Tính giá trị
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 4: Số phức Toán 12 các em nhé!
Tính giá trị
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Biểu diễn số phức z
Cho số phức z thỏa mãn
. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có:
Nghiệm của PT bậc 3
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Xác định số phức z
Cho số phức
. Tìm số phức
?
Ta có:
Tìm số phức z
Số phức
bằng:
Ta có:
Mô đun số phức
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Tìm phần ảo của số phức
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Tập hợp các điểm biểu diễn số phức
Giả sử
là điểm trên mặt phẳng phức biểu diễn số phức z. Tập hợp các điểm
thỏa mãn điều kiện
là một đường tròn.
Giả sử:
Theo bài ra ta có:
Nghiệm PT bậc 4
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Số phức liên hợp của số phức 3 - 2i
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Tìm phần ảo
Biết
và
là ba nghiệm của phương trình
,
trong đó
là nghiệm có phần ảo dương. Phần ảo của số phức
bằng:
Xét phương trình là phương trình bậc ba với hệ số thực nên luôn có một nghiệm thực là
.
Do đó phương trình tương đương với:
.
Nên là hai nghiệm phức của phương trình bậc hai với hệ số thực (1).
Suy ra .
Khi đó : .
Vậy phần ảo của là
.
Phần thực của số phức z là?
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Số phức liên hợp của số phức
Số phức liên hợp của số phức
là
=
= a - bi
Tìm phần thực?
Số phức
có phần thực là?
2
Số phức
có phần thực là?
2
Ta có:
Vậy phần thực của số phức
Tìm số phức?
Số phức
là số phức nào sau đây?
Phần thực và phần ảo của số phức
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Tìm số phức thỏa mãn điều kiện
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Số phức có phần thực bằng
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tìm số phức liên hợp của số phức z
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Tính giá trị nhỏ nhất của modun số phức
Cho hai số phức
thỏa mãn
. Tìm giá trị nhỏ nhất của
.
Gọi
Khi đó
Tập hợp điểm biểu diễn là đường tròn tâm
Cũng theo giả thiết, ta có:
Tập hợp điểm biểu diễn là đường thẳng
Tính M
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Xác định phần ảo của số phức
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Điểm biểu diễn của số phức
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Tập hợp các điểm biểu diễn các số phức z
Tập hợp các điểm biểu diễn các số phức ![]()
Giả sử:
Ta có:
Chọn khẳng định đúng
Cho số phức
thoả điều kiện
.
Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Nhận xét: câu này đáp án A cũng đúng vì
Tính mô đun số phức
Cho số phức
. Tính |z|
Ta có
Mô đun số phức
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Tìm GTLN của môđun số phức z
Cho số phức
. Tìm
?
Ta có:
.
Tìm tổng các giá trị
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Tính
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Tìm số phức z
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Tìm nghiệm
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Biểu diễn số phức z
Điểm biểu diễn của số phức
là:
Ta có:
Có bao nhiêu giá trị
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Ta có:
z là số thuần ảo khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Tính giá trị P
Gọi
là số phức thoả mãn
.
Giá trị của biểu thức
là?
30 || Ba mươi || ba mươi
Gọi
là số phức thoả mãn
.
Giá trị của biểu thức
là?
30 || Ba mươi || ba mươi
Dễ thấy rằng z=0 không thoả mãn .
Do đó ta có
Ta cũng có
và
Vậy .
Tính tổng
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Tính tổng?
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Khẳng định đúng?
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Tính giá trị biểu thức P
Gọi
là các nghiệm của phương trình
. Tính giá trị biểu thức ![]()
Ta có phương trình
Suy ra:
Vì (1)
Mà ;
.
Vậy từ .
Tính giá trị biểu thức
Cho số phức
,
thỏa mãn
và
.
Tính
.
Ta áp dụng công thức , có:
Ta xét:
Với nên không thỏa yêu cầu bài toán.
Với thỏa yêu cầu bài toán.
Vậy
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: