Giá trị của biểu thức
Giá trị của biểu thức ![]()
Ta có:
Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 12 nha!
Giá trị của biểu thức
Giá trị của biểu thức ![]()
Ta có:
Tính
Gọi
là 2 nghiệm của phương trình
.
Khi đó
bằng:
Ta có:
Suy ra .
Chọn đáp án đúng
Cho hàm số
, m là tham số; gọi x1, x2 là các điểm cực trị của hàm số đã cho. Tính giá trị lớn nhất của biểu thức
.
Tính giá trị của biểu thức
Biết bất phương trình
có tập nghiệm là đoạn [a; b]. Giá trị biểu thức
bằng:
Điều kiện .
Đặt
Ta có:
Suy ra tập nghiệm là .
Tính V biết diện tích đáy
Tính thể tích
của một khối lăng trụ biết đáy có diện tích
, cạnh bên tạo với mặt phẳng đáy một góc
và độ dài cạnh bên bằng 10 cm.

Xét khối lăng trụ có đáy là tam giác ABC.
Gọi H là hình chiếu của A' trên mặt phẳng
.
Suy ra là hình chiếu của
trên mặt phẳng
.
Do đó
Tam giác vuông tại H, có
.
Vậy .
Phương trình trở thành
Nếu đặt
thì phương trình
trở thành phương trình nào?
Đặt
PT
.
Chọn phương án thích hợp
Chỉ số hay độ
của một dung dịch được tính theo công thức
với
là nồng độ ion hydrogen. Độ
của một loại sữa có
là bao nhiêu?
Độ pH là
Chọn đáp án đúng
Tồn tại bao nhiêu giá trị nguyên của tham số
sao cho đồ thị hàm số
có ít nhất một tiệm cận đứng nằm bên phải trục tung?
Để đồ thị hàm số có ít nhất một tiệm cận đứng nằm bên phải trục tung thì phương trình có ít nhất 1 nghiệm dương.
Ta có:
Để (∗) có ít nhất 1 nghiệm dương thì:
TH1: (*) có 2 nghiệm trái dấu
Mà nên
.
TH2: (*) có 2 nghiệm phân biệt
Mà nên
.
TH3: (*) có nghiệm kép lớn hơn 0.
.
Mà nên
.
Vậy có 32 giá trị nguyên của
thỏa mãn yêu cầu bài toán.
Độ dài đường chéo
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Tìm số mặt của đa diện
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Diện tích của thiết diện
Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng
. Diện tích của thiết diện đó bằng?
Xét hình nón đỉnh S có chiều cao , bán kính đáy
.
Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.

Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ
Ta có:
Xét tam giác SOI vuông tại O, ta có
.
Xét tam giác AOI vuông tại I, có:
Vậy diện tích của thiết diện là:
.
Trung điểm các cạnh của một tứ diện đều
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Chọn đáp án đúng
Cho hàm số
có đồ thị như hình vẽ. Giá trị lớn nhất của hàm số
trên đoạn
là:

Dựa vào đồ thị ta thấy trên đoạn hàm số
có giá trị lớn nhất bằng
khi
Suy ra
Tính độ dài đoạn thẳng MN
Trong không gian với hệ trục tọa độ
cho đường thẳng
và mặt cầu
. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với (S). Gọi M và N là tiếp điểm. Độ dài đoạn thẳng MN bằng
Hình vẽ minh họa

Từ Tâm
và bán kính
Từ Vectơ
Hạ
Xét tam giác vuông tại M ta có:
.
Ta có
.
.
Chọn mệnh đề đúng
Cho hàm số
. Xét các mệnh đề sau, những những mệnh đề nào đúng?
Ta có:
Ta có bảng xét dấu như sau:

Quan sát bảng xét dấu ta thấy:
- Hàm số có 3 điểm cực trị
- Hàm số đồng biến trên khoảng (-1; 0), (1; +∞) và nghịch biến trên khoảng (-∞; -1), (0; 1)
Thể tích khối trụ
Cho khối trụ có hai đáy là
và
.
lần lượt là hai đường kính của
và
, góc giữa
và
bằng
. Thể tích khối tứ diện ABCD bằng 30 . Thể tích khối trụ đã cho bằng?

Ta chứng minh: .

Lấy điểm E sao cho tứ giác BCDE là hình bình hành.
Khi đó .
Mà góc giữa và
bằng
nên ta có:
Ta có
Suy ra
Vậy
Chiều cao của lăng trụ bằng
Áp dụng CT thể tích lăng trụ là:
Tính giá trị biểu thức T = m - n
Cho
. Viết biểu thức
và
. Tính ![]()
Ta có:
Tìm số tiệm cận đứng của đồ thị hàm số
Đồ thị của hàm số
có bao nhiêu đường tiệm cận đứng?
Ta có:
Với thì
nên đồ thị hàm số có một tiệm cận đứng là
.
Thể tích khối chóp
Cho hình chóp
có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?

Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Xác định số điểm cực trị của hàm số
Cho hàm số
. Số điểm cực trị của hàm số đã cho là:
Áp dụng công thức khai triển nhị thức Newton ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1
Chọn phương án đúng
Tìm tập hợp các tâm
của mặt cầu
![]()
![]()
Ta có:
Tâm
là mặt cầu
Vậy tập hợp các điểm I là phân đường thẳng tương ứng với
.
Diện tích toàn phần
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng
. Diện tích toàn phần của hình nón là:

Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).
Tìm tập xác định của hàm số
Tìm tập xác định của hàm số
là:
Hàm số đã cho xác định khi
Đếm số đa diện lồi
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Tính giá trị biểu thức
Tập giá trị của hàm số
với
là đoạn
. Tính
.
Ta có:
Ta có
Tìm tiệm cận đứng của đồ thị hàm số
Đồ thị hàm số nào sau đây không có tiệm cận đứng?
Phương trình x2 + 1 = 0 vô nghiệm nên không tìm được x0 để
=> Hàm số không có tiệm cận đứng.
Các đồ thị hàm số ở B, C, D lần lượt có các tiệm cận đứng là x = 0, x = -2 và x = 1
Ghi đáp án vào ô trống
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm
cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).

Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình
. Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm
cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).

Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình
. Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Tìm tập xác định của hàm số
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Biến đổi biểu thức
Với a và b là hai số thực dương tùy ý thì
bằng:
Ta có:
Tìm số phần tử của tập S
Gọi S là tập hợp chứa tất cả các giá trị thực của tham số m để hàm số
có điểm cực đại với giá trị cực đại tương ứng nằm trong khoảng (3; 4) và đồng thời thỏa mãn 10m là số nguyên. Số phần tử của tập hợp S là:
Xét phương trình
Nếu thì hàm số
không có điểm cực đại.
Nếu thì phương trình (*) có hai nghiệm phân biệt là
Với thì
không có điểm cực đại.
Với thì
Hàm số này đạt cực đại tại x = m + 2 và giá trị cực đại là
Vậy điều kiện để hàm số có cực đại là:
Do 10m là số nguyên nên có hai giá trị thỏa mãn là
Xét tính đúng sai của các khẳng định
Một sinh viên giỏi
được một công ty trao quỹ học bổng
triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất
mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền
triệu đồng.
a) Quỹ học bổng còn lại sau
tháng là:
triệu đồng. Đúng||Sai
b) Quỹ học bổng còn lại sau 2 tháng là:
triệu đồng. Sai||Đúng
c) Quỹ học bổng còn lại sau n tháng là:
(triệu đồng). Sai||Đúng
d) Tháng cuối cùng sinh viên đó rút được
triệu đồng thì hết quỹ học bổng trên. Sai||Đúng
Một sinh viên giỏi
được một công ty trao quỹ học bổng
triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất
mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền
triệu đồng.
a) Quỹ học bổng còn lại sau
tháng là:
triệu đồng. Đúng||Sai
b) Quỹ học bổng còn lại sau 2 tháng là:
triệu đồng. Sai||Đúng
c) Quỹ học bổng còn lại sau n tháng là:
(triệu đồng). Sai||Đúng
d) Tháng cuối cùng sinh viên đó rút được
triệu đồng thì hết quỹ học bổng trên. Sai||Đúng
a) Quỹ học bổng còn lại sau tháng là:
triệu đồng.
Suy ra mệnh đề đúng.
b) Quỹ học bổng còn lại sau 2 tháng là:
(triệu đồng)
Suy ra mệnh đề sai.
c) Quỹ học bổng còn lại sau n tháng là:
(triệu đồng).
Suy ra mệnh đề sai.
d) Quỹ học bổng còn lại sau 16 tháng là:
.
Quỹ học bổng còn lại sau 15 tháng là.
triệu đồng.
Suy ra tháng cuối cùng sinh viên đó rút được triệu đồng thì hết quỹ học bổng trên.
Suy ra mệnh đề sai.
Chọn mệnh đề đúng
Cho hàm số
có đạo hàm
. Mệnh đề nào sau đây đúng?
Xét ta có bảng xét dấu
như sau:
Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng , hàm số đồng biến trên khoảng
.
Thể tích chóp tứ giác
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Tìm tập nghiệm
Tập nghiệm của bất phương trình
là?
BPT
Vậy bất PT có tập nghiệm là .
Trong các phát biểu sau đây, phát biểu nào sai?
Trong các phát biểu sau đây, phát biểu nào sai?
Phát biểu sai là: Hàm số mũ có tập xác định là
Sửa lại: Hàm số mũ có tập xác định là
Tìm số nghiệm thực của phương trình
Cho hàm số bậc ba
có đồ thị là đường cong trong hình vẽ bên.

Số nghiệm thực của phương trình
là:
Ta có số nghiệm của phương trình là số giao điểm của đồ thị hàm số với đường thẳng
Dựa vào đồ thị ta có phương trình có ba nghiệm phân biệt.
Tìm khoảng đồng biến của hàm số
Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?
Ta có bảng biến thiên như sau:

Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)
Xác định phương trình mặt cầu
Mặt cầu tâm
và đi qua điểm
có phương trình:
Ta có : .
Vậy .
Tìm giá trị của n
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Giải PT Logarit
Phương trình
có tập nghiệm là:
PT
.
Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Cho khối đa diện đều loại
. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Khối đa diện đều loại là khối bát diện đều.

Mỗi đỉnh là đỉnh chung của 4 mặt.
Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng .
Tìm giá trị tham số m theo yêu cầu
Cho hàm số
với
là tham số. Gọi
là tập hợp các giá trị nguyên dương của
để hàm số đồng biến trên khoảng
. Tìm số phần tử của
.
Ta có:
Đặt , điều kiện
;
Để hàm số đồng biến trên
thì hàm số
đồng biến trên
là tập hợp các giá trị nguyên dương
.
Vậy số phần tử của tập là
.
Tính giá trị biểu thức
Cho hàm số và có bảng biến thiên như hình vẽ.

Tính ![]()
Ta có:
Biểu thức liên hệ giữa n và m
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Xác định mệnh đề đúng
Cho hàm số
(với
là tham số thực) thỏa mãn
. Mệnh đề nào dưới đây là đúng?
Đạo hàm
TH1. Với suy ra
nên hàm số
nghịch biến trên mỗi khoảng xác định.
Khi đó (thỏa mãn).
TH2. Với suy ra
nên hàm số
đồng biến trên mỗi khoảng xác định.
Khi đó (Không thỏa mãn).
Vậy là giá trị cần tìm và thỏa mãn điều kiện
.
Hình nào không phải khối đa diện lồi
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Nghiệm nguyên nhỏ nhất
Nghiệm nguyên nhỏ nhất của bất phương trình
là:
8 || tám || Tám
Nghiệm nguyên nhỏ nhất của bất phương trình
là:
8 || tám || Tám
BPT
Vậy giá trị nghiệm nguyên nhỏ nhất của BPT là 8.
Tìm giá trị biểu thức
Cho hàm số
. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Khi đó
bằng:
Ta có:
Xác định số điểm cực đại của hàm số
Cho hàm số
có đạo hàm
. Số điểm cực đại của hàm số đã cho là
Ta có
Bảng xét dấu :
Từ bảng xét dấu suy ra hàm số có đúng điểm cực đại
Xác định hàm số y = f(x)
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?
![]() |
Dựa vào đồ thị hàm số ta thấy
=> Hệ số a > 0
=> Loại đáp án B và đáp án D
Mặt khác hàm số có ba điểm cực trị
=> Loại đáp án C
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: