Tìm điều kiện để PT Logarit có nghĩa
Điều kiện xác định của phương trình
là:
Biểu thức xác định
Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 12 nha!
Tìm điều kiện để PT Logarit có nghĩa
Điều kiện xác định của phương trình
là:
Biểu thức xác định
Thể tích của khối nón
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là
. Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:

Gọi E là trung điểm của BC, dựng tại H.
Chứng minh được nên suy ra
.
Trong tam giác đều ABC, ta có
và
Trong tam giác vuông SOE, ta có
.
Vậy thể tích khối nón (đvtt).
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Gọi M, N lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
. Khi đó m + n bằng:
Điều kiện
Tiệm cận ngang:
=> Đồ thị hàm số có 1 tiệm cận ngang là y = 1
Tiệm cận đứng:
Điều kiện cần: Xét phương trình x2 – 4 = 0 => x = 2 hoặc x = -2
Điều kiện đủ
Đặt
Xét x = 2 ta có f(2) = 0 nên ta sẽ đi tìm bậc của x – 2 của f(x)
=> x = 2 không phải là tiệm cận đứng
Xét x = -2 ta có f(-2) không tồn tại hay x = -2 không phải là tiệm cận đứng.
Vậy M = 1, N = 0 => M + N = 1
Tìm tập xác định của hàm số
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Tính giá trị của biểu thức logarit
Với các số a, b, c là các số thực dương tùy ý khác 1 và
. Khi đó giá trị của
bằng:
Với a, b, c là các số thực dương tùy ý khác 1 ta có:
Khi đó ta có:
Thể tích khối trụ
Cho hình trụ có O, O' là tâm hai đáy. Xét hình chữ nhật
có A, B cùng thuộc (O) và C, D cùng thuộc (O') sao cho
đồng thời
tạo với mặt phẳng đáy hình trụ góc
. Thể tích khối trụ bằng

Gọi lần lượt là trung điểm của
và
là trung điểm của
. Suy ra góc giữa mặt phẳng
và mặt phẳng đáy là
.
Ta có .
Xét vuông tại O, ta có:
;
Xét vuông tại M, có
.
Vậy .
Tìm giá trị cực đại của hàm số
Tìm giá trị cực đại
của hàm số
.
Ta có
Lại có:
Bảng biến thiên
Từ bảng biến thiên, ta thấy giá trị cực đại của hàm số bằng
Định tập giá trị T của hàm số
Tìm tập giá trị
của hàm số
với
.
Đạo hàm
Suy ra hàm số đồng biến trên nên
Vậy tập giá trị của hàm số là đoạn
Tìm số nghiệm thực của phương trình
Cho hàm số bậc ba
có đồ thị là đường cong trong hình bên.

Số nghiệm thực của phương trình
là
Từ đồ thị hàm số ta có số nghiệm thực của phương trình là
.
Tổng độ dài các cạnh của một tứ diện đều
Tổng độ dài
của tất cả các cạnh của một tứ diện đều cạnh
.

Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Tìm khoảng nghịch biến của hàm số
Cho hàm số y = f(x) có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào dưới đây?
Ta có:
Ta có bảng xét dấu như sau:

Dựa vào bảng xét dấu, hàm số nghịch biến trên các khoảng (-∞; -3) và (-0; 3)
Xác định tiệm cận đứng của đồ thị hàm số
Cho hàm số
có bảng biến thiên như sau

Tiệm cận đứng của đồ thị hàm số đã cho có phương trình là
Quan sát bảng biến thiên ta thấy ;
.
Do đó đường thẳng là tiệm cận đứng của đồ thị hàm số
.
Xét tính đúng sai của các nhận định
Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá
đồng một chiếc và mỗi tháng cơ sở bán được trung bình
chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá
đồng mà cứ tăng giá thêm
đồng thì mỗi tháng sẽ bán ít hơn
chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là
.
a) Nếu cơ sở bán mỗi chiếc khăn với giá
thì số tiền lãi sau 1 tháng là
. Sai||Đúng
b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm
thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thức
. Đúng||Sai
c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm
chiếc. Sai||Đúng
d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá
đồng. Đúng||Sai
Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá
đồng một chiếc và mỗi tháng cơ sở bán được trung bình
chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá
đồng mà cứ tăng giá thêm
đồng thì mỗi tháng sẽ bán ít hơn
chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là
.
a) Nếu cơ sở bán mỗi chiếc khăn với giá
thì số tiền lãi sau 1 tháng là
. Sai||Đúng
b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm
thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thức
. Đúng||Sai
c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm
chiếc. Sai||Đúng
d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá
đồng. Đúng||Sai
Gọi số tiền cần tăng giá mỗi chiếc khăn là .
Vì cứ tăng giá thêm thì số khăn bán ra giảm
chiếc nên tăng
thì số khăn bán ra giảm
chiếc.
Do đó tổng số khăn bán ra mỗi tháng là: chiếc.
Lúc đầu bán với giá , mỗi chiếc khăn có lãi
.
Sau khi tăng giá, mỗi chiếc khăn thu được số lãi là: .
Do đó tổng số lợi nhuận một tháng thu được sau khi tăng giá là:
.
Xét hàm số trên
.
Ta có: .
Lập bảng biến thiên của hàm số trên
ta thấy hàm số đạt giá trị lớn nhất khi
Như vậy, để thu được lợi nhuận cao nhất thì cơ sở sản xuất cần tăng giá bán mỗi chiếc khăn là đồng, tức là mỗi chiếc khăn bán với giá mới là
đồng.
Vậy:
a) sai. b) đúng. c) sai. d) đúng.
Xét tính đúng sai của các khẳng định
Cho
là các số thực thỏa mãn
. Các khẳng định sau đúng hay sai?
a) Điều kiện xác định của hàm số
là
. Đúng||Sai
b) Với cặp số
thỏa mãn điều kiện xác định của hàm số
, ta có:
. Sai||Đúng
c) Cặp số
thỏa mãn
. Sai||Đúng
d) Với
thì
. Đúng||Sai
Cho
là các số thực thỏa mãn
. Các khẳng định sau đúng hay sai?
a) Điều kiện xác định của hàm số
là
. Đúng||Sai
b) Với cặp số
thỏa mãn điều kiện xác định của hàm số
, ta có:
. Sai||Đúng
c) Cặp số
thỏa mãn
. Sai||Đúng
d) Với
thì
. Đúng||Sai
a) Điều kiện để bất phương trình có nghĩa là , suy ra mệnh đề đúng.
b) Ta có , suy ra mệnh đề sai.
c) Ta thấy , suy ra mệnh đề sai.
d) Ta có:
Do đó
Khi đó
Suy ra suy ra mệnh đề đúng.
Tìm m để hàm số có cực đại cực tiểu
Cho hàm số
với
là tham số thực, có đồ thị là
. Tìm tất cả các giá trị của
để
có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.
Đạo hàm .
Ta có .
Hàm số có cực đại và cực tiểu khi
Ta có
Gọi là hoành độ của hai điểm cực trị khi đó
Theo định lí Viet, ta có
Hai điểm cực trị nằm về hai phía trục hoành khi
: thỏa mãn.
Tính giá trị của biểu thức M = a – b
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Chọn khẳng định đúng
Gọi
lần lượt là số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Đồ thị hàm số không có tiệm cận ngang.
ta có
là tiệm cận đứng.
ta có:
là tiệm cận đứng.
Vậy .
Tính giá trị biểu thức
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Diện tích toàn phần
Trong không gian, cho hình chữ nhật ABCD có
và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Mệnh đề đúng
Cho hình đa diện đều loại
cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Đa diện đều loại là khối lập phương nên có 6 mặt là các hình vuông cạnh
.
Vậy hình lập phương có tổng diện tích tất cả các mặt là

V trụ xiên đáy tam giác đều
Cho hình lăng trụ
có đáy là tam giác đều cạnh có độ dài bằng 2. Hình chiếu vuông góc của
lên mặt phẳng
trùng với trung điểm
của
. Góc tạo bởi cạnh bên
với mặt đáy là
. Tính thể tích khối trụ
.
3 || Ba || ba || V=3
Cho hình lăng trụ
có đáy là tam giác đều cạnh có độ dài bằng 2. Hình chiếu vuông góc của
lên mặt phẳng
trùng với trung điểm
của
. Góc tạo bởi cạnh bên
với mặt đáy là
. Tính thể tích khối trụ
.
3 || Ba || ba || V=3

Tam giác đều ABC cạnh bằng 2 nên .
Vì nên hình chiếu vuông góc của
trên mặt đáy
là AH.
Do đó .
Suy ra tam giác vuông cân tại H nên
.
Diện tích tam giác đều ABC là .
Vậy .
Giá trị của biểu thức
Giá trị của biểu thức ![]()
Ta có:
Viết phương trình mặt cầu
Mặt cầu
tâm
và đi qua
có phương trình:
Bán kính mặt cầu là:
Vậy phương trình của mặt cầu là: .
Tìm tập nghiệm của BPT
Bất phương trình
có tập nghiệm là:
Xét:
Tương tự, ta cũng có:
Cộng vế với vế của (1) và (2) ta được:
Mà BPT: nên
Xét
Tương tự, ta cũng có:
Cộng vế với vế của (3) và (4) ta được:
Vậy hay
.
Tìm điều kiện phương trình mặt cầu
Cho biết
là phương trình của mặt cầu khi và chỉ khi:
Ta có:
là phương trình của một mặt cầu khi và chỉ khi
(1)
Mà nên (1) đòi hỏi
Ghi đáp án vào ô trống
Trong hệ trục toạ độ
, cho đồ thị hàm số
với
mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm
, biết hoành độ điểm
thuộc đồ thị
mà tại đó thuyền thu được sóng tốt nhất là
(loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức
?
Trong hệ trục toạ độ
, cho đồ thị hàm số
với
mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm
, biết hoành độ điểm
thuộc đồ thị
mà tại đó thuyền thu được sóng tốt nhất là
(loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức
?
Tìm tập nghiệm của BPT mũ
Tìm tập nghiệm của bất phương trình
sau:
Ta có:
Hình không phải đa diện lồi
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Chọn mệnh đề đúng
Cho hàm số
có bảng biến thiên như sau:

Điểm cực đại của hàm số đã cho là
Dựa vào bảng biến thiên ta có: hàm số đạt cực đại tại điểm .
Ghi đáp án vào ô trống
Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có 7 điểm cực trị?
Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có 7 điểm cực trị?
Chọn đáp án đúng
Trong không gian
, cho 3 điểm
và
. Gọi
là mặt cầu tâm A bán kính bằng 1 và
là mặt cầu tâm B bán kính bằng 3. Hỏi có tất cả bao nhiêu mặt phẳng đi qua C và tiếp xúc đồng thời với cả hai mặt cầu
?
Phương trình mặt phẳng qua C có dạng .
Mặt phẳng tiếp xúc
ta có
(1)
Mặt phẳng tiếp xúc
ta có
(2)
Từ đây ta có phương trình
Từ (1), (3) ta có:
Trường hợp này ta tìm được hai mặt phẳng:
Từ (1); (4) ta có:
Trường hợp này không có mặt phẳng nào.
Tính giá trị của biểu thức T
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Khi đó ta được:
Thể tích chóp
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Xác định hàm số thích hợp
Cho hàm số
có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Từ đồ thị, ta thấy hàm số đồng biến trên các khoảng và
.
Chọn đáp án thích hợp
Cho hàm số
có bảng biến thiên như sau:

Xác định hàm số
?
Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba
Vì nên đáp án là
.
Xét tính đúng sai của các khẳng định
Một sinh viên giỏi
được một công ty trao quỹ học bổng
triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất
mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền
triệu đồng.
a) Quỹ học bổng còn lại sau
tháng là:
triệu đồng. Đúng||Sai
b) Quỹ học bổng còn lại sau 2 tháng là:
triệu đồng. Sai||Đúng
c) Quỹ học bổng còn lại sau n tháng là:
(triệu đồng). Sai||Đúng
d) Tháng cuối cùng sinh viên đó rút được
triệu đồng thì hết quỹ học bổng trên. Sai||Đúng
Một sinh viên giỏi
được một công ty trao quỹ học bổng
triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất
mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền
triệu đồng.
a) Quỹ học bổng còn lại sau
tháng là:
triệu đồng. Đúng||Sai
b) Quỹ học bổng còn lại sau 2 tháng là:
triệu đồng. Sai||Đúng
c) Quỹ học bổng còn lại sau n tháng là:
(triệu đồng). Sai||Đúng
d) Tháng cuối cùng sinh viên đó rút được
triệu đồng thì hết quỹ học bổng trên. Sai||Đúng
a) Quỹ học bổng còn lại sau tháng là:
triệu đồng.
Suy ra mệnh đề đúng.
b) Quỹ học bổng còn lại sau 2 tháng là:
(triệu đồng)
Suy ra mệnh đề sai.
c) Quỹ học bổng còn lại sau n tháng là:
(triệu đồng).
Suy ra mệnh đề sai.
d) Quỹ học bổng còn lại sau 16 tháng là:
.
Quỹ học bổng còn lại sau 15 tháng là.
triệu đồng.
Suy ra tháng cuối cùng sinh viên đó rút được triệu đồng thì hết quỹ học bổng trên.
Suy ra mệnh đề sai.
Tìm giá trị của M - n
Cho hàm số
liên tục trên đoạn
và có đồ thị như hình vẽ bên dưới.

Gọi
và
lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn
. Giá trị của
bằng
Từ đồ thị suy ra
.
Tìm điều kiện của tham số m
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Kết luận nào sau đây đúng?
Quan sát đồ thị ta thấy
Đồ thị hình bên là của hàm số nào?
Cho hình vẽ:

Đồ thị hình bên là của hàm số nào?
Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hhai hàm số
Đồ thị hàm số đi qua điểm nên hàm số
thảo mãn
Tính diện tích
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Tính tích
Gọi
là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Gọi
là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Điều kiện:
PT
Vậy .
Tính đạo hàm của hàm số
Tính đạo hàm của hàm số ![]()
Ta có:
Chọn đáp án đúng
Tìm các giá trị của tham số m để đồ thị hàm số
có ba điểm cực trị tạo thành một tam giác có diện tích bằng ![]()
Xác định hàm số đồng biến trên tập số thực
Hàm số nào sau đây đồng biến trên
?
Ta có hàm số có cơ số
nên đồng biến trên
.
Ngoài ra các hàm số ;
;
không thể đồng biến hoặc nghịch biến trên
.
Tính GTNN của biểu thức
Cho x, y là các số thực thỏa mãn
. Giá trị nhỏ nhất của biểu thức
bằng:
Đặt
Ta được
Xét
Vì
Hình nào không phải khối đa diện lồi
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Tính tích 2 nghiệm
Gọi
là 2 nghiệm của phương trình
. Khi đó
bằng:
Điều kiện: .
Đặt ,điều kiện
. Khi đó phương trình trở thành:
Vậy .
Chia khối lăng trụ
Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.
Tìm khẳng định đúng?
Cho các số thực a và b thỏa mãn
. Tìm khẳng định đúng?
Xét tính đúng sai của từng đáp án như sau
Ta có (vì
) =>
=>
đúng
Vì
=> B sai
Vì =>
Sai
Ta có: =>
sai
Tính thể tích
Cho khối chóp S.ABC có SA vuông góc với đáy,
và
. Tính thể tích V của khối chóp
.
32
Cho khối chóp S.ABC có SA vuông góc với đáy,
và
. Tính thể tích V của khối chóp
.
32

Xét tam giác , có:
Suy ra tam giác vuông tại A
Vậy thể tích khối chóp
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: