Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi HK2 Toán 12 Đề 2

Mô tả thêm:

Mời các bạn học cùng thử sức với đề Đề thi học kì 2 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tìm nghiệm

    Xét phương trình {z^3} = 1 trên tập số phức. Tập nghiệm của phương trình là:

     Ta có:

    {z^3} = 1 \Leftrightarrow \left( {z - 1} ight)\left( {{z^2} + z + 1} ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z^2} + z + 1 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z =  - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\end{array} ight.

    Suy ra: S = \left\{ {1; - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i} ight\}

  • Câu 2: Vận dụng

    Chọn một nguyên hàm đúng

    Một nguyên hàm của f(x) =
\frac{x}{cos^{2}x} là :

    Ta có: I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}

    Đặt: \left\{ \begin{matrix}
u = x \\
dv = \frac{1}{cos^{2}x}dx \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = \tan x \\
\end{matrix} \right.

    Khi đó:

    I = uv - \int_{}^{}{vdu} = x\tan x -
\int_{}^{}{\tan xdx}

    = x\tan x + \ln\left| \cos x \right| +
C

  • Câu 3: Nhận biết

    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số: y = x^{2} - 3x
+ \frac{1}{x}

    \left( \frac{x^{3}}{3} -
\frac{3}{2}x^{2} + \ln|x| \right)' = \frac{3x^{2}}{3} -
\frac{3.2x}{2} + \frac{1}{x} với \forall x > 0

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{3}}{3} - \frac{3}{2}x^{2} + \ln|x| + C

  • Câu 4: Vận dụng cao

    Đường thảng là trục đối xứng của 2mp

    Cho điểm P(-3 , 1, -1)  và đường thẳng (d): \left\{ \begin{array}{l}4x - 3y - 13 = 0\\y - 2z + 5 = 0\end{array} ight.

    Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:

    Chuyển (d) về dạng tham số : \left\{ \begin{array}{l}x =  - \frac{1}{2} + 3t\\y =  - 5 + 4t\\z = 2t\end{array} ight.

    Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: 3x + 4y + 2z + D = 0, cho qua P tính được D=7 .

    Ta có (Q): 3x + 4y + 2z + 7 = 0 .

    Thế x, y, z  theo t từ phương trình của (d) vào phương trình (Q) được t = \frac{1}{2}

    Giao điểm I của (d) và (Q)  là I (1, -3, 1) .

    Vì I là trung điểm của PP’ nên \Rightarrow P'\left( {5, - 7,3} ight).

  • Câu 5: Vận dụng cao

    Viết phương trình mặt phẳng

    Trong không gian với hệ trục toạ độ Oxyz, cho tứ diện ABCD có điểm A(1;1;1),B(2;0;2),C( - 1; - 1;0),D(0;3;4). Trên các cạnh AB,AC,AD lần lượt lấy các điểm B',C',D' thỏa: \frac{AB}{AB'} + \frac{AC}{AC'} +
\frac{AD}{AD'} = 4. Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất?

    Áp dụng bất đẳng thức AM - GM ta có:

    4 = \frac{AB}{AB'} +
\frac{AC}{AC'} + \frac{AD}{AD'} \geq
3\sqrt[3]{\frac{AB.AC.AD}{AB'.AC'.AD'}}

    \Rightarrow
\frac{AB^{'}.AC^{'}.AD^{'}}{AB.AC.AD} \geq
\frac{27}{64}

    \Rightarrow
\frac{V_{AB'C'D'}}{V_{ABCD}} =
\frac{AB'.AC'.AD'}{AB.AC.AD} \geq \frac{27}{64}

    \Rightarrow V_{AB'C'D'} \geq
\frac{27}{64}V_{ABCD}

    Để V_{AB'C'D'} nhỏ nhất khi và chỉ khi \frac{AB'}{AB} =
\frac{AC'}{AC} = \frac{AD'}{AD} = \frac{3}{4}

    \Rightarrow \overrightarrow{AB'} =
\frac{3}{4}\overrightarrow{AB} \Rightarrow B'\left(
\frac{7}{4};\frac{1}{4};\frac{7}{4} \right)

    Lúc đó mặt phẳng (B'C'D') song song với mặt phẳng (BCD)và đi qua B'\left( \frac{7}{4};\frac{1}{4};\frac{7}{4}
\right)

    \Rightarrow (B'C'D'):16x +
40y - 44z + 39 = 0.

  • Câu 6: Thông hiểu

    Phương trình chính tắc

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình chính tắc của cạnh AB.

    (AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:  \overrightarrow {AB}  = \left( {1, - 3,7} ight)

    (AB) đi qua A (1, 2, -3) và nhận vecto \overrightarrow {AB}  = \left( {1, - 3,7} ight) làm 1 VTCP có phương trình chính tắc là:

     \begin{array}{l}AB:x - 1 = \frac{{y - 2}}{{ - 3}} = \frac{{z + 3}}{7}\\ \Leftrightarrow {m{ }}x - 2 = \frac{{y + 1}}{{ - 3}} = \frac{{z - 4}}{7}\\ \Leftrightarrow \,\,x - 1 = \frac{{2 - y}}{3} = \frac{{z + 3}}{7}\end{array}

  • Câu 7: Nhận biết

    Xác định vectơ pháp tuyến của mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):2x + y - 1 = 0. Mặt phẳng (P) có một vectơ pháp tuyến là

    Mặt phẳng (P):2x + y - 1 = 0 có một vectơ pháp tuyến là \overrightarrow{n} =
(2;\ 1;\ 0).

  • Câu 8: Nhận biết

    Chọn mệnh đề đúng

    Xét số phức z thỏa mãn: \left( {1 + 2i} ight)\left| z ight| = \frac{{\sqrt {10} }}{z} - 2 + i. Mệnh đề nào dưới đây đúng?

     Giả sử: z = x + yi{\text{ }},\left( {x,y \in \mathbb{R}} ight)\left| z ight| = c{\text{ }}\left( {c > 0} ight), thay vào đẳng thức ta có:

    \left( {1 + 2i} ight)c = \frac{{\sqrt {10} }}{{x + yi}} = 2 + i

    \Leftrightarrow \left( {1 + 2i} ight)c = \frac{{\sqrt {10} \left( {x - yi} ight)}}{{{c^2}}} - 2 + i

    \Leftrightarrow c - \frac{{x\sqrt {10} }}{{{c^2}}} + 2 + i\left( {2c + \frac{{y\sqrt {10} }}{{{c^2}}} - 1} ight) = 0

    \Rightarrow \left\{ \begin{gathered}  c - \frac{{x\sqrt {10} }}{{{c^2}}} + 2 = 0 \hfill \\  2c + \frac{{y\sqrt {10} }}{{{c^2}}} - 1 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  c + 2 = \frac{{x\sqrt {10} }}{{{c^2}}} \hfill \\   - 2c + 1 = \frac{{y\sqrt {10} }}{{{c^2}}} \hfill \\ \end{gathered}  ight.

    \Rightarrow {\left( {c + 2} ight)^2} + {\left( {2c - 1} ight)^2} = \frac{{10\left( {{x^2} + {y^2}} ight)}}{{{c^4}}} = \frac{{10}}{{{c^2}}}

    \Leftrightarrow \left[ \begin{gathered}  c = 1\left( {t/m} ight) \hfill \\  c =  - 1\left( {{\text{ko }}t/m} ight) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left| z ight| = 1

    Do đó ta có: \frac{1}{2} < \left| z ight| < \frac{3}{2}

  • Câu 9: Vận dụng

    PT mp trong hệ trục tọa độ Oxyz

    Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi \alpha ,\,\,\beta ,\,\,\gamma lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là ( OH = p):

    Theo đề bài, ta có: H\left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight) \Rightarrow \overrightarrow {OH}  = \left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight)

    Gọi M\left( {x,y,z} ight) \in \left( P ight)

    \Rightarrow \overrightarrow {HM}  = \left( {x - p\cos \alpha ,y - p\cos \beta ,z - c\cos \gamma } ight)

    Ta có:

    \overrightarrow {OH}  \bot \overrightarrow {HM}

    \Leftrightarrow \left( {x - p\cos \alpha } ight)p\cos \alpha  + \left( {y - p\cos \beta } ight)p\cos \beta  + \left( {z - p\cos \gamma } ight)p\cos \gamma \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,

    \Leftrightarrow \left( P ight):x\cos \alpha  + y\cos \beta  + z\cos \gamma  - p = 0

  • Câu 10: Thông hiểu

    Tìm phần thực và phần ảo

    Cho số phức z thỏa mãn z = 1 + i + {i^2} + {i^3} + ... + {i^{2022}}. Khi đó phần thực và phần ảo của z lần lượt là?

     Ta có: z = 1 + i\frac{{1 - {i^{2022}}}}{{1 - i}} = i

    Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.

  • Câu 11: Thông hiểu

    Phần thực của số phức

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 12: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho đồ thị hàm số y = f\left( x ight) có đồ thị f'\left( x ight) trên \left[ { - 3;2} ight] như hình vẽ. Tính giá trị của f\left( { - 1} ight) + f\left( 1 ight). Biết phần cong của đồ thị là mộ phần của parabol y = a{x^2} + bx + cf\left( { - 3} ight) = 0.

    Tính giá trị của biểu thức

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho đồ thị hàm số y = f\left( x ight) có đồ thị f'\left( x ight) trên \left[ { - 3;2} ight] như hình vẽ. Tính giá trị của f\left( { - 1} ight) + f\left( 1 ight). Biết phần cong của đồ thị là mộ phần của parabol y = a{x^2} + bx + cf\left( { - 3} ight) = 0.

    Tính giá trị của biểu thức

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu

    Tìm giá trị của x

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = - 4t + x(m/s). Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được 50m. Tìm x?

    Khi dừng hẳn v(t) = - 4t + x = 0
\Rightarrow t = \frac{x}{4}(s)

    Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:S = \int_{0}^{\frac{x}{4}}{v(t)dt} =
\int_{0}^{\frac{x}{4}}{( - 4t + x)dt}

    = \left. \ \left( - 2t^{2} + xt ight)
ight|_{0}^{\frac{x}{4}} = \frac{- x^{2}}{8} + \frac{x^{2}}{4} =
50

    \Leftrightarrow x^{2} = 400
\Leftrightarrow x = 20(m/s)

  • Câu 14: Thông hiểu

    Tính V biết khoảng cách

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 15: Thông hiểu

    Nghiệm PT bậc 4

    Tìm nghiệm của phương trình sau trên tập số phức \mathbb C: {z^4} - {z^3} + \frac{{{z^2}}}{2} + z + 1 = 0 (1)

    Kiểm tra nghiệm z=0 ta dễ dàng nhận xét z=0 không là nghiệm của phương trình đã cho vậy z eq 0.

    Chia hai vế PT (1) cho z2 ta được : ({z^2} + \frac{1}{{{z^2}}}) - (z - \frac{1}{z}) + \frac{1}{2} = 0 (2)

    Đặt t= z - \frac{1}{z} .  Khi đó {t^2} = {z^2} + \frac{1}{{{z^2}}} - 2 \Leftrightarrow {z^2} + \frac{1}{{{z^2}}} = {t^2} + 2

    Phương trình (2) có dạng :t^2-t+\frac{5}{2} = 0 (3)

    \Delta  = 1 - 4.\frac{5}{2} =  - 9 = 9{i^2}

    Vậy PT (3) có 2 nghiệm:    t=\frac{{1 + 3i}}{2};t=\frac{{1 - 3i}}{2} 

    Với  t=\frac{{1 + 3i}}{2},  ta có z - \frac{1}{z} = \frac{{1 + 3i}}{2} \Leftrightarrow 2{z^2} - (1 + 3i)z - 2 = 0(4)

    \Delta  = {(1 + 3i)^2} + 16 = 8 + 6i = 9 + 6i + {i^2} = {(3 + i)^2}

    Vậy PT(4) có 2 nghiệm :

    z=\frac{{(1 + 3i) + (3 + i)}}{4} = 1 + iz= \frac{{(1 + 3i) - (3 + i)}}{4} = \frac{{i - 1}}{2}

    Do đó PT đã cho có 4 nghiệm : z=1+i; z=1-iz=\frac{{i - 1}}{2}; z=\frac{{-i - 1}}{2}

  • Câu 16: Nhận biết

    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là:

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là: z = 0

  • Câu 17: Nhận biết

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + z - 3 = 0 và điểm A(1;2;0). Viết phương trình đường thẳng qua A và vuông góc với (P).

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; -
2;1) nên đường thẳng cần tìm có vectơ chỉ phương là \overrightarrow{n} = (1; - 2;1).

    Vậy phương trình đường thẳng đi qua A và vuông góc với (P) là: \frac{x - 1}{1} = \frac{y - 2}{- 2} =
\frac{z}{1}

  • Câu 18: Vận dụng

    Tập hợp các điểm biểu diễn các số phức z

    Tập hợp các điểm biểu diễn các số phức z:4x - 2y + 1 = 0

    Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Ta có: \left| {z - 2 - i} ight| = \left| {\overline z  + 2i} ight|

    \Leftrightarrow \left| {\left( {x - 2} ight) + \left( {y - 1} ight)i} ight| = \left| {x + \left( {2 - y} ight)i} ight|

    \Leftrightarrow {\left( {x - 2} ight)^2} + {\left( {y - 1} ight)^2} = {x^2} + {\left( {y - 2} ight)^2}

    \Leftrightarrow 4x - 2y - 1 = 0

  • Câu 19: Vận dụng

    Tính giá trị của biểu thức

    Gọi và là hai nghiệm phức của phương trình {z^2} + 2z + 10 = 0. Giá trị của biểu thức A = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} là:

    Ta có:

    {z^2} + 2z + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - 1 + 3i\\{z_2} =  - 1 - 3i\end{array} ight.

    Suy ra  A = {\left| { - 1 + 3i} ight|^2} + {\left| { - 1 - 3i} ight|^2} = 20

  • Câu 20: Vận dụng cao

    Ghi đáp án vào ô trống

    Một cổng chào có dạng hình Parabol chiều cao 18\ \ m, chiều rộng chân đế 12\ \ m. Người ta căng hai sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \frac{AB}{CD} =
\frac{1}{\sqrt[n]{a}} , tính n +
a?

    Đáp án: 5

    Đáp án là:

    Một cổng chào có dạng hình Parabol chiều cao 18\ \ m, chiều rộng chân đế 12\ \ m. Người ta căng hai sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \frac{AB}{CD} =
\frac{1}{\sqrt[n]{a}} , tính n +
a?

    Đáp án: 5

    Chọn hệ trục tọa độ Oxy như hình vẽ.

    Phương trình Parabol có dạng y = a.x^{2}\
\ \ (P).

    Do (P) đi qua điểm có tọa độ ( - 6; - 18) suy ra: - 18 = a.( - 6)^{2} \Leftrightarrow a = -
\frac{1}{2} \Rightarrow (P):y = -
\frac{1}{2}x^{2}.

    Từ hình vẽ ta có: \frac{AB}{CD} =
\frac{b}{d}.

    Diện tích hình phẳng giới bạn bởi Parabol (P):y = - \frac{1}{2}x^{2} và đường thẳng AB:y = - \frac{1}{2}b^{2} là:

    S_{1} = 2\int_{0}^{b}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}b^{2} ight) ightbrack
dx}\left.= 2\left( - \frac{1}{2}.\frac{x^{3}}{3} + \frac{1}{2}b^{2}x
ight) ight|_{0}^{b} = \frac{2}{3}b^{3}.

    Diện tích hình phẳng giới hạn bởi Parabol (P):y = - \frac{1}{2}x^{2} và đường thẳng CD :y =
- \frac{1}{2}d^{2} là :

    S_{2} = 2\int_{0}^{d}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}d^{2} ight) ightbrack
dx}\left. \  = 2\left( - \frac{1}{2}.\frac{x^{3}}{3} + \frac{1}{2}d^{2}x
ight) ight|_{0}^{d} = \frac{2}{3}d^{3}

    Từ giả thiết suy ra S_{2} = 2S_{1}
\Leftrightarrow d^{3} = 2b^{3} \Leftrightarrow \frac{b}{d} =
\frac{1}{\sqrt[3]{2}}.

    Do đó \frac{AB}{CD} = \frac{b}{d} =
\frac{1}{\sqrt[3]{2}} \Rightarrow n = 3;a = 2 nên n + a = 5.

  • Câu 21: Nhận biết

    Phương trình nào đúng?

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 22: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =\sin^{4}x\cos x??

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    \int_{}^{}{\left( \sin^{4}x\cos xight)dx} = \int_{}^{}{t^{4}dt} = \frac{t^{5}}{5} + C =\frac{1}{5}\sin^{5}x + C

  • Câu 23: Thông hiểu

    Tìm câu sai

    Cho hình hộp chữ nhật ABCD.A_{1}B_{1}C_{1}D_{1}AB = a,BC = 2a,AA_{1} = 3a. Chọn kết luận sai dưới đây?

    Hình vẽ minh họa

    Đáp án sai là: \left(
\overrightarrow{AB_{1}};\overrightarrow{C_{1}D} ight) =
45^{0}.

  • Câu 24: Vận dụng

    Chọn đáp án đúng

    Theo phương pháp đổi biến số (x
\rightarrow t), nguyên hàm của I =
\int_{}^{}\frac{2sinx + 2cosx}{\sqrt[3]{1 - sin2x}}dx là:

    Ta có:

    I = \int_{}^{}\frac{2sinx +
2cosx}{\sqrt[3]{1 - sin2x}}dx = \int_{}^{}\frac{2\left( \sin x + \cos x
\right)}{\sqrt[3]{\left( \sin x - \cos x \right)^{2}}}dx.

    Đặt t = \sin x - \cos x \Rightarrow dt =
\left( \sin x + \cos x \right)dx.

    \Rightarrow I =
\int_{}^{}\frac{2}{\sqrt[3]{t^{2}}}dt = 2.\frac{1}{1 + \left( -
\frac{2}{3} \right)}t^{\frac{1}{3}} + C = 6\sqrt[3]{t} + C.

  • Câu 25: Vận dụng

    Phương trình biểu diễn các số phức z

    Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện \left| {zi - \left( {2 + i} ight)} ight| = 2 là:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có: \left| {zi - \left( {2 + i} ight)} ight| = 2

    \Leftrightarrow \left| {xi - y - 2 - i} ight| = 2

    \Leftrightarrow {\left( {x - 1} ight)^2} + {\left( {y + 2} ight)^2} = 4

  • Câu 26: Vận dụng

    Có bao nhiêu tham số m thảo mãn?

    Cho số phức z = {\left( {\frac{{4i}}{{i + 1}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;100} ight] để z là số thực?

    Ta có: z = {\left( {\frac{{4i}}{{i + 1}}} ight)^m} = {(8i)^{\frac{m}{2}}} = {8^{\frac{m}{2}}}.{i^{\frac{m}{2}}}

    z là số thực khi và chỉ khi \frac{m}{2} = 2k \Leftrightarrow m = 4k,\,\,k \in \mathbb N

    Vậy có 25 giá trị m thỏa yêu cầu đề bài.

  • Câu 27: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số f(x) = x^{2} + 3. Khẳng định nào sau đây đúng?

    \left( \frac{x^{3}}{3} + 3x
\right)' = x^{2} + 3;\forall x\mathbb{\in R} nên \int_{}^{}f(x)dx = \frac{x^{3}}{3} + 3x +
C.

    Vậy đáp án cần tìm là \int_{}^{}f(x)dx =
\frac{x^{3}}{3} + 3x + C.

  • Câu 28: Nhận biết

    Nguyên hàm của hàm số

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 29: Vận dụng

    Xác định tham số m thỏa mãn điều kiện

    Cho hai số phức z, w thỏa mãn \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|; w = z + m + i với m \in \mathbb{R} là tham số. Giá trị của m để ta luôn có \left| w ight| \geqslant 2\sqrt 5 là:

     Đặt z = a + ib,\left( {a,b \in \mathbb{R}} ight) có biểu diễn hình học là điểm M\left( {x;y} ight)

    Ta có:

    \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|

    \Leftrightarrow \left| {x - 1 + iy} ight| = \left| {x + 3 + \left( {y - 2} ight)i} ight|

    \Leftrightarrow \sqrt {{{\left( {x - 1} ight)}^2} + {y^2}}  = \sqrt {{{\left( {x + 3} ight)}^2} + {{\left( {y - 2} ight)}^2}}

    \Leftrightarrow  - 2x + 1 = 6x + 9 - 4y + 4 \Leftrightarrow 2x - y + 3 = 0

    Suy ra biểu diễn của số phức là đường thẳng \Delta :2x - y + 3 = 0

    Ta xét: \left| \omega  ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {z + m + i} ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {x + m +  + \left( {y + 1} ight)i} ight| \geqslant 2\sqrt 5

    với I\left( { - m; - 1} ight).

    Mà ta có MI \geqslant d\left( {I,\Delta } ight)

    Nên MI \geqslant 2\sqrt 5  \Leftrightarrow d\left( {I,\Delta } ight) \geqslant 2\sqrt 5  \Leftrightarrow \frac{{\left| { - 2m + 4} ight|}}{{\sqrt 5 }} \geqslant 2\sqrt 5  \Leftrightarrow \left| { - 2m + 4} ight| \geqslant 10

    \Leftrightarrow \left[ \begin{gathered}   - 2m + 4 \geqslant 10 \hfill \\   - 2m + 4 \leqslant  - 10 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  m \leqslant  - 3 \hfill \\  m \geqslant 7 \hfill \\ \end{gathered}  ight.

  • Câu 30: Thông hiểu

    Tính giá trị của biểu thức

    Biết \int_{}^{}{x(x + 1)^{3}dx} = a(x +
1)^{5} + b(x + 1)^{4} + C, với a,b \in \mathbb{Q}. Tính giá trị S = {\left( {\frac{{a + b}}{{a.b}}} \right)^{2020}}

    Ta có: x(x + 1)^{3} = (x + 1)^{4} - (x +
1)^{3}

    Khi đó \int_{}^{}{x(x + 1)^{3}dx} =
\frac{1}{5}(x + 1)^{5} - \frac{1}{4}(x + 1)^{4} + C

    \Rightarrow a = \frac{1}{5};b = -
\frac{1}{4} \Leftrightarrow S = \left\lbrack \frac{\frac{1}{5} -
\frac{1}{4}}{\frac{1}{5}.\left( - \frac{1}{4} \right)}
\right\rbrack^{2020} = 1

  • Câu 31: Nhận biết

    Tính tổng?

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

    Đáp án là:

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

     Ta có: \overline z  = 24 + 7i \Rightarrow z = 24 - 7i

    Suy ra a + bi=10.

  • Câu 32: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A( - 2;3;4),B(8; - 5;6). Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng (Oyz) là điểm nào dưới đây?

    Vì I là trung điểm của đoạn AB nên I(3; -
1;5).

    Khi đó hình chiếu của I lên (Oyz) là M(0; - 1;5).

  • Câu 33: Thông hiểu

    Tính M

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Đáp án là:

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Ta có: (x + yi)^3 = x^3 – 3xy^2 + (3x^2y – y^3)i = 18 + 26i

    Theo định nghĩa hai số phức bằng nhau, ta được: \left\{ \begin{array}{l}{x^3} - 3x{y^2} = 18\\3{x^2}y - {y^3} = 26\end{array} ight.

    Từ hệ trên, rõ ràng x eq 0y eq 0.

    Đặt y= tx , hệ \Rightarrow 18(3x^2y – y^3) = 26(x^3 – 3xy^2 )

    \Rightarrow 18(3t-t^3 ) = 26(1-3t^2)

    \Leftrightarrow 18t^3 – 78t^2 – 54t+26 = 0

    \Leftrightarrow  ( 3t- 1)(3t^2 – 12t – 13) = 0.

    x, y \in \mathbb{Z} \Rightarrow t \in \mathbb{Q} \Rightarrow t = \frac{1}{3} \Rightarrow x = 3 ; y = 1 \mbox{ hay } z = 3 + i.

    \Rightarrow M= x+2020y=3+2020.1=2023

  • Câu 34: Thông hiểu

    Tính giá trị x và y thỏa mãn điều kiện

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 35: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức

    Phần thực và phần ảo của số phức liên hợp của số phức z = 2022 - 2023i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 36: Nhận biết

    Xác định hàm số theo yêu cầu

    Hàm số nào dưới đây là một nguyên hàm của hàm số f(x) = x + \sin(2x + 1)?

    Ta có:

    \left( \frac{1}{2}x^{2} - \cos(2x + 1)
\right)^{'} = x + 2sin(2x + 1).

    \left( \frac{1}{2}x^{2} - 2cos(2x + 1)
\right)^{'} = x + 4sin(2x + 1).

    \left( \frac{1}{2}x^{2} +
\frac{1}{2}\cos(2x + 1) \right)^{'} = x - \sin(2x + 1).

    \left( \frac{1}{2}x^{2} -
\frac{1}{2}\cos(2x + 1) \right)^{'} = x + \sin(2x + 1).

    Vậy F(x) = \frac{1}{2}x^{2} -
\frac{1}{2}\cos(2x + 1)là một nguyên hàm của hàm số f(x) = x + \sin(2x + 1).

  • Câu 37: Nhận biết

    Tính tích phân

    Tính tích phân I =\int_{0}^{\frac{\pi}{2}}{\left( \sin2x + \sin x ight)dx}?

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\left(\sin2x + \sin x ight)dx} = \left. \ \left( - \frac{1}{2}\cos2x - \cos xight) ight|_{0}^{\frac{\pi}{2}} = 2

  • Câu 38: Thông hiểu

    Chọn phương án đúng

    Tìm nguyên hàm I = \int_{}^{}{\frac{1}{4
- x^{2}}dx}

    Ta có

    \int_{}^{}{\frac{1}{a^{2} - x^{2}}dx =
\int_{}^{}{\frac{1}{(a + x)(a - x)}dx}}

    = \frac{1}{2a}\int_{}^{}{\left(
\frac{1}{a - x} + \frac{1}{a + x} ight)dx}

    = \frac{1}{2a}.\ln\left| \frac{x + a}{x -
a} ight| + C

    Áp dụng vào bài ta chọn I =
\frac{1}{4}\ln\left| \frac{x + 2}{x - 2} ight| + C.

  • Câu 39: Thông hiểu

    Xác định hàm số f(x)

    Cho f'(x) = 2x - cos2x. Tìm f(x) biết f(0) = 0.

    Ta có

    f(x) = \int_{}^{}{f'(x)dx} =
\int_{}^{}{(2x - cos2x)dx} = x^{2} - \frac{1}{2}sin2x + C.

    f(0) = 0 \Rightarrow C = 0. Vậy f(x) = x^{2} -
\frac{1}{2}sin2x.

  • Câu 40: Nhận biết

    Tìm phần ảo của số phức

    Cho hai số phức {z_1} = 1 - 3i{z_2} =  - 2 - 5i. Tìm phần ảo b của số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {1 - 3i} ight) - \left( { - 2 - 5i} ight) \hfill \\ = 1 - 3i + 2 + 5i \hfill \\= (1 + 2) + ( - 3 + 5)i \hfill \\  \,\,\,\, = 3 + 2i \hfill \\ \end{matrix}

  • Câu 41: Thông hiểu

    Xác định số nghiệm nguyên âm của phương trình

    Số nghiệm nguyên âm của phương trình: x^{3} - ax + 2 = 0 với a = \int_{1}^{3e}{\frac{1}{x}dx} là:

    Ta có:

    a = \int_{1}^{3e}{\frac{1}{x}dx} =
\left. \ \left( \ln|x| ight) ight|_{1}^{3e} = 3 \Rightarrow x^{3} -
3x + 2 = 0

    \Leftrightarrow (x - 1)^{2}(x + 2) = 0
\Leftrightarrow x = 1 \vee x = - 2

    Số nghiệm nguyên âm của phương trình: x^{3} - ax + 2 = 0 với a = \int_{1}^{3e}{\frac{1}{x}dx} là: 2

  • Câu 42: Nhận biết

    Tìm nghiệm?

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

  • Câu 43: Thông hiểu

    Phần thực và phần ảo của số phức

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 44: Thông hiểu

    Tính giá trị biểu thức

    Cho hàm số f(x) = \left\{ \begin{matrix}
2x\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
3x^{2} - 1\ \ khi\ x < 1 \\
\end{matrix} ight. có một nguyên hàm là F(x) thỏa mãn F(0) = 1F(x) liên túc trên \mathbb{R}. Giá trị biểu thức K = F( - 1) - F(2) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{2} + C_{1}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + C_{2}\ \ khi\ x < 1 \\
\end{matrix} ight.

    F(0) = 1 \Rightarrow C_{2} =
1

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 1 tức là

    \lim_{x ightarrow 1^{+}}F(x) = \lim_{x
ightarrow 1^{-}}F(x) = F(1)

    \Leftrightarrow 1 + C_{1} = C_{2}
\Leftrightarrow C_{1} = 0

    Do đó F(x) = \left\{ \begin{matrix}
x^{2}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + 1\ \ khi\ x < 1 \\
\end{matrix} ight.

    K = F( - 1) - F(2) = ( - 1 + 1 + 1) +
\left( 2^{2} ight) = 5

  • Câu 45: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 46: Thông hiểu

    Tìm tọa độ trọng tâm của tam giác

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D'A(0;0;0),B(3;0;0),C(0;3;0),D'(0;3; -3). Tọa độ trọng tâm tam giác A'B'C

    Hình vẽ minh họa

    Gọi I là trung điểm của đoạn BD’ suy ra I\left( \frac{3}{2};\frac{3}{2}; - \frac{3}{2}ight)

    Gọi G(a;b;c) là trọng tâm tam giác A'B'C

    Ta có: \overrightarrow{DI} =3\overrightarrow{IG} với \left\{\begin{matrix}\overrightarrow{DI} = \left( \frac{3}{2}; - \frac{3}{2}; - \frac{3}{2}ight) \\\overrightarrow{IG} = \left( a - \frac{3}{2};b - \frac{3}{2};c +\frac{3}{2} ight) \\\end{matrix} ight.

    Do đó:

    \left\{ \begin{matrix}\frac{3}{2} = 3\left( a - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( b - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( c + \frac{3}{2} ight) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 1 \\c = - 2 \\\end{matrix} ight.\  \Rightarrow G(2;1; - 2)

    Vậy tọa độ trọng tâm tam giác cần tìm là (2;1; - 2)

  • Câu 47: Nhận biết

    Tìm mệnh đề sai

    Mệnh đề nào sau đây sai?

    Đáp án sai là: F(x) là một nguyên hàm của f(x) trên (a;b) \Leftrightarrow F^{/}(x) = f(x),\forall x
\in (a;b)

  • Câu 48: Nhận biết

    Tìm số phức thỏa mãn điều kiện

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 49: Nhận biết

    Tìm phần thực và phần ảo

    Phần thực, phần ảo của số phức z thỏa mãn \overline z  = \frac{5}{{1 - 2i}} - 3i lần lượt là?

    Ta có:

    \overline z  = \frac{5}{{1 - 2i}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{{\left( {1 - 2i} ight)\left( {1 + 2i} ight)}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{5} - 3i = 1 - i

    \Rightarrow z = 1 + i

    Phần thực, phần ảo của z lần lượt là 1;1.

  • Câu 50: Thông hiểu

    Tìm phần ảo và phần thực

    Tìm phần thực, phần ảo của số phức z thỏa mãn \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}}

     Ta có: \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}} \Leftrightarrow \frac{z}{2} - i = \frac{{{{(1 + i)}^{3980}}}}{2}

    \Leftrightarrow \frac{z}{2} - i = {2^{1989}}.{i^{1990}} \Leftrightarrow z =  - {2^{1990}} + 2i

     Vậy số phức có phần thực là -2^{1990} và phần ảo là 2.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo