Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa học kì 2 Toán 12 - Đề 5

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn phương án đúng

    Trong không gian với hệ tọa độ Oxyz, cho véc tơ \overrightarrow{u} = (1;1; - 2),\ \
\overrightarrow{v} = (1;0;m). Tìm tất cả giá trị của m để góc giữa \overrightarrow{u}, \overrightarrow{v} bằng 45^{{^\circ}}.

    Ta có:

    \left(
\overrightarrow{u},\overrightarrow{v} ight) = 45{^\circ}
\Leftrightarrow \cos\left( \overrightarrow{u},\overrightarrow{v} ight)
= \frac{\sqrt{2}}{2}

    \Leftrightarrow
\frac{\overrightarrow{u}.\overrightarrow{v}}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{v} ight|} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{1 -
2m}{\sqrt{6}.\sqrt{1 + m^{2}}} = \frac{1}{\sqrt{2}}

    \Leftrightarrow \sqrt{3\left( m^{2} + 1
ight)} = 1 - 2m

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2m \geq 0 \\
3m^{2} + 3 = 1 - 4m + 4m^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{1}{2} \\
m^{2} - 4m - 2 = 0 \\
\end{matrix} ight. \Leftrightarrow m = 2 - \sqrt{6}.

  • Câu 2: Vận dụng

    Ghi đáp án vào ô trống

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Đáp án là:

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Diện tích 1 cánh của hình trang trí là:

    S_{1} = \int_{0}^{1}\left( x^{2} -
ax^{3} - bx ight)dx = \left. \ \left( \frac{x^{3}}{3} -
\frac{ax^{4}}{4} - \frac{bx^{2}}{2} ight) ight|_{0}^{1} =
\frac{1}{2} - \frac{a}{4} - \frac{b}{2}

    \Rightarrow Diện tích hình trang trí là: S = 4S_{1} = \frac{4}{3} - a -
2b

    Vì diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn nên

    \frac{4}{3} - a - 2b = \frac{4}{3}
\Leftrightarrow a + 2b = 0

    Khi đó ta có: \left\{ \begin{matrix}
a + b = 1 \\
a + 2b = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 1 \\
\end{matrix} ight.\  ight.

    Vậy ab = - 2.

  • Câu 3: Nhận biết

    Diện tích xung quanh

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 4: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;1;2),B(2; - 2;0),C( - 2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3; - 2) \\
\overrightarrow{AC} = ( - 2; - 1; - 1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;6; -
8)

    Phương trình mặt phẳng (ABC) là: x + 6y -
8z + 10 = 0.

    Phương trình mặt phẳng qua B và vuông góc với AC là: 2x + y + z - 2 = 0.

    Phương trình mặt phẳng qua C và vuông góc với AB là: 2x - 3y - 2z + 6 = 0.

    Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên H\left( \frac{-
22}{101};\frac{70}{101};\frac{176}{101} ight).

    Mặt phẳng (P) đi qua A, H nên \overrightarrow{n_{P}}\bot\overrightarrow{AH} =
\left( \frac{- 22}{101}; - \frac{31}{101}; - \frac{26}{101} ight) = -
\frac{1}{101}(22;31;26)

    Mặt phẳng (P) ⊥ (ABC) nên \overrightarrow{n_{P}}\bot\overrightarrow{n_{(ABC)}}
= (1;6; - 8).

    Vậy \left\lbrack
\overrightarrow{n_{(ABC)}};\overrightarrow{u_{AH}} ightbrack = (404;
- 202; - 101) là một vectơ pháp tuyến của (P).

    Chọn \overrightarrow{n_{P}} = (4; - 2; -
1) nên phương trình mặt phẳng (P) là 4x - 2y - z + 4 = 0.

  • Câu 5: Thông hiểu

    Tìm nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x) =
\frac{e^{x} + x.e^{x}.\ln x}{x} ?

    Ta có f(x) = \frac{e^{x} +
x.e^{x}.\ln x}{x} = \frac{\left( 1 + x\ln x ight)e^{x}}{x}

    = \left( \frac{1}{x} + \ln x ight)e^{x}
= \left\lbrack \left( \ln x ight)' + \ln x ightbrack
e^{x}

    \Rightarrow F(x) = e^{x}.\ln x + C là nguyên hàm của hàm số đã cho.

  • Câu 6: Thông hiểu

    Tìm giá trị biểu thức

    Cho \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = ae^{2} + be + c với a;b;c\mathbb{\in Z}. Tính S = a + b + c?

    Ta có:

    \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = 2\int_{0}^{3}{e^{\sqrt{x + 1}}d\left( \sqrt{x +
1} ight)} = \left. \ \left( 2e^{\sqrt{x + 1}} ight) ight|_{0}^{3}
= 2e^{2} - 2e

    Vậy a = 2;b = - 2;c = 0 \Rightarrow S =
0

  • Câu 7: Thông hiểu

    Tìm giá trị tham số a thỏa mãn điều kiện

    Cho \int_{0}^{1}{\frac{x^{2}}{x^{3} +
1}dx} = \frac{1}{3}\ln a,a là các số hữu tỉ. Giá trị của a là:

    Ta có:

    \int_{0}^{1}{\frac{x^{2}}{x^{3} + 1}dx} =
... = \int_{1}^{2}{\frac{1}{3t}dt} = \frac{1}{3}\left. \ \left( \ln|t|
ight) ight|_{1}^{2} = \frac{1}{3}ln2 \Rightarrow a = 2.

  • Câu 8: Nhận biết

    Tính giá trị biểu thức

    Cho hàm số g(x) có đạo hàm trên đoạn \lbrack - 1;1brack. Có g( - 1) = 3 và tích phân I = \int_{- 1}^{1}{g'(x)dx} = - 2. Tính g(1).

    Ta có:

    I = \int_{- 1}^{1}{g'(x)dx} = - 2
\Leftrightarrow g(1) - g( - 1) = - 2

    \Rightarrow g(1) = - 2 + g( - 1) = - 2 +
3 = 1

  • Câu 9: Thông hiểu

    Xác định họ nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \left( -
\frac{1}{x^{2}} - \frac{1}{x} \right)e^{- x}

    Ta có f(x) = \left( - \frac{1}{x^{2}} -
\frac{1}{x} ight)e^{- x} = \left\lbrack \left( \frac{1}{x}
ight)' - \frac{1}{x} ightbrack e^{- x}

    \Rightarrow F(x) = \frac{e^{- x}}{x} +
C là nguyên hàm của hàm số đã cho.

  • Câu 10: Vận dụng

    Chọn đáp án chính xác

    Trong không gian Oxyz, cho bốn điểm A(2;0;0),B(0;3;0),C(0;0;3)D\left( 1;1;\frac{1}{2} ight). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm O,A,B,C,D?

    Hình vẽ minh họa

    Ta có mặt phẳng (ABC): \frac{x}{2} +
\frac{y}{3} + \frac{z}{3} = 1.

    Suy ra D\left( 1;1;\frac{1}{2}
ight) thuộc mặt phẳng (ABC).

    Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.

    Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là C_{4}^{2} = 6.

    Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm O,A,B,C,D1 + 6 = 7.

  • Câu 11: Thông hiểu

    Tính giá trị của S

    Diện tích hình phẳng giới hạn bởi đường cong y^{2} = 4x và đường thẳng x = 1 bằng S. Giá trị của S

    Ta có: Phương trình tung độ giao điểm

    \frac{y^{2}}{4} = 1 \Leftrightarrow y =
\pm 2

    .\Rightarrow S = \left| \int_{-
2}^{2}{\left( \frac{y^{2}}{4} - 1 ight)d_{y}} ight| = \left| \left(
\frac{y^{2}}{12} - y ight)|_{- 2}^{2} ight| = \left| - \frac{4}{3} -
\frac{4}{3} ight| = \frac{8}{3}

  • Câu 12: Nhận biết

    Chọn đáp án đúng

    Cho \int_{}^{}{f(x)dx} = \frac{x^{4}}{4}
- \frac{x^{3}}{3} + 2020 + C. Khi đó \int_{}^{}{f(3x)dx} là:

    Ta có: \int_{}^{}{f(x)dx} =
\frac{x^{4}}{4} - \frac{x^{3}}{3} + 2020 + C

    Khi đó \int_{}^{}{f(3x)dx} =
\frac{27x^{4}}{4} - 3x^{3} + \frac{2020}{3} + C

  • Câu 13: Thông hiểu

    Tính bán kính đường tròn nội tiếp tam giác

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC, biết A(5;3; - 1),B(2;3; - 4), C(3;1; - 2). Bán kính đường tròn nội tiếp tam giác ABC bằng:

    Ta có AC^{2} + BC^{2} = 9 + 9 = AB^{2}
\Rightarrow Tam giác ABC vuông tại C.

    Suy ra: r = \frac{S_{ABC}}{p} =
\frac{\frac{1}{2}CA.CB}{\frac{1}{2}(AB + BC + CA)}=
\frac{3.3\sqrt{2}}{3\sqrt{2} + \sqrt{3} + \sqrt{3}} = 9 -
3\sqrt{6}

  • Câu 14: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Đáp án là:

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Hình vẽ minh họa

    a) Sai: Các vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là: \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD},\overrightarrow{BA},\overrightarrow{BC},\overrightarrow{BD},\overrightarrow{CA},\overrightarrow{CB},\overrightarrow{CD},\overrightarrow{DA},\overrightarrow{DB},\overrightarrow{DC}.

    Do đó có 12 vectơ thỏa mãn yêu cầu.

    b) Sai:  (\overrightarrow{AB},\overrightarrow{BC})
= 180^{\circ} - (\overrightarrow{BA},\overrightarrow{BC}) = 180^{\circ}
- ABC = 120^{\circ} 

    c) Sai: \overrightarrow{BE} =\overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BC} +\frac{1}{3}\overrightarrow{CD}= \overrightarrow{BC} +\frac{1}{3}(\overrightarrow{BD} - \overrightarrow{BC}) =\frac{2}{3}\overrightarrow{BC} +\frac{1}{3}\overrightarrow{BD}.

    Do đó m = 0,n = \frac{2}{3},p =
\frac{1}{3} suy ra m + n + p =
1.

    d) Đúng: Ta có:

    \overrightarrow{BE} =
\overrightarrow{AE} - \overrightarrow{AB} = (\overrightarrow{AC} +
\overrightarrow{CE}) - \overrightarrow{AB} = \overrightarrow{AC} +
\frac{1}{3}\overrightarrow{CD} - \overrightarrow{AB}

    = \overrightarrow{AC} +
\frac{1}{3}(\overrightarrow{AD} - \overrightarrow{AC}) -
\overrightarrow{AB} = \frac{2}{3}\overrightarrow{AC} +
\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB}

    Suy ra

    \overrightarrow{AD}.\overrightarrow{BE} =\overrightarrow{AD}.\left( \frac{2}{3}\overrightarrow{AC} +\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB} ight)=\frac{2}{3}.\overrightarrow{AD}.\overrightarrow{AC} +\frac{1}{3}.{\overrightarrow{AD}}^{2} -\overrightarrow{AD}.\overrightarrow{AB}

    = \frac{2}{3}.a.a.\cos 60^{\circ} +\frac{1}{3}a^{2} - a.a.\cos60^{\circ} = \frac{a^{2}}{6}.

  • Câu 15: Nhận biết

    Cosin Góc giữa 2 mp

    Cho hai mặt phẳng \left( \alpha  ight):x + 5y - z + 1 = 0,\left( \beta  ight):2x - y + z + 4 = 0.

    Gọi \varphi là góc nhọn tạo bởi (\alpha)(\beta) thì giá trị đúng của cos \varphi là:

    Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:

    (\alpha) có vectơ pháp tuyến \overrightarrow a  = \left( {1,5, - 2} ight)

    (\beta) có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1,1} ight)

    Áp dụng công thức tính cosin giữa 2 vecto, ta có:

    \cos \varphi  = \frac{{\left| {1.2 + 5\left( { - 1} ight) + \left( { - 2} ight).1} ight|}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} ight)}^2}} .\sqrt {{2^2} + {{\left( { - 1} ight)}^2} + {1^2}} }} = \frac{{\sqrt 5 }}{6}

  • Câu 16: Nhận biết

    Tìm nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \sqrt{3x +
2} là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\sqrt{3x
+ 2}dx} = \int_{}^{}{(3x + 2)^{\frac{1}{2}}dx}

    = \frac{(3x + 2)^{1 + \frac{1}{2}}}{1 +\dfrac{1}{2}}.\frac{1}{3} + C = \frac{2}{9}.(2x + 3).\sqrt{3x + 2} +C

  • Câu 17: Nhận biết

    Giao điểm 3 mp

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y + 3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Tọa độ của điểm A đó là:

     Tọa độ giao điểm của ba mặt phẳng là nghiệm của hệ phương trình :

    \left\{ \begin{array}{l}x + 2y - z - 6 = 0\left( 1 ight)\\2x - y + 3z + 13 = 0\left( 2 ight)\\3x - 2y + 3z + 16 = 0\left( 3 ight)\end{array} ight.

    Giải (1),(2) tính x,y theo z được x =  - z - 4;y = z + 5.

    Thế vào phương trình (3) được z=-3 , từ đó có x =  - 1,y = 2

    Vậy  A(-1,2,-3).

  • Câu 18: Thông hiểu

    Xác định diện tích tam giác ABC

    Trong không gian Oxyz, cho A(1;2;0),B(3; - 1;1),C(1;1;1). Tính diện tích tam giác ABC?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3;1) \\
\overrightarrow{AC} = (0; - 1;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( - 2; - 2; -
2)

    Lại có diện tích tam giác ABC là:

    S_{ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\sqrt{3}

  • Câu 19: Thông hiểu

    Tính giá trị của biểu thức

    Biết F(x) là một nguyên hàm của hàm số f(x) = \sin^{3}x.\cos x và F(0) = \pi. TìmF\left( \frac{\pi}{2} \right).

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =\int_{}^{}{\sin^{3}x.\cos x.dx}}

    = \int_{}^{}{\sin^{3}x.d\left( \sin x
ight) = \frac{1}{4}\sin^{4}x + C}

    F(0) \Rightarrow \pi \Rightarrow C = \pi
\Rightarrow F(x) = \frac{1}{4}\sin^{4}x + \pi

    \Rightarrow F\left( \frac{\pi}{2} ight)
= \frac{1}{4} + \pi

  • Câu 20: Vận dụng cao

    Chọn đẳng thức đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình dạng Ax + By + Cz + D = 0, (A,B,C,D \in Z) và có UCLN\left( |A|,|B|,|C|,|D| ight) = 1. Để mặt phẳng (P) đi qua điểm B(1;2; - 1) và cách gốc tọa độ O một khoảng lớn nhất thì đẳng thức nào sau đây đúng?

    Mặt phẳng (P) đi qua điểm B(1; 2; −1) suy ra A + 2B − C + D = 0 (1).

    Khi đó:

    d\left( O;(P) ight) =
\frac{|D|}{\sqrt{A^{2} + B^{2} + C^{2}}} = \frac{|A + 2B -
C|}{\sqrt{A^{2} + B^{2} + C^{2}}}

     

    \leq \frac{\sqrt{\left\lbrack 1^{2} +
2^{2} + ( - 1)^{2} ightbrack\left( A^{2} + B^{2} + C^{2}
ight)}}{\sqrt{A^{2} + B^{2} + C^{2}}} = \sqrt{6}

    Đẳng thức xảy ra khi và chỉ khi:

    \left\{ \begin{matrix}A + 2B - C + D = 0 \\\dfrac{A}{1} = \dfrac{B}{2} = \dfrac{C}{- 1} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}D = - 3B \\B = 2A = - 2C \\A;B;C\mathbb{\in Z} \\\end{matrix} ight.

    Từ đó tìm được A = - C = 1,B = 2,D = -
6 hoặc A = - C = - 1,B = - 2,D =
6.

    Vậy A^{2} + B^{2} + C^{2} + D^{2} =
42.

  • Câu 21: Nhận biết

    Tìm vectơ cùng phương với vectơ đã cho

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} = (1;3;4). Hãy chọn vectơ cùng phương với \overrightarrow{a}?

    Ta có: \overrightarrow{b} cùng phương với \overrightarrow{a} khi \overrightarrow{b} =
k.\overrightarrow{a};\left( k\mathbb{\in R} ight). Khi đó đáp án cần tìm là \overrightarrow{b} = ( - 2; -
6; - 8) (vì \overrightarrow{b} = -2(1;3;4) = - 2\overrightarrow{a}).

  • Câu 22: Vận dụng

    Chọn đáp án đúng

    Tìm H = \int_{}^{}\frac{x^{2}dx}{\left(
x\sin x + \cos x \right)^{2}}?

    Ta có : H =
\int_{}^{}{\frac{x^{2}}{\left( x\sin x + \cos x \right)^{2}}dx =
\int_{}^{}{\frac{x\cos x}{\left( x\sin x + \cos x
\right)^{2}}.\frac{x}{\cos x}dx}}

    Đặt \left\{ \begin{matrix}u = \dfrac{x}{\cos x} \\dv = \dfrac{x\cos x}{\left( x\sin x + \cos x \right)^{2}}dx =\dfrac{d\left( x\sin x + \cos x \right)}{\left( x\sin x + \cos x\right)^{2}} \\\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}du = \dfrac{x\sin x + \cos x}{cos^{2}x}dx \\v = - \dfrac{1}{x\sin x + \cos x} \\\end{matrix} \right.

    \Rightarrow H = - \frac{x}{\cos
x}.\frac{1}{xsinx + \cos x} +
\int_{}^{}{\frac{1}{cos^{2}x}dx}

    = \frac{- x}{\cos x\left( x\sin x + \cos
x \right)} + \tan x + C

  • Câu 23: Thông hiểu

    Chọn đáp án thích hợp

    Nguyên hàm của hàm số x.lnx

    Ta có \int_{}^{}{x.lnx}dx.

    Đặt \left\{ \begin{matrix}
\ln x = u \Rightarrow \dfrac{1}{x}dx = du \\
dv = xdx \Rightarrow v = \dfrac{x^{2}}{2} \\
\end{matrix} ight.

    Theo phương pháp nguyên hàm từng phần ta có

    \int_{}^{}{x.\ln x}dx = \int_{}^{}{udv = uv
- \int_{}^{}{vdu} = \frac{x^{2}}{2}.\ln x -
\int_{}^{}{\frac{x^{2}}{2}.\frac{1}{x}dx}}

    = \frac{x^{2}.lnx}{2} -
\int_{}^{}{\frac{x}{2}dx = \frac{x^{2}.\ln x}{2} - \frac{x^{2}}{4} +
C}.

  • Câu 24: Thông hiểu

    Chọn khẳng định đúng

    Cho hàm số y = \cos4x có một nguyên hàm là F(x); F\left( \frac{\pi}{4} ight) = 2. Khẳng định nào sau đây đúng?

    Ta có: F(x) = \int_{}^{}{\cos4x}dx =\frac{1}{4}\sin4x + C

    F\left( \frac{\pi}{4} ight) = 2
\Rightarrow C = 2

    Ta được F(x) = \frac{1}{4}\sin4x +2

    \Rightarrow \int_{}^{}{F(x)dx} =\int_{}^{}{\left( \frac{1}{4}\sin4x + 2 ight)dx}

    = - \frac{\cos4x}{16} + 2x +C

  • Câu 25: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)(x + 3)?

    Ta có:

    f(x) = (x + 1)(x + 2)(x + 3) = x^{3} +
6x^{2} + 11x + 6

    \Rightarrow F(x) = \frac{x^{4}}{4} +
2x^{3} + \frac{11}{2}x^{2} + 6x + C

  • Câu 26: Vận dụng cao

    Tính giá trị biểu thức T

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}}, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)

     Ta có: f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x + 1}} = \frac{{\left( {A + C} ight){x^2} + (A + B)x + B}}{{{x^2}\left( {x + 1} ight)}}

    => \left\{ {\begin{array}{*{20}{c}}  {A + C = 0} \\   {B = 1} \\   {A + B = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {A =  - 1} \\   {B = 1} \\   {B = 1} \end{array}} ight.

    => F\left( x ight) = \int {f\left( x ight)dx = \int {\left( { - \frac{1}{x} + \frac{1}{{{x^2}}} + \frac{1}{{x + 1}}} ight)dx} }

    => F\left( x ight) =  - \ln \left| x ight| - \frac{1}{x} + \ln \left| {x + 1} ight| + C = \ln \left| {\frac{{x + 1}}{x}} ight| - \frac{1}{x} + C

    Khi đó: F\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_1}{\text{ khi x}} \in \left( {0; + \infty } ight)} \\   {\ln \left( {\dfrac{{ - x - 1}}{x}} ight) - \dfrac{1}{x} + {C_2}{\text{ khi x}} \in \left( { - 1; + \infty } ight)} \\   {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_3}{\text{ khi x}} \in \left( { - \infty ; - 1} ight)} \end{array}} ight.

    Theo bài ra ta có: F(x) + F(-2) = 0,5

    => \left( {\ln 2 - 1 + {C_1}} ight) + \left( {\ln \frac{1}{2} + \frac{1}{2} + {C_2}} ight) = \frac{1}{2}

    => {C_1} + {C_2} = 1

    => F\left( 2 ight) + F\left( { - 3} ight) = \left( {\ln \frac{3}{2} + \frac{1}{2} + {C_1}} ight) + \left( {\ln \frac{2}{3} + \frac{1}{2} + {C_1}} ight) = \frac{5}{6}

  • Câu 27: Thông hiểu

    Tính khoảng cách

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 28: Nhận biết

    Tìm tọa độ vecto

    Trong không gian Oxyz, cho \ \overrightarrow{b} = 4\overrightarrow{j} -
\overrightarrow{i}. Tọa độ \
\overrightarrow{b} bằng?

    Ta có: \overrightarrow{b} =
4\overrightarrow{j} - \overrightarrow{i} = ( - 1;4;0)

  • Câu 29: Nhận biết

    Tính gia tốc của chuyển động

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{3} - t + 1, trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc của chuyển động khi t = 2s là:

    v = s' = 6{t^2} - 1

    a = v'' = 12t

    Khi t = 2 \Rightarrow a = 24\left( {m/{s^2}} ight)

  • Câu 30: Nhận biết

    Tìm nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) =
2^{2x}.3^{x}.7^{x} là:

    Ta có: \int_{}^{}{\left(2^{2x}.3^{x}.7^{x} ight)dx =}\int_{}^{}{\left( 84^{x} ight)dx}=\frac{84^{x}}{\ln84} + C

  • Câu 31: Nhận biết

    Độ dài đường sinh

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 32: Nhận biết

    Tìm khẳng định đúng.

    Chọn khẳng định đúng.

    Ta có \int {\sin x.{\text{d}}x}  =  - \cos x + C.

  • Câu 33: Nhận biết

    Xác định giá trị S đúng nhất

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 34: Nhận biết

    Tìm khẳng định sai

    Cho hàm số f(x) liên tục trên Ka;b \in K, F(x) là một nguyên hàm của f(x) trên K. Chọn khẳng định sai trong các khẳng định sau?

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 35: Thông hiểu

    Tính tích phân

    Tính tích phân \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\frac{1 -
sin^{3}x}{sin^{2}x}dx}

    Ta có:

    \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\left(
\frac{1}{sin^{2}x} - \sin x ight)dx} = - \left. \ \cot x
ight|_{\frac{\pi}{6}}^{\frac{\pi}{4}} + \left. \ \cos x
ight|_{\frac{\pi}{6}}^{\frac{\pi}{4}}

    = \frac{- 2 + \sqrt{2}}{2} +
\frac{\sqrt{3}}{2} = \frac{\sqrt{3} + \sqrt{2} - 2}{2}.

  • Câu 36: Nhận biết

    Tìm vecto pháp tuyến của mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) có phương trình - 2x + 2y - z - 3 = 0. Mặt phẳng (P) có một vectơ pháp tuyến là:

    Mặt phẳng (P) có phương trình - 2x + 2y -
z - 3 = 0 có một vectơ pháp tuyến \overrightarrow{n}(4; - 4;2)

  • Câu 37: Thông hiểu

    Tính giá trị biểu thức

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f\left( x ight) = \left\{ \begin{gathered}
  \frac{1}{{\sqrt {2x + 1} }}{\text{   khi }}x \geqslant 0 \hfill \\
  {\left( {2x + 1} ight)^3}{\text{   khi }}x < 0 \hfill \\ 
\end{gathered}  ight.F(4) + F(
- 1) = 8. Giá trị biểu thức Q = F(
- 2) + F(12) bằng:

    Ta có: F\left( x ight) = \int {f\left( x ight)dx}  = \left\{ \begin{gathered}
  \sqrt {2x + 1}  + {C_1}{\text{   khi }}x \geqslant 0 \hfill \\
  \frac{{{{\left( {2x + 1} ight)}^4}}}{8}{\text{ + }}{{\text{C}}_2}{\text{   khi }}x < 0 \hfill \\ 
\end{gathered}  ight.

    F(4) + F( - 1) = 8\Rightarrow \sqrt{8 +1} + C_{1} + \frac{( - 2 + 1)^{4}}{8} + C_{2} = 8\Rightarrow C_{1} +C_{2} = \frac{39}{8}(*)

    Do đó: Q = F( - 2) + F(12) = \sqrt{2.12 +
1} + \frac{( - 4 + 1)^{4}}{8} + C_{1} + C_{2} = 20

  • Câu 38: Thông hiểu

    Tính đường cao

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 39: Vận dụng

    Tỉ số giữa thể tích

    Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

    Tỉ số giữa thể tích

    Hình vẽ kết hợp với giả thiết, ta có SH = 9cm, OS=OA=5cm

    Suy ra OH = 4{m{cm}}AH = \sqrt {O{A^2} - O{H^2}}  = 3{m{cm}}{m{.}}

    Thể tích khối nón {V_n} = \frac{1}{3}\pi A{H^2}.SH = 27\pi(đvtt).

    Thể tích khối cầu {V_c} = \frac{4}{3}\pi .S{O^3} = \frac{{500\pi }}{3}  (đvtt).

    Suy ra \frac{{{V_n}}}{{{V_c}}} = \frac{{81}}{{500}}

  • Câu 40: Vận dụng cao

    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2; - 2),B\left(
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Biết I(a;b;c) là tâm đường tròn nội tiếp tam giác OAB. Tính giá trị biểu thức U = a - b + c?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}\overrightarrow{OA} = (1;2; - 2) \Rightarrow OA = 3 \\\overrightarrow{OB} = \left( \dfrac{8}{3};\dfrac{4}{3};\dfrac{8}{3} ight)\Rightarrow OB = 4 \\\end{matrix} ight.

    Gọi D là chân đường phân giác kẻ từ O ta có:

    \overrightarrow{DA} = -
\frac{DA}{DB}.\overrightarrow{DB} = -
\frac{OA}{OB}.\overrightarrow{DB}

    \Rightarrow \overrightarrow{DA} = -
\frac{3}{4}.\overrightarrow{DB} \Rightarrow \overrightarrow{OD} =
\frac{4\overrightarrow{OA} + 3\overrightarrow{OB}}{7}. Do đó D\left( \frac{12}{7};\frac{12}{7};0
ight)

    Ta có: \overrightarrow{AD} = \left(
\frac{5}{7}; - \frac{2}{7};2 ight) \Rightarrow AD =
\frac{15}{7}

    \overrightarrow{ID} = -
\frac{AD}{AO}.\overrightarrow{IO} = - \frac{5}{7}\overrightarrow{IO}
\Rightarrow \overrightarrow{OI} = \frac{7}{12}\overrightarrow{OD}
\Rightarrow D(1;1;0)

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 0 \\
\end{matrix} ight.\  \Rightarrow U = 0

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 5 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo