Xác định số phức z
Cho số phức
. Tìm số phức
?
Ta có:
Cùng nhau thử sức với bài kiểm tra 15 phút Chương 4 Số phức.
Xác định số phức z
Cho số phức
. Tìm số phức
?
Ta có:
Tìm phần ảo của số phức
Cho hai số phức
và
. Tìm phần ảo b của số phức
.
Ta có:
Tính giá trị biểu thức P
Cho số phức
thỏa mãn
và
.
Tính giá trị biểu thức
.
Ta có mà
(1)
Tương tự ta có
Cộng (1) và (2) ta có:
Có bao nhiêu số phức z?
Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Tìm giá trị nhỏ nhất
Cho số phức thỏa mãn điều kiện
.
Tìm giá trị nhỏ nhất của ![]()
1 || Một || một
Cho số phức thỏa mãn điều kiện
.
Tìm giá trị nhỏ nhất của ![]()
1 || Một || một
Đặt
Ta có
.
TH1: (1)
TH2: .
Đặt .
.
(2)
Từ (1) và (2) , suy ra .
Phần thực và phần ảo của số phức liên hợp của số phức
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Số nghiệm của phương trình
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Nghiệm PT bậc 4
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Xác định phần thực và phần ảo của số phức z
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Tính môđun
Cho số phức z thỏa mãn
. Môđun của số phức
là:
Ta có:
Tìm phần thực và phần ảo của số phức
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Tìm x, y thỏa mãn điều kiện
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Tính bán kính R của đường tròn
Cho số phức z thỏa mãn
Biết rằng tập hợp các điểm biểu diễn số phức
là một đường tròn. Tính bán kính của đường tròn đó.
Ta có:
=> Tập hợp các điểm biểu diễn số phức là một đường tròn bán kính
Tìm phần thực và phần ảo của số phức
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Tìm nghiệm?
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Tìm dạng đại số của w
Cho
;
;
. Tìm dạng đại số của
.
Ta có:
Tìm số phức z
Tìm số phức
trong phương trình sau: ![]()
Ta có
Tìm số phức thỏa mãn điều kiện
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tìm tổng các giá trị
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Tính giá trị
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: