạo hàm của hàm số ![]()
Ta có:
Biến đổi biểu thức P
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Khẳng định nào dưới đây đúng?
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Rút gọn biểu thức
Cho
. Rút gọn biểu thức 
Ta có:
Tính giá trị của biểu thức M = a – b
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Trong các khẳng định sau khẳng định nào đúng?
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Tập xác định của hàm số lũy thừa
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Giá trị của biểu thức là
Giá trị của biểu thức
là:
Ta có:
Tính đạo hàm của hàm số
Tính đạo hàm của hàm số ![]()
Ta có:
Khẳng định nào sau đây là đúng?
Cho biểu thức
với a và b là các số thực dương. Khẳng định nào sau đây là đúng?
Thực hiện thu gọn biểu thức như sau:
Đạo hàm của hàm số trên khoảng
Tìm đạo hàm của hàm số
trên khoảng ![]()
Với điều kiện ta có:
. Khi đó:
=>
Rút gọn biểu thức T
Thu gọn biểu thức
biết a và b là hai số thực dương.
Ta có:
Tìm mệnh đề đúng trong các mệnh đề dưới đây
Tìm mệnh đề đúng trong các mệnh đề dưới đây:
Giả sử thuộc đồ thị hàm số
Xét thuộc đồ thị hàm số
Rõ ràng
Khi đó và ta thấy rằng hai điểm M và N đối xứng với nhau qua trục Oy
Do đó đồ thị hàm số và
đối xứng nhau qua trục Oy
Khẳng định nào dưới đây đúng
Khẳng định nào dưới đây đúng?
Ta có:
Vậy đáp án đúng là:
Khẳng định nào sau đây sai?
Cho hàm số
. Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Giá trị của biểu thức
Giá trị của biểu thức
bằng:
Ta có:
Biểu thức liên hệ giữa n và m
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Tính tổng
Cho hàm số
. Tính tổng
là:
Với ta có:
Nhận thấy
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: