Chọn phương án đúng
Trong không gian với hệ tọa độ
, cho véc tơ
. Tìm tất cả giá trị của
để góc giữa
,
bằng
.
Ta có:
.
Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán 12 nha!
Chọn phương án đúng
Trong không gian với hệ tọa độ
, cho véc tơ
. Tìm tất cả giá trị của
để góc giữa
,
bằng
.
Ta có:
.
Ghi đáp án vào ô trống
Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với
là tâm hình vuông sao cho
như hình vẽ bên thì các đường cong OA có phương trình
và
. Tính giá trị
biết rằng diện tích trang trí màu sẫm chiếm
diện tích mặt sàn.

Đáp án: -2||- 2
Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với
là tâm hình vuông sao cho
như hình vẽ bên thì các đường cong OA có phương trình
và
. Tính giá trị
biết rằng diện tích trang trí màu sẫm chiếm
diện tích mặt sàn.

Đáp án: -2||- 2
Diện tích 1 cánh của hình trang trí là:
Diện tích hình trang trí là:
Vì diện tích trang trí màu sẫm chiếm diện tích mặt sàn nên
Khi đó ta có:
Vậy .
Diện tích xung quanh
Cho hình nón đỉnh S có bán kính đáy
, góc ở đỉnh bằng
. Diện tích xung quanh của hình nón bằng:

Theo giả thiết, ta có và
.
Suy ra độ dài đường sinh:
Vậy diện tích xung quanh bằng: (đvdt).
Viết phương trình mặt phẳng
Trong không gian với hệ tọa độ
, cho các điểm
. Mặt phẳng
đi qua
, trực tâm
của tam giác
và vuông góc với mặt phẳng
có phương trình là:
Ta có
Phương trình mặt phẳng (ABC) là: .
Phương trình mặt phẳng qua B và vuông góc với AC là: .
Phương trình mặt phẳng qua C và vuông góc với AB là: .
Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên .
Mặt phẳng (P) đi qua A, H nên
Mặt phẳng (P) ⊥ (ABC) nên .
Vậy là một vectơ pháp tuyến của (P).
Chọn nên phương trình mặt phẳng (P) là
.
Tìm nguyên hàm của hàm số f(x)
Tìm nguyên hàm của hàm số
?
Ta có
là nguyên hàm của hàm số đã cho.
Tìm giá trị biểu thức
Cho
với
. Tính
?
Ta có:
Vậy
Tìm giá trị tham số a thỏa mãn điều kiện
Cho
,a là các số hữu tỉ. Giá trị của a là:
Ta có:
.
Tính giá trị biểu thức
Cho hàm số
có đạo hàm trên đoạn
. Có
và tích phân
. Tính
.
Ta có:
Xác định họ nguyên hàm của hàm số
Nguyên hàm của hàm số
là
Ta có
là nguyên hàm của hàm số đã cho.
Chọn đáp án chính xác
Trong không gian
, cho bốn điểm
và
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm
?
Hình vẽ minh họa
Ta có mặt phẳng (ABC): .
Suy ra thuộc mặt phẳng (ABC).
Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.
Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là .
Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm là
.
Tính giá trị của S
Diện tích hình phẳng giới hạn bởi đường cong
và đường thẳng
bằng S. Giá trị của S là
Ta có: Phương trình tung độ giao điểm
.
Chọn đáp án đúng
Cho
. Khi đó
là:
Ta có:
Khi đó
Tính bán kính đường tròn nội tiếp tam giác
Trong không gian với hệ tọa độ
, cho tam giác
, biết
,
,
. Bán kính đường tròn nội tiếp tam giác
bằng:
Ta có Tam giác
vuông tại
.
Suy ra:
Xác định tính đúng sai của từng phương án
Cho tứ diện đều
cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ
) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ
và
bằng
. Sai||Đúng
c) Nếu
thì
. Sai||Đúng
d) Tích vô hướng
. Đúng||Sai
Cho tứ diện đều
cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ
) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ
và
bằng
. Sai||Đúng
c) Nếu
thì
. Sai||Đúng
d) Tích vô hướng
. Đúng||Sai
Hình vẽ minh họa
a) Sai: Các vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là:
.
Do đó có 12 vectơ thỏa mãn yêu cầu.
b) Sai:
c) Sai: .
Do đó suy ra
.
d) Đúng: Ta có:
Suy ra
Cosin Góc giữa 2 mp
Cho hai mặt phẳng
.
Gọi
là góc nhọn tạo bởi
và
thì giá trị đúng của
là:
Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:
có vectơ pháp tuyến
có vectơ pháp tuyến
Áp dụng công thức tính cosin giữa 2 vecto, ta có:
Tìm nguyên hàm của hàm số
Nguyên hàm của hàm số
là:
Ta có:
Giao điểm 3 mp
Ba mặt phẳng
cắt nhau tại điểm A. Tọa độ của điểm A đó là:
Tọa độ giao điểm của ba mặt phẳng là nghiệm của hệ phương trình :
Giải (1),(2) tính theo
được
.
Thế vào phương trình (3) được , từ đó có
Vậy .
Xác định diện tích tam giác ABC
Trong không gian
, cho
. Tính diện tích tam giác
?
Ta có:
Lại có diện tích tam giác là:
Tính giá trị của biểu thức
Biết
là một nguyên hàm của hàm số
và
. Tìm
.
Ta có:
Chọn đẳng thức đúng
Trong không gian với hệ tọa độ
, cho mặt phẳng
có phương trình dạng
,
và có
. Để mặt phẳng
đi qua điểm
và cách gốc tọa độ
một khoảng lớn nhất thì đẳng thức nào sau đây đúng?
Mặt phẳng (P) đi qua điểm suy ra
.
Khi đó:
Đẳng thức xảy ra khi và chỉ khi:
Từ đó tìm được hoặc
.
Vậy .
Tìm vectơ cùng phương với vectơ đã cho
Trong không gian
, cho vectơ
. Hãy chọn vectơ cùng phương với
?
Ta có: cùng phương với
khi
. Khi đó đáp án cần tìm là
(vì
).
Chọn đáp án đúng
Tìm
?
Ta có :
Đặt
Chọn đáp án thích hợp
Nguyên hàm của hàm số
là
Ta có .
Đặt
Theo phương pháp nguyên hàm từng phần ta có
.
Chọn khẳng định đúng
Cho hàm số
có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
?
Ta có:
Tính giá trị biểu thức T
Gọi F(x) là một nguyên hàm của hàm số
, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Tính khoảng cách
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:

Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Tìm tọa độ vecto
Trong không gian
, cho
. Tọa độ
bằng?
Ta có:
Tính gia tốc của chuyển động
Cho chuyển động thẳng xác định bởi phương trình
, trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc của chuyển động khi
là:
Khi
Tìm nguyên hàm của hàm số
Nguyên hàm của hàm số
là:
Ta có:
Độ dài đường sinh
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho
. Độ dài đường sinh
của hình nón bằng:

Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Tìm khẳng định đúng.
Chọn khẳng định đúng.
Ta có .
Xác định giá trị S đúng nhất
Một vật chuyển động với vận tốc
. Tính quãng đường vật đó đi được trong
giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?
Quãng đường vật đó đi được trong 4 giây đầu là:
.
Tìm khẳng định sai
Cho hàm số
liên tục trên
và
,
là một nguyên hàm của
trên
. Chọn khẳng định sai trong các khẳng định sau?
Theo định nghĩa tích phân ta có: .
Tính tích phân
Tính tích phân 
Ta có:
.
Tìm vecto pháp tuyến của mặt phẳng
Trong không gian với hệ toạ độ
, cho mặt phẳng (P) có phương trình
. Mặt phẳng (P) có một vectơ pháp tuyến là:
Mặt phẳng (P) có phương trình có một vectơ pháp tuyến
Tính giá trị biểu thức
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Do đó:
Tính đường cao
Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng
, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:
Theo giả thiết ta có tam giác OAB đều cạnh R.
Gọi E là trung điểm AB, suy ra và
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Tỉ số giữa thể tích
Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

Hình vẽ kết hợp với giả thiết, ta có
Suy ra và
Thể tích khối nón (đvtt).
Thể tích khối cầu (đvtt).
Suy ra
Tính giá trị biểu thức
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Biết
là tâm đường tròn nội tiếp tam giác
. Tính giá trị biểu thức
?
Hình vẽ minh họa
Ta có:
Gọi D là chân đường phân giác kẻ từ O ta có:
. Do đó
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: