Chọn đáp án đúng
Tìm một nguyên hàm
của hàm số
biết
.
Ta có
Mà
Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán 12 nha!
Chọn đáp án đúng
Tìm một nguyên hàm
của hàm số
biết
.
Ta có
Mà
Cho giá trị của tích phân
Cho giá trị của tích phân
,
. Giá trị của a + b là:
Ta có:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Diện tích toàn phần
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng
. Diện tích toàn phần của hình nón là:

Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).
Tìm giá trị m thỏa mãn yêu cầu
Trong không gian
, cho hai vectơ
. Tìm tất cả các giá trị của tham số
để
?
Ta có:
Vậy đáp án cần tìm là .
Tính giá trị của biểu thức
Biết
, với
. Tính giá trị 
Ta có:
Khi đó
Tính tích phân
Cho
và
, khi đó
bằng:
Ta có:
Ghi đáp án vào ô trống
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt
, giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.

Tính tích vô hướng của
(làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt
, giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.

Tính tích vô hướng của
(làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Ta có:
.
Suy ra, (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).
Do đó:
.
Mà .
Suy ra .
Từ đó .
Vậy .
Chọn kết luận đúng
Cho hàm số
có đạo hàm
với
. Chọn kết luận đúng?
Ta có:
Ta có:
Vậy .
Xác định khẳng định chính xác nhất
Biết luôn có hai số
để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Phương trình tổng quát
Cho tứ diện
có
. Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:
Theo đề bài, ta có các vecto là
Có thể chọn làm một vectơ pháp tuyến cho mặt phẳng.
Phương trình mặt phẳng này có dạng .
Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên:
Vậy phương trình cần tìm .
Tính tọa độ điểm M
Trong không gian
có điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Ta có: . Khi đó
Vậy giá trị cần tìm là .
Tính bán kính đáy
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Tính tích phân
Cho các hàm số
và
liên tục trên
thỏa mãn
với
. Tính
, biết rằng
?
Ta có: .
Tìm m để hai mặt phẳng song song
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng
và
. Tìm
để hai mặt phẳng
và
song song với nhau.
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến
Để thì
Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Tìm tọa độ vecto
Trong không gian
, cho
và
. Vectơ
có tọa độ là
Ta có:
và
khi đó:
Chọn kết luận đúng
Cho
và hai mặt phẳng
. Khi đó:
Thay tọa độ điểm A vào phương trình mặt phẳng (Q) thỏa mãn, do đó A ∈ (Q).
Vì nên
.
Xác định nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
?
Ta có:
Tính nguyên hàm của hàm số
Tìm nguyên hàm
của hàm số 
Ta có
Chọn khẳng định đúng
Cho
là một nguyên hàm của hàm số
thỏa mãn
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
là một nguyên hàm của hàm số
suy ra
có dạng
Theo bài ra ta có:
Vậy .
Gọi F(x) là một nguyên hàm của hàm số f(x) = (2x - 3)^2
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính giá trị của biểu thức ![]()
Ta có:
=>
Xác định nguyên hàm
Nguyên hàm
là:
Ta có:
.
Nguyên hàm của hàm số
Nguyên hàm của hàm số
là:
Ta có:
Tính độ dài cạnh
Một hình trụ có bán kính đáy
, chiều cao hình trụ
. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.
Dựng đường sinh AA', ta có .
Suy ra A’C là đường kính đáy nên
Xét tam giác vuông AA’C, ta có
Suy ra cạnh hình vuông bằng 100 cm.
Tính cosin góc giữa hai vectơ
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Tính giá trị biểu thức
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Tính giá trị của biểu thức
Trong không gian
, cho
, điểm
và
điểm
sao cho
là trọng tâm tam giác
. Khi đó
bằng
Ta có:
Diện tích và Thể tích
Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,
Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.
Theo đề bài, ta có tam giác SAB vuông cân tại S nên ,
Suy ra ,
và
Diện tích toàn phần của hình nón: (đvdt).
Thể tích khối nón là: (đvtt).
Tính đường cao nón
Cho hình nón đỉnh S có đáy là hình tròn tâm O. Dựng hai đường sinh SA và SB, biết tam giác SAB vuông và có diện tích bằng
. Góc tạo bởi giữa trục SO và mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:

Theo giả thiết ta có tam giác SAB vuông cân tại S.
Gọi E là trung điểm AB, suy ra và
.
Ta có
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Tìm thể tích V của vật thể
Tính thể tích
của phần vật thể giới hạn bởi hai mặt phẳng
và
biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục
tại điểm có hoành độ
thì được thiết diện là một hình chữ nhật có hai cạnh là
và
.
Ta có diện tích thiết diện: .
Khi đó .
Tìm mệnh đề đúng
Trong không gian
, cho ba mặt phẳng
lần lượt có phương trình là
. Mệnh đề nào dưới đây đúng?
Mặt phẳng (P) có một vectơ pháp tuyến là và mặt phẳng (R) có một vectơ pháp tuyến là
Do nên vectơ
không cùng phương với vectơ
.
Vậy mặt phẳng (R) cắt mặt phẳng (P).
Viết PT mp vuông góc chung
Cho điểm
và hai mặt phẳng ![]()
Gọi
là mặt phẳng chứa điểm M , vuông góc với cả hai mặt phẳng
và
. Phương trình mặt phẳng
:
Theo đề bài, ta có:
có vectơ pháp tuyến
có vectơ pháp tuyến
Suy ra tích có hướng giữa 2 vecto là
Ta chọn làm vectơ pháp tuyến cho mặt phẳng
Phương trình có dạng
Mặt khác, ta có
Vậy phương trình cần tìm là:
Tìm giá trị tham số D
Trong không gian với hệ tọa độ
, cho ba điểm
. Mặt phẳng
đi qua ba điểm
có phương trình tổng quát
. Biết
, tìm giá trị của
?
Do nên mặt phẳng
có phương trình
Do đi qua các điểm
nên ta có hệ:
Vậy .
Xét tính đúng sai của các khẳng định
Một ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chường ngại vật trên đường cách đó
. Người lái xe phản ứng một giây sau đó đạp phanh khẩn cấp. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc
, trong đó
là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Gọi
là quãng đường ô tô đi được trong t giây kể từ lúc đạp phanh.
Trong các mệnh đề sau mệnh đề nào đúng, mệnh đề nào sai?
a) Công thức biểu diễn hàm số
là
Sai||Đúng
b) Thời gian kể từ khi ô tô đạp phanh đến khi dừng hẳn bằng
giây.Đúng||Sai
c) Kể từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được quãng đường là
. Sai||Đúng
d) Xe ô tô không va chạm với chướng ngại.Đúng||Sai
Một ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chường ngại vật trên đường cách đó
. Người lái xe phản ứng một giây sau đó đạp phanh khẩn cấp. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc
, trong đó
là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Gọi
là quãng đường ô tô đi được trong t giây kể từ lúc đạp phanh.
Trong các mệnh đề sau mệnh đề nào đúng, mệnh đề nào sai?
a) Công thức biểu diễn hàm số
là
Sai||Đúng
b) Thời gian kể từ khi ô tô đạp phanh đến khi dừng hẳn bằng
giây.Đúng||Sai
c) Kể từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được quãng đường là
. Sai||Đúng
d) Xe ô tô không va chạm với chướng ngại.Đúng||Sai
a) Ta có
Do nên
. Vậy
Mệnh đề sai.
b) Ô tô dừng hẳn khi
.
Mệnh đề đúng.
c) Quãng đường ô tô di chuyển được từ lúc đạp phanh đến khi dừng hẳn là:
.
Mệnh đề sai.
d) Do trước khi đạp phanh tài xế còn phản ứng một giây nên kể từ lúc phát hiện chướng ngại đến khi dừng hẳn ô tô đi được quãng đường là: . Do đó ô tô không va chạm với chướng ngại vật.
Mệnh đề đúng.
Thực hiện tính tích phân chứa tham số
Tích phân
có giá trị là:
Tích phân có giá trị là:
Tìm tích phân
Tính tích phân
?
Ta có:
Chọn đáp án đúng
Tìm nguyên hàm của hàm số
.
Ta có: ,
Chọn đáp án đúng
Tính![]()
Ta có:
Tính khoảng cách từ điểm đến đường thẳng
Cho hình chóp
có đáy là hình thoi cạnh
,
, mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi
lần lượt là trung điểm các cạnh
và
là giao điểm của
với
. Khoảng cách từ trung điểm
của đoạn thẳng
đến mặt phẳng
bằng:
Hình vẽ minh họa

Xét hình chóp trong hệ tọa độ
như hình vẽ.
Khi đó ta có:
Có MN // AD nên suy ra P là trung điểm của CD.
Theo công thức trung điểm, ta suy ra
Ta có:
Vectơ pháp tuyến của mặt phẳng (HMN) là
Phương trình mặt phẳng (HMN) là
Vậy khoảng cách cần tìm là:
Tìm giá trị gần nhất với đáp án đúng
Giá trị của tích phân
gần nhất với gái trị nào sau đây?
Ta có:
Xác định họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là:
Đặt
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: