Tìm nghiệm
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Mời các bạn học cùng thử sức với đề Đề thi học kì 2 môn Toán lớp 12 nha!
Tìm nghiệm
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Chọn một nguyên hàm đúng
Một nguyên hàm của
là :
Ta có:
Đặt:
Khi đó:
Tìm họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số:
là
Vì với
Vậy đáp án cần tìm là:
Đường thảng là trục đối xứng của 2mp
Cho điểm P(-3 , 1, -1) và đường thẳng (d): ![]()
Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:
Chuyển (d) về dạng tham số :
Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: , cho qua P tính được D=7 .
Ta có (Q): .
Thế x, y, z theo t từ phương trình của (d) vào phương trình (Q) được
Giao điểm I của (d) và (Q) là I (1, -3, 1) .
Vì I là trung điểm của PP’ nên .
Viết phương trình mặt phẳng
Trong không gian với hệ trục toạ độ
, cho tứ diện
có điểm
,
. Trên các cạnh
lần lượt lấy các điểm
thỏa:
. Viết phương trình mặt phẳng
biết tứ diện
có thể tích nhỏ nhất?
Áp dụng bất đẳng thức ta có:
Để nhỏ nhất khi và chỉ khi
Lúc đó mặt phẳng song song với mặt phẳng
và đi qua
.
Phương trình chính tắc
Cho tam giác ABC có
.
Viết phương trình chính tắc của cạnh AB.
(AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:
(AB) đi qua A (1, 2, -3) và nhận vecto làm 1 VTCP có phương trình chính tắc là:
Xác định vectơ pháp tuyến của mặt phẳng
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
. Mặt phẳng
có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
.
Chọn mệnh đề đúng
Xét số phức z thỏa mãn:
. Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
PT mp trong hệ trục tọa độ Oxyz
Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi
lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là (
):
Theo đề bài, ta có:
Gọi
Ta có:
Tìm phần thực và phần ảo
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Phần thực của số phức
Phần thực của số phức
là:
Ta có:
Ghi đáp án vào ô trống
Cho đồ thị hàm số
có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Cho đồ thị hàm số
có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Tìm giá trị của x
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
. Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được
. Tìm
?
Khi dừng hẳn
Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:
Tính V biết khoảng cách
Cho khối chóp
có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.

Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .
Nghiệm PT bậc 4
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Xác định phương trình mặt phẳng
Trong không gian
, phương trình của mặt phẳng
là:
Trong không gian , phương trình của mặt phẳng
là:
Chọn đáp án đúng
Trong không gian với hệ tọa độ
, cho mặt phẳng
và điểm
. Viết phương trình đường thẳng qua
và vuông góc với
.
Mặt phẳng có vectơ pháp tuyến là
nên đường thẳng cần tìm có vectơ chỉ phương là
.
Vậy phương trình đường thẳng đi qua và vuông góc với
là:
Tập hợp các điểm biểu diễn các số phức z
Tập hợp các điểm biểu diễn các số phức ![]()
Giả sử:
Ta có:
Tính giá trị của biểu thức
Gọi và là hai nghiệm phức của phương trình
. Giá trị của biểu thức
là:
Ta có:
Suy ra
Ghi đáp án vào ô trống
Một cổng chào có dạng hình Parabol chiều cao
, chiều rộng chân đế
. Người ta căng hai sợi dây trang trí
,
nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số
, tính
?

Đáp án: 5
Một cổng chào có dạng hình Parabol chiều cao
, chiều rộng chân đế
. Người ta căng hai sợi dây trang trí
,
nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số
, tính
?

Đáp án: 5
Chọn hệ trục tọa độ như hình vẽ.
Phương trình Parabol có dạng .
Do đi qua điểm có tọa độ
suy ra:
.
Từ hình vẽ ta có: .
Diện tích hình phẳng giới bạn bởi Parabol và đường thẳng
là:
.
Diện tích hình phẳng giới hạn bởi Parabol và đường thẳng
:
là :
Từ giả thiết suy ra .
Do đó nên
.
Phương trình nào đúng?
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
??
Đặt
Tìm câu sai
Cho hình hộp chữ nhật
có
. Chọn kết luận sai dưới đây?
Hình vẽ minh họa
Đáp án sai là: .
Chọn đáp án đúng
Theo phương pháp đổi biến số
, nguyên hàm của
là:
Ta có:
.
Đặt .
.
Phương trình biểu diễn các số phức z
Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện
là:
Giả sử:
Theo bài ra ta có:
Có bao nhiêu tham số m thảo mãn?
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thực?
Ta có:
z là số thực khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Chọn khẳng định đúng
Cho hàm số
. Khẳng định nào sau đây đúng?
Vì nên
.
Vậy đáp án cần tìm là .
Nguyên hàm của hàm số
Nguyên hàm của hàm số
là:
Ta có:
Xác định tham số m thỏa mãn điều kiện
Cho hai số phức z, w thỏa mãn
;
với
là tham số. Giá trị của m để ta luôn có
là:
Đặt có biểu diễn hình học là điểm
Ta có:
Suy ra biểu diễn của số phức là đường thẳng
Ta xét:
với .
Mà ta có
Nên
Tính giá trị của biểu thức
Biết
, với
. Tính giá trị 
Ta có:
Khi đó
Tính tổng?
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Chọn đáp án thích hợp
Trong không gian với hệ trục tọa độ
cho hai điểm
. Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng
là điểm nào dưới đây?
Vì I là trung điểm của đoạn AB nên .
Khi đó hình chiếu của I lên là
.
Tính M
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Tính giá trị x và y thỏa mãn điều kiện
Cho
. Giá trị của x và y bằng:
Ta có:
Phần thực và phần ảo của số phức liên hợp của số phức
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Xác định hàm số theo yêu cầu
Hàm số nào dưới đây là một nguyên hàm của hàm số
?
Ta có:
.
.
.
.
Vậy là một nguyên hàm của hàm số
.
Tính tích phân
Tính tích phân
?
Ta có:
Chọn phương án đúng
Tìm nguyên hàm ![]()
Ta có
Áp dụng vào bài ta chọn .
Xác định hàm số f(x)
Cho
. Tìm
biết
.
Ta có
.
Mà . Vậy
.
Tìm phần ảo của số phức
Cho hai số phức
và
. Tìm phần ảo b của số phức
.
Ta có:
Xác định số nghiệm nguyên âm của phương trình
Số nghiệm nguyên âm của phương trình:
với
là:
Ta có:
Số nghiệm nguyên âm của phương trình: với
là: 2
Tìm nghiệm?
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Phần thực và phần ảo của số phức
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Tính giá trị biểu thức
Cho hàm số
có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Viết phương trình mặt phẳng
Trong không gian
, phương trình của mặt phẳng
đi qua điểm
, đồng thời vuông góc với hai mặt phẳng
là:
Ta có lần lượt là vectơ pháp tuyến của các mặt phẳng
.
Do mặt phẳng vuông góc với hai mặt phẳng
nên
là một vectơ pháp tuyến của
.
Từ đó suy ra mặt phẳng có phương trình
.
Tìm tọa độ trọng tâm của tam giác
Trong không gian với hệ trục tọa độ
, cho hình hộp
có
. Tọa độ trọng tâm tam giác
là
Hình vẽ minh họa
Gọi I là trung điểm của đoạn BD’ suy ra
Gọi là trọng tâm tam giác
Ta có: với
Do đó:
Vậy tọa độ trọng tâm tam giác cần tìm là
Tìm mệnh đề sai
Mệnh đề nào sau đây sai?
Đáp án sai là: là một nguyên hàm của
trên
Tìm số phức thỏa mãn điều kiện
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tìm phần thực và phần ảo
Phần thực, phần ảo của số phức z thỏa mãn
lần lượt là?
Ta có:
Phần thực, phần ảo của z lần lượt là 1;1.
Tìm phần ảo và phần thực
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: