Số phức có phần thực bằng
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 4: Số phức Toán 12 các em nhé!
Số phức có phần thực bằng
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tìm số phức z
Tìm số phức
trong phương trình sau: ![]()
Ta có
Tính tổng
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Tìm số phức thỏa mãn điều kiện
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tính môđun?
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Ta có:
Phần thực của số phức
Phần thực của số phức
là:
Ta có:
Tìm số phức?
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Tính số phức z
Tính số phức sau: z = (1+i)15
Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i
z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i
Khẳng định đúng?
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Phần thực và phần ảo của số phức
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Tập hợp các điểm biểu diễn số phức
Giả sử
là điểm trên mặt phẳng phức biểu diễn số phức z. Tập hợp các điểm
thỏa mãn điều kiện
là một đường tròn.
Giả sử:
Theo bài ra ta có:
Tính
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Căn bậc hai của số phức
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Tính tổng T
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Tìm giá trị nhỏ nhất
Cho số phức z thỏa mãn
. Tìm
.
Gọi , với
.
Theo giả thiết ta có suy ra
và
,
.
Ta có
Xét hàm số trên
.
Ta có .
Ta có .
Vậy .
Do đó khi
và
.
Tính giá trị biểu thức
Cho số phức
,
thỏa mãn
và
.
Tính
.
Ta áp dụng công thức , có:
Ta xét:
Với nên không thỏa yêu cầu bài toán.
Với thỏa yêu cầu bài toán.
Vậy
Tính môđun
Cho số phức z thỏa mãn
. Môđun của số phức
là:
Ta có:
Xác định tọa độ điểm M thỏa mãn điều kiện
Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức ![]()
thỏa mãn
và N là điểm biểu diễn số phức
. Tìm điểm thuộc (C) sao
cho có độ dài lớn nhất.
Ta có: nằm trên đường tròn (C):
. Tâm I(1; 0)
Do nên có độ dài lớn nhất khi MN là đường kính, hay I(1; 0) là trung điểm của MN. Vậy M(1; 1)
Nhận xét: đây là bài toán tọa độ lớp , khi cho một đường tròn (C) và một điểm N. Tìm điểm M trên (C) sao cho đạt min, max.
Tìm GTLN của môđun số phức z
Cho số phức
. Tìm
?
Ta có:
.
Mô đun số phức w bằng bao nhiêu?
Cho số phức
. Số phức
bằng:
Ta có:
Tìm phần thực và phần ảo của số phức
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Tìm điều kiện
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Tìm số phức z thỏa mãn điều kiện
Cho z1 = 1 + i; z2 = -1 - i. Tìm
sao cho các điểm biểu diễn của
tạo thành tam giác đều.
Giả sử
Để các điểm biểu diễn của tạo thành một tam giác đều thì
Vậy có hai số phức thoả mãn là:
Tính giá trị
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Số phức liên hợp của số phức 3 - 2i
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Chọn khẳng định đúng
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Số phức nào dưới đây là số thuần ảo?
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Tìm phần ảo của số phức
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Phương trình đường thẳng biểu diễn các số phức
Phương trình của tập hợp các điểm biểu diễn số phức z thỏa mãn
là?
Giả sử:
Theo bài ra ta có:
Điểm biểu diễn của số phức
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Số phức 5 + 6i có phần thực bằng
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Tìm số phức z
Số phức
bằng:
Ta có:
Nghiệm PT bậc 4
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Tính M
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Biểu diễn số phức z
Điểm biểu diễn của số phức
là:
Ta có:
Chọn mệnh đề đúng
Xét số phức z thỏa mãn:
. Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
Đếm số nghiệm
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là : ![]()
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Có bao nhiêu số phức z?
Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Tìm nghiệm
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Viết phương trình đường thẳng
Cho các số phức z thỏa mãn
. Tập hợp các điểm biểu diễn các số phức
trên các mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó.
Đặt
Khi đó phương trình
Với
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: