Số phức 5 + 6i có phần thực bằng
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 4: Số phức Toán 12 các em nhé!
Số phức 5 + 6i có phần thực bằng
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Tính
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Xác định phần ảo của số phức
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Điểm biểu diễn của số phức
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Tìm giá trị nhỏ nhất của P
Cho hai số phức z, w thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức ![]()
Cách 1 :
Giả sử
(1)
Suy ra x + y = 0
Từ (1) ta có I(3; 2), bán kính r = 1. Gọi H là hình chiếu của I trên .
Đường thẳng HI có PTTS:
Vậy
Cách 2 :
điều này cho thấy M(z) đang nằm trên hình tròn tâm I(3; 2) bán kính bằng 1.
điều này cho thấy N(w) đang thuộc nửa mặt phẳng tạo bởi đường thẳng
là trung trực của đoạn AB với
(Minh hoạ như hình vẽ)

Tính tổng số tất cả các nghiệm
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Khẳng định đúng?
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Tìm m thỏa mãn phép chia số phức
Cho số phức
thoả mãn
là số thực và
với
. Gọi
là một giá trị của
để có đúng một số phức thoả mãn bài toán. Khi đó:
Giả sử .
Đặt:
.
là số thực nên:
.
Mặt khác:
Thay (1) vào (2) được:
Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất .
(Vì là mô-đun).
Nghiệm PT bậc 4
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Phương trình biểu diễn các số phức z
Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện
là:
Giả sử:
Theo bài ra ta có:
Tìm phần thực và phần ảo của số phức
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Giá trị lớn nhất
Cho số phức z thoả mãn
. Giá trị lớn nhất của biểu thức
bằng?
Đặt .
Từ giả thiết
(1).
Ta có
.
Dễ thấy P lớn nhất khi .
Khi đó
Do nên từ (1) ta có
.
Suy ra
Dấu = xảy ra khi
.
Số phức liên hợp của số phức 3 - 2i
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Biểu diễn số phức z
Cho số phức z thỏa mãn
. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có:
Phần thực và phần ảo của số phức liên hợp của số phức
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Phần thực và phần ảo của số phức
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Tập hợp các điểm biểu diễn số phức
Giả sử
là điểm trên mặt phẳng phức biểu diễn số phức z. Tập hợp các điểm
thỏa mãn điều kiện
là một đường tròn.
Giả sử:
Theo bài ra ta có:
Số phức có phần thực bằng
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tìm số phức?
Cho số phức
. Số phức
là số phức nào sau đây?
Ta có:
Suy ra
.
Mô đun số phức w bằng bao nhiêu?
Cho số phức
. Số phức
bằng:
Ta có:
Tìm nghiệm
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Xác định phần thực và phần ảo của số phức z
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Viết phương trình đường thẳng
Cho số phức z thỏa mãn
. Biết tập các điểm biểu thị cho z là một đường thẳng. Phương trình đường thẳng đó là:
Giả sử:
Theo bài ra ta có:
Tính giá trị biểu thức P
Cho số phức
thỏa mãn
và
.
Tính giá trị biểu thức
.
Ta có mà
(1)
Tương tự ta có
Cộng (1) và (2) ta có:
Tính bán kính R của đường tròn
Cho số phức z thỏa mãn
Biết rằng tập hợp các điểm biểu diễn số phức
là một đường tròn. Tính bán kính của đường tròn đó.
Ta có:
=> Tập hợp các điểm biểu diễn số phức là một đường tròn bán kính
Tính giá trị
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Tìm số phức z
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Phần thực của số phức
Phần thực của số phức
là:
Ta có:
Tìm phần thực và phần ảo của số phức
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Tính giá trị
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Số nghiệm của phương trình
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Tính mô đun số phức
Cho hai số phức
. Môđun của số phức
là:
Ta có:
Căn bậc hai của số phức
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Chọn khẳng định sai?
Cho số phức
. Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Tính tổng T
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Chọn khẳng định trong các khẳng định dưới đây
Cho số phức z thỏa mãn
. Chọn phát biểu đúng:
Giả sử:
Theo bài ra ta có:
Tính giá trị biểu thức
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Tìm giá trị nhỏ nhất
Cho số phức z thỏa mãn
. Tìm
.
Gọi , với
.
Theo giả thiết ta có suy ra
và
,
.
Ta có
Xét hàm số trên
.
Ta có .
Ta có .
Vậy .
Do đó khi
và
.
Mô đun của số phức
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Tìm tập nghiệm
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: