Tính giá trị biểu thức A
Cho biểu thức
với
. Biểu thức A có giá tri là?
1 || Một || một
Cho biểu thức
với
. Biểu thức A có giá tri là?
1 || Một || một
Ta có
Mời các bạn học cùng thử sức với đề Đề thi học kì 2 môn Toán lớp 12 nha!
Tính giá trị biểu thức A
Cho biểu thức
với
. Biểu thức A có giá tri là?
1 || Một || một
Cho biểu thức
với
. Biểu thức A có giá tri là?
1 || Một || một
Ta có
Tính giá trị của biểu thức
Biết rằng
. Giá trị của
là:
Ta có:
Đáp án đúng là -2.
Tính P
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Xác định vectơ pháp tuyến
Trong không gian
cho mặt phẳng
. Một vectơ pháp tuyến của mặt phẳng
là:
Một vectơ pháp tuyến của mặt phẳng là:
.
Chọn phương án đúng
Tìm nguyên hàm ![]()
Ta có
Áp dụng vào bài ta chọn .
Tìm phần thực và phần ảo của số phức
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Viết phương trình mặt phẳng
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình mặt phẳng
đi qua
và vuông góc với đường thẳng
là:
Ta có: là vectơ pháp tuyến của mặt phẳng
Phương trình mặt phẳng là:
Tìm tọa độ vectơ
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Mối quan hệ giữa đường thẳng và mp
Cho 2 đường thẳng
và 
Mặt phẳng (P) chứa (d) và song song với
có phương trình tổng quát :
Phương trình (d) cho và vectơ chỉ phương của (d) là:
Phương trình cho vectơ chỉ phương của
là :
Gọi là điểm bất kỳ thuộc mặt phẳng (P) thì :
Câu hỏi này cho ta thấy mối quan hệ giữa đường thẳng và mặt phẳng, từ 2 đường thảng ta có thể viết PT được của 1 mp.
Tính giá trị P
Gọi
là số phức thoả mãn
.
Giá trị của biểu thức
là?
30 || Ba mươi || ba mươi
Gọi
là số phức thoả mãn
.
Giá trị của biểu thức
là?
30 || Ba mươi || ba mươi
Dễ thấy rằng z=0 không thoả mãn .
Do đó ta có
Ta cũng có
và
Vậy .
Tính giá trị biểu thức P
Cho
là hai số phức thỏa mãn
, biết
. Tính giá trị của biểu thức ![]()
Cách 1: + Đặt ta có
+ Sử dụng công thức: ta có
=>
Cách 2.
+ Biến đổi:
Ta có
+ Sử dụng công thức bình phương mô đun:
Trong đó là góc
với M, N lần lượt là các điểm biểu diễn số phức
trên mặt phẳng phức
Vậy
Tính giá trị của biểu thức
Biết
là một nguyên hàm của hàm số
và
. Tìm
.
Ta có:
Công thức tính thể tích khối tròn xoay
Cho hàm số
liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Thể tích khối tròn xoay tạo thành khi quay
quanh trục hoành được tính theo công thức:
Thể tích của khối tròn xoay cần tính là:
Chọn khẳng định đúng
Trong các khẳng định sau đây, khẳng định nào đúng?
Ta có:
Do
Chọn đáp án đúng
Nguyên hàm của hàm số
là
Đặt thì
.
Khi đó
.
Thay ta được
Tính giá trị của biểu thức
Biết hàm số
có nguyên hàm là
với
và
là phân số tối giản. Tính giá trị biểu thức
.
Ta có:
khi đó
Vậy đáp án cần tìm là:
Tập nghiệm PT bậc 2
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Tìm vị trí tương đối của hai đường thẳng
Hai đường thẳng
và ![]()
qua
có vecto chỉ phương
Hai pháp vecto của hai mặt phẳng và
là
Vecto chỉ phương của
Ta có: và tọa độ
thỏa man phương trình của
Xác định nguyên hàm của hàm số
Tìm một nguyên hàm
của hàm số
biết ![]()
Ta có:
Mặt khác
Vậy đáp án cần tìm là:
Tìm nghiệm
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Tìm số phức thỏa mãn điều kiện
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tính M
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Chọn kết luận đúng
Cho tích phân
và
. Tích phân
có giá trị là:
Quy tắc “nối đuôi” cho ta:
.
Đáp án đúng là .
Tìm số phức?
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Tính tổng S
Biết rằng có n mặt phẳng với phương trình tương ứng là ![]()
đi qua
(nhưng không đi qua O) và cắt các trục tọa độ
theo thứ tự tại
sao cho hình chóp
là hình chóp đều. Tính tổng
.
Giả sử , với
. Khi đó trọng tâm của tam giác ABC là
mặt phẳng (Pi) có dạng
.
Theo bài ra (Pi) đi qua M(1; 2; 3) nên ta có:
Mặt khác, vì O.ABC là hình chóp đều nên tam giác ABC đều nên:
kết hợp với (1) ta có các trường hợp sau:
nên
không thỏa yêu cầu.
nên
nên
, không thỏa yêu cầu
nên
trùng với (P2)
nên
trùng với (P3)
nên
trùng với (P1)
Vậy .
Chọn kết luận đúng
Họ tất cả các nguyên hàm của
là
Ta có .
Tìm phần thực và phần ảo của số phức
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Tìm giá trị tích phân I
Tích phân
có giá trị là:
Tích phân ta nhận thấy:
.
Ta đặt: .
Đổi cận: .
.
Đáp án đúng là .
Tìm tỉ số của a và b
Biết rằng
và
, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:
Ta có:
, với
Tìm họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Tìm m ?
Với giá trị nào của thì hai mặt phẳng sau song song:
![]()
Áp dụng điều kiện để 2 mp song song, ta xét:
Với thoả mãn cả 3 điều kiện trên
Chọn đẳng thức đúng
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
,
là trung điểm của
. Cho các đẳng thức sau, đẳng thức nào đúng?
Ta có:
.
Xác định nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
.
Ta có .
Tìm phần thực và phần ảo
Phần thực, phần ảo của số phức z thỏa mãn
lần lượt là?
Ta có:
Phần thực, phần ảo của z lần lượt là 1;1.
Tính giá trị của biểu thức
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Vecto chỉ phương của đường thẳng
Cho đường thẳng
có một vec-tơ chỉ phương là:
Ta có vectơ pháp tuyến của hai mặt phẳng
và
lần lượt là
Ta có vectơ chỉ phương của (D) là tích có hướng của 2 vecto pháp tuyến của 2 mặt phẳng:
Tính thể tích V
Cho hình phẳng
giới hạn bởi đồ thị các hàm số sau
và đườDng thẳng
(tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng
bằng

Đặt . Ta được hệ trục tọa độ OXY như hình vẽ
Ta có:
Thể tích cần tìm là
Viết phương trình đường thẳng
Cho các số phức z thỏa mãn
. Tập hợp các điểm biểu diễn các số phức
trên các mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó.
Đặt
Khi đó phương trình
Với
Phần thực của số phức
Phần thực của số phức
là:
Ta có:
Tính mô đun số phức
Cho hai số phức
. Môđun của số phức
là:
Ta có:
Tìm số phức z
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Xét tính đúng sai của mỗi kết luận
Trong không gian với hệ tọa độ
, cho tam giác
với
,
,
. Các khẳng định sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c) Hình chiếu vuông góc của điểm
trên mặt phẳng tọa độ
là điểm
. Đúng||Sai
d) Nếu
là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
Trong không gian với hệ tọa độ
, cho tam giác
với
,
,
. Các khẳng định sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c) Hình chiếu vuông góc của điểm
trên mặt phẳng tọa độ
là điểm
. Đúng||Sai
d) Nếu
là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
Ta có:
a) sai.
b) sai.
c) đúng
d) Gọi ,
,
Vì là hình bình hành nên
.
Vậy d) sai
Chọn khẳng định đúng
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Xác định số phức z
Cho số phức
. Tìm số phức
?
Ta có:
Thể tích chóp
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Phương trình đường thẳng biểu diễn các số phức
Phương trình của tập hợp các điểm biểu diễn số phức z thỏa mãn
là?
Giả sử:
Theo bài ra ta có:
Chọn mệnh đề đúng
Cho hàm số
liên tục nhận giá trị dương trên
và thỏa mãn
;
. Giá trị
gần nhất với giá trị nào sau đây?
Vì
Mà
Phần thực và phần ảo của số phức liên hợp của số phức
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tính giá trị biểu thức S
Trong không gian với hệ toạ độ
, mặt phẳng
đi qua hai điểm
và vuông góc với mặt phẳng
. Tính tổng
.
Từ giả thiết ta có hệ phương trình:
Số nghiệm của phương trình
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: