Chọn đáp án chính xác
Biết rằng
. Xác định
?
Ta có:
Do đó:
Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán 12 nha!
Chọn đáp án chính xác
Biết rằng
. Xác định
?
Ta có:
Do đó:
Chọn phương án đúng
Trong không gian với hệ toạ độ
, cho
. Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi tọa độ điểm .
Ta có: ,
.
Tứ giác là hình bình hành
Vậy .
Xác định phương trình mặt phẳng (P)
Trong không gian với hệ toạ độ
, cho ba điểm
. Phương trình mặt phẳng
đi qua
và cách
một khoảng lớn nhất?
Hình vẽ minh họa

Gọi lần lượt là hình chiếu
của lên mp
và doạn thẳng
Ta có : lớn nhất khi
. Khi đó mặt phẳng
đi qua
và vuông với mặt phẳng
Ta có
Tính quãng đường của chất điểm
Một chất điểm đang chuyển động với vận tốc
thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian
kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc nên
Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Viết phương trình mặt phẳng
Trong không gian với hệ trục toạ độ
, cho tứ diện
có điểm
,
. Trên các cạnh
lần lượt lấy các điểm
thỏa:
. Viết phương trình mặt phẳng
biết tứ diện
có thể tích nhỏ nhất?
Áp dụng bất đẳng thức ta có:
Để nhỏ nhất khi và chỉ khi
Lúc đó mặt phẳng song song với mặt phẳng
và đi qua
.
Tính bán kính đáy
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Chọn phương án thích hợp
Tìm
?
Đặt:
Mặt khác:
Từ ta có hệ:
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
??
Đặt
Chọn phương án đúng
Tìm
.
Vì lũy thừa của là số lẻ nên ta đổi biến
.
.
Nguyên hàm của hàm số
Nguyên hàm của hàm số
là:
Ta có:
Xét tính đúng sai của các nhận định
Hàm chi phí cận biên của sản phẩm được định nghĩa là đạo hàm của hàm chi phí. Một nhà máy sản xuất X với số lượng
sản phẩm A thì chi phí cận biên được mô hình hóa bởi công thức
(nghìn đồng) và chi phí sản xuất một sản phẩm A là 52 nghìn đồng. Các mệnh đề sau đúng hay sai?
a) Nếu hàm chi phí sản phẩm A là
thì
. Sai|||Đúng
b)
.Đúng||Sai
c)
. Đúng||Sai
d) Chi phí sản xuất 10 sản phẩm là
(nghìn). Sai|||Đúng
Hàm chi phí cận biên của sản phẩm được định nghĩa là đạo hàm của hàm chi phí. Một nhà máy sản xuất X với số lượng
sản phẩm A thì chi phí cận biên được mô hình hóa bởi công thức
(nghìn đồng) và chi phí sản xuất một sản phẩm A là 52 nghìn đồng. Các mệnh đề sau đúng hay sai?
a) Nếu hàm chi phí sản phẩm A là
thì
. Sai|||Đúng
b)
.Đúng||Sai
c)
. Đúng||Sai
d) Chi phí sản xuất 10 sản phẩm là
(nghìn). Sai|||Đúng
Hàm chi phí cận biên của sản phẩm được định nghĩa là đạo hàm của hàm chi phí. Một nhà máy sản xuất X với số lượng sản phẩm A thì chi phí cận biên được mô hình hóa bởi công thức
(nghìn đồng) và chi phí sản xuất một sản phẩm A là 52 nghìn đồng. Các mệnh đề sau đúng hay sai?
Hàm chi phí sản phẩm A là với
Theo giả thiết .
Vậy chi phí sản xuất 10 sản phẩm là (nghìn)
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Độ dài đường sinh
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho
. Độ dài đường sinh
của hình nón bằng:

Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Diện tích của thiết diện
Một hình nón có bán kính đáy R, góc ở đỉnh là
. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo
. Diện tích của thiết diện là:

Vì góc ở đỉnh là nên thiết diện qua trục SAC là tam giác đều cạnh 2R.
Suy ra đường cao của hình nón là .
Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng nên IAB là tam giác vuông cân tại I, suy ra
.
Gọi M là trung điểm của AB thì và
.
Trong tam giác vuông SIM, ta có
Vậy (đvdt).
Chọn mệnh đề đúng
Cho hàm số
liên tục nhận giá trị dương trên
và thỏa mãn
;
. Giá trị
gần nhất với giá trị nào sau đây?
Vì
Mà
Chọn khẳng định sai
Trong không gian
, cho hai vectơ
và
. Khẳng định nào sau đây sai?
Ta có: suy ra “
” là khẳng định sai.
Công thức tính thể tích khối tròn xoay
Cho hàm số
liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Thể tích khối tròn xoay tạo thành khi quay
quanh trục hoành được tính theo công thức:
Thể tích của khối tròn xoay cần tính là:
Chọn đáp án đúng
Trong không gian
, cho hai điểm
. Mặt phẳng đi qua
và vuông góc với đường thẳng
là:
Gọi (α) là mặt phẳng đi qua và vuông góc với đường thẳng
.
Do (α) vuông góc với AB nên vectơ pháp tuyến của mặt phẳng (α) là
Vậy phương trình mặt phẳng (α) là:
Tính góc giữa hai đường thẳng
Cho tứ diện
đều cạnh bằng
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi M là trung điểm của CD
Vì ABCD là tứ diện đều nên
Ta có:
Suy ra nên số đo góc giữa hai đường thẳng bằng
.
Tính giá trị của biểu thức
Biết hàm số
có nguyên hàm là
với
và
là phân số tối giản. Tính giá trị biểu thức
.
Ta có:
khi đó
Vậy đáp án cần tìm là:
Chọn kết luận chính xác nhất
Cho hình vẽ:

Diện tích hình phẳng (phần gạch chéo) giới hạn bởi đồ thị 3 hàm số
như hình bên, bằng kết quả nào sau đây?
Diện tích miền tích phân được chia thành hai phần. Phần 1 với x nằm trong khoảng a đến b và phần 2 với x nằm trong khoảng b đến c:
.
Tìm ba điểm thẳng hàng trong 4 điểm đã cho
Trong không gian
, cho bốn điểm
,
,
và
. Trong đó có ba điểm thẳng hàng là
Ta có: ,
Mà , nên hai vecto
,
cùng phương, hay ba điểm
thẳng hàng.
Nhận xét: Có thể vẽ phát họa lên hệ tọa độ để nhìn nhận dễ dàng hơn.
Tam giác ABC là?
Cho ba điểm
.
Tam giác ABC là tam giác?
Để biết tam giác ABC là tam giác gì, ta cần xét tích vô hướng (tính chất có 1 góc vuông) và kiểm tra độ dài 3 cạnh AB, BC, CA (tính cân, đều) của tam giác. Ta có:
Suy ra tam giác ABC có góc nên vuông tại A.
Ta tiếp tục xét tính cân:
Vậy tam giác ABC vuông cân tại A.
Tìm tọa độ điểm M
Trong không gian
, điểm
thuộc trục
và cách đều hai mặt phẳng
và
có tọa độ là?
Ta có suy ra
.
Theo đề bài ra ta có:
Vậy .
Xét tính đúng sai của các khẳng định
Trong không gian tọa độ
, cho hai mặt phẳng
,
. Xét các vectơ
,
.
a)
là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b)
không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c)
. Đúng||Sai
d) Góc giữa hai mặt phẳng
và
bằng
. Sai||Đúng
Trong không gian tọa độ
, cho hai mặt phẳng
,
. Xét các vectơ
,
.
a)
là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b)
không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c)
. Đúng||Sai
d) Góc giữa hai mặt phẳng
và
bằng
. Sai||Đúng
a) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
b) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
c) .
d) Gọi là góc giữa hai mặt phẳng
và
.
Độ dài đường sinh
Trong không gian, cho tam giác ABC vuông tại A, AB =a và
. Độ dài đường sinh
của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là và chiều cao hình nón là
.
Vậy độ dài đường sinh của hình nón là:
PT mp trong hệ trục tọa độ Oxyz
Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi
lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là (
):
Theo đề bài, ta có:
Gọi
Ta có:
Xác định hàm số f(x)
Nếu
thì
là hàm nào ?
Ta có: .
Tìm nguyên hàm của hàm số
Tìm nguyên hàm ![]()
Đặt .
Khi đó
Chọn mệnh đề đúng
Cho hàm số
thỏa mãn
và
. Mệnh đề nào dưới đây đúng?
Ta có
Do nên
.
Vậy .
Chọn đáp án đúng
Tìm một nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Xác định các hệ số a, b, c, d
Tìm a, b, c, d để
là một nguyên hàm của
.
Ta có
Chọn đáp án đúng
Trong không gian
cho
. Viết phương trình mặt phẳng
?
Phương trình mặt phẳng là
Tính thể tích khối trụ
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Tính diện tích hình phẳng
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số
, trục hoành và các đường thẳng ![]()
Diện tích S của hình phẳng trên là:
Ta có:
=>
Viết PT mp đi qua 3 điểm
Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm ![]()
Theo đề bài, ta có cặp vecto chỉ phương của
Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của
Mp (P) đi qua và nhận vecto có tọa độ
làm 1 VTPT có phương trình là:
Tìm mệnh đề sai
Cho hàm số
là một nguyên hàm của hàm số
trên
. Các mệnh đề sau, mệnh đề nào sai.
Mệnh đề sai
Chọn đáp án đúng
Nếu
. Khi đó
bằng:
Ta có: .
Chọn khẳng định đúng
Cho hàm số
. Khẳng định nào sau đây đúng?
Vì nên
.
Vậy đáp án cần tìm là .
Tính diện tích hình phẳng
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Tìm mệnh đề sai
Mệnh đề nào sau đây sai?
Đáp án sai là: là một nguyên hàm của
trên
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: