Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa học kì 2 Toán 12 - Đề 3

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn khẳng định đúng

    Cho lăng trụ đứng ABC.A'B'C', điểm M trên CC' sao cho \overrightarrow{MC} = -
\frac{1}{3}\overrightarrow{MC'}. Đặt \overrightarrow{AB} = \overrightarrow{a},\ \
\overrightarrow{AC} = \overrightarrow{b},\ \ \overrightarrow{AA'} =
\overrightarrow{c}. Khẳng định nào dưới đây là đúng ?

    Hình vẽ minh họa

    Ta có

    \overrightarrow{A'M} =
\overrightarrow{A'C} + \overrightarrow{CM}

    = \overrightarrow{A'A} +
\overrightarrow{A'C'} +
\frac{1}{4}\overrightarrow{AA'}

    = - \overrightarrow{AA'} +\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AA'}

    = \overrightarrow{AC} -
\frac{3}{4}\overrightarrow{AA'} = \overrightarrow{b} -
\frac{3}{4}\overrightarrow{c}

  • Câu 2: Nhận biết

    Chọn kết luận đúng

    Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên đoạn \lbrack a;b\rbrack nếu:

    Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên đoạn \lbrack a;b\rbrack nếu với mọi x \in (a;b), ta có F^{/}(x) = f(x), ngoài ra F^{/}\left( a^{+} \right) = f(a)F^{/}\left( b^{-} \right) = f(b).

  • Câu 3: Thông hiểu

    Chọn mệnh đề đúng

    Cho hàm số f(x) thỏa mãn f'(x) = 2^{x} + 3\sqrt{x}f(4) = \ln\frac{16}{2}. Mệnh đề nào sau đây đúng?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
2^{x} + 3\sqrt{x} ight)dx} = \int_{}^{}{\left( 2^{x} +
3x^{\frac{1}{2}} ight)dx}

    = \frac{2^{x}}{\ln2} + 2.x^{\frac{3}{2}} +C = \frac{2^{x}}{\ln2} + 2\sqrt{x^{3}} + C.

    Theo bài ra ta có:

    f(4) = \ln\frac{16}{2} \Leftrightarrow \frac{2^{4}}{\ln2} + 2\sqrt{4^{3}} + C = \ln\frac{16}{2} \Leftrightarrow C = - 16

    Vậy f(x) = \frac{2^{x}}{\ln2} +2\sqrt{x^{3}} - 16.

  • Câu 4: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) cắt trục Ox tại ba điểm có hoành độ a;b;c với c\in (a;b) như hình bên. Đặt m =\int_{a}^{c}{f(x)dx;n} = \int_{c}^{b}{f(x)dx}. Diện tích của hình phẳng giới hạn bởi đồ thị (C) và trục hoành (phần tô đậm) bằng bao nhiêu?

    Diện tích hình phẳng

    Diện tích hình phẳng phần tô đậm được tính như sau:

    S = \int_{a}^{b}{\left| f(x) ight|dx}= \int_{a}^{c}{\left| f(x) ight|dx} + \int_{c}^{b}{\left| f(x)ight|dx}

    = \int_{a}^{c}{f(x)dx} -\int_{c}^{b}{f(x)dx} = m - n

  • Câu 5: Nhận biết

    Chọn phương án thích hợp

    Tìm tất cả các số thực m dương thỏa mãn \int_{0}^{m}\frac{x^{2}dx}{x + 1} = ln2 -
\frac{1}{2}?

    Thử các đáp án, suy ra m = 1

  • Câu 6: Nhận biết

    Cosin Góc giữa 2 mp

    Cho hai mặt phẳng \left( \alpha  ight):x + 5y - z + 1 = 0,\left( \beta  ight):2x - y + z + 4 = 0.

    Gọi \varphi là góc nhọn tạo bởi (\alpha)(\beta) thì giá trị đúng của cos \varphi là:

    Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:

    (\alpha) có vectơ pháp tuyến \overrightarrow a  = \left( {1,5, - 2} ight)

    (\beta) có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1,1} ight)

    Áp dụng công thức tính cosin giữa 2 vecto, ta có:

    \cos \varphi  = \frac{{\left| {1.2 + 5\left( { - 1} ight) + \left( { - 2} ight).1} ight|}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} ight)}^2}} .\sqrt {{2^2} + {{\left( { - 1} ight)}^2} + {1^2}} }} = \frac{{\sqrt 5 }}{6}

  • Câu 7: Nhận biết

    Chọn đẳng thức đúng

    Gọi O là tâm của hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Theo quy tắc hình hộp ta có: \overrightarrow{AC'} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'}

    O là trung điểm của AC' suy ra \overrightarrow{AO} =
\frac{1}{2}\overrightarrow{AC'} = \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}
ight)

  • Câu 8: Nhận biết

    Tìm giá trị tích phân

    Giá trị của \int_{0}^{3}{dx} bằng

    Ta có: \int_{0}^{3}{dx} = \left. \ x
ight|_{0}^{3} = 3 - 0 = 3

  • Câu 9: Thông hiểu

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f\left( x ight) = \frac{{x + 2}}{{\sqrt {x + 1} }}

     Đặt t = \sqrt {x + 1}  \Rightarrow {t^2} = x + 1 \Rightarrow 2tdt = dx

    F\left( x ight) = \int {\frac{{x + 2}}{{\sqrt {x + 1} }}dx = \int {\left( {\frac{{{t^2} + 1}}{2}} ight).2tdt = \int {\left( {2{t^2} + 2} ight)dt = \frac{{2{t^3}}}{3} + 2t + C} } }

    = \frac{{2\left( {x + 1} ight)\sqrt {x + 1} }}{3} + 2\sqrt {x + 1}  + C = \frac{2}{3}\left( {x + 4} ight)\sqrt {x + 1}  + C

  • Câu 10: Vận dụng cao

    Chọn công thức đúng

    Cho hàm số f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của 3e^2F(x)?

     Ta có:

    F\left( x ight) = \int {\left( {{x^2} - 1} ight){e^{{x^3} - 3x}}dx = \frac{1}{3}\int {{e^{{x^3} - 3x}}d\left( {{x^3} - 3x} ight) = \frac{1}{3}{e^{{x^3} - 3x}} + C} }

    F'\left( x ight) = f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} = 0 \Rightarrow x =  \pm 1

    \begin{matrix}  F''\left( x ight) = 2x.{e^{{x^3} - 3x}} + \left( {{x^2} - 1} ight)\left( {3{x^2} - 3} ight){e^{{x^3} - 3x}} \hfill \\  F''\left( 1 ight) > 0;F''\left( { - 1} ight) < 0 \hfill \\ \end{matrix}

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)

    => F\left( 1 ight) = 0 \Rightarrow \frac{1}{3}{e^{ - 2}} + C = 0 \Rightarrow C =  - \frac{1}{{3{e^2}}}

    => F\left( x ight) = \frac{{{e^{{x^3} - 3x + 2}} - 1}}{{3{e^2}}} Hay  3e^2F(x) = e^{{x^3} - 3x + 2} - 1

  • Câu 11: Thông hiểu

    Tính vận tốc của vật chuyển động

    Một vật chuyển động với vận tốc ban đầu là 4m/s và gia tốc a\left( t ight) = 3{t^2} + t\left( {m/s} ight). Hỏi sau khi chuyển động với gia tốc đó được 2 giây thì vận tốc của vật là bao nhiêu?

    Ta có: v\left( t ight) = \int {a\left( t ight)dt}  = \int {\left( {3{t^2} + t} ight)dt}  = {t^3} + \frac{1}{2}{t^2} + C\left( {m/s} ight)

    Do khi bắt đầu tăng tốc {v_0} = 4m/s nên

    {v_{\left( {t = 0} ight)}} = 4 \Rightarrow C = 4 \Rightarrow v\left( t ight) = {t^3} + \frac{1}{2}{t^2} + 4

    Vận tốc của vật khi chuyển động với gia tốc đó được là

    v\left( 2 ight) = {2^3} + \frac{1}{2}{.2^2} + 4 = 14\left( {m/s} ight)

  • Câu 12: Nhận biết

    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số: y = x^{2} - 3x
+ \frac{1}{x}

    \left( \frac{x^{3}}{3} -
\frac{3}{2}x^{2} + \ln|x| \right)' = \frac{3x^{2}}{3} -
\frac{3.2x}{2} + \frac{1}{x} với \forall x > 0

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{3}}{3} - \frac{3}{2}x^{2} + \ln|x| + C

  • Câu 13: Vận dụng cao

    Tính thể tích V

    Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y = \sqrt{x};y =1 và đườDng thẳng x = 4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y = 1 bằng

    Đặt \left\{ \begin{matrix}X = x - 1 \\Y = y - 1 \\\end{matrix} ight.. Ta được hệ trục tọa độ OXY như hình vẽ

    Ta có: y = \sqrt{x} \Leftrightarrow Y + 1= \sqrt{X + 1} \Leftrightarrow Y = \sqrt{X + 1} - 1

    Thể tích cần tìm là

    V = \pi\int_{0}^{3}{\left( \sqrt{X + 1}- 1 ight)^{2}dX} = \pi\int_{0}^{3}{\left( X + 2 - 2\sqrt{X + 1}ight)dX}

    = \pi\left. \ \left\lbrack\frac{1}{2}X^{2} + 2X - \frac{4}{3}(X + 1)\sqrt{X + 1} ightbrackight|_{0}^{3}

    = \pi\left\lbrack \left( \frac{9}{2} + 6- \frac{32}{3} ight) - \left( - \frac{4}{3} ight) ightbrack =\frac{7\pi}{6}

  • Câu 14: Thông hiểu

    Tính giá trị của biểu thức

    Biết \int_{}^{}{x(x + 1)^{3}dx} = a(x +
1)^{5} + b(x + 1)^{4} + C, với a,b \in \mathbb{Q}. Tính giá trị S = {\left( {\frac{{a + b}}{{a.b}}} \right)^{2020}}

    Ta có: x(x + 1)^{3} = (x + 1)^{4} - (x +
1)^{3}

    Khi đó \int_{}^{}{x(x + 1)^{3}dx} =
\frac{1}{5}(x + 1)^{5} - \frac{1}{4}(x + 1)^{4} + C

    \Rightarrow a = \frac{1}{5};b = -
\frac{1}{4} \Leftrightarrow S = \left\lbrack \frac{\frac{1}{5} -
\frac{1}{4}}{\frac{1}{5}.\left( - \frac{1}{4} \right)}
\right\rbrack^{2020} = 1

  • Câu 15: Nhận biết

    Chọn đáp án đúng

    Tìm họ các nguyên hàm của hàm số f(x) =
3x + 1?

    Ta có:

    \int_{}^{}{(3x + 1)dx} =
\frac{1}{3}\int_{}^{}{(3x + 1)d(3x + 1)}

    = \frac{1}{3}.\frac{(3x + 1)^{2}}{2} + C
= \frac{1}{6}(3x + 1)^{2} + C

  • Câu 16: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;1; - 1)B(1;0;1) và mặt phẳng (P):x + 2y - z = 0. Viết phương trình mặt phẳng (Q) qua A;B và vuông góc với (P)?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n_{1}} = (1;2; -
1);\overrightarrow{AB} = ( - 1; - 1;2)

    Mặt phẳng (Q) có một vectơ pháp tuyến là \overrightarrow{n} = \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{AB} ightbrack = (3; -
1;1)

    Từ đó, phương trình mặt phẳng (Q)(Q):3x
- y + z - 4 = 0.

  • Câu 17: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 18: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có điểm A trùng với gốc tọa độ O, B(a;0;0),D(0;a;0), A'(0;0;b),(a > 0,b > 0). Gọi M là trung điểm của cạnh CC'. Giá trị của tỉ số \frac{a}{b} để hai mặt phẳng (A’BD)(MBD) vuông góc với nhau bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có điểm A trùng với gốc tọa độ O, B(a;0;0),D(0;a;0), A'(0;0;b),(a > 0,b > 0). Gọi M là trung điểm của cạnh CC'. Giá trị của tỉ số \frac{a}{b} để hai mặt phẳng (A’BD)(MBD) vuông góc với nhau bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Nhận biết

    Chọn đáp án chính xác

    Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 12t + 24(m/s) trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Khi dừng hẳn v(t) = - 12t + 24 = 0
\Rightarrow t = 2(s)

    Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:

    S = \int_{0}^{2}{v(t)dt} =
\int_{0}^{2}{( - 12t + 24)dt} = 24m

  • Câu 20: Nhận biết

    Tìm tọa độ tâm mặt cầu

    Trong không gian toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?

    PTTQ của mặt phẳng có dạng Ax + By + Cz +
D = 0, với A^{2} + B^{2} + C^{2}
eq 0 nên ta chọn 2x + 3y + z - 12
= 0.

  • Câu 21: Thông hiểu

    Tính giá trị tích phân

    Tích phân \int_{0}^{2}{\sqrt{4 -
x^{2}}xdx} có giá trị bằng

    Thử giải bài toán bằng hai cách:

    Cách 1: Thử bằng máy tính

    Cách 2: Đặt \sqrt{4 - x^{2}} = t

  • Câu 22: Nhận biết

    Tính diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi các đường thẳng y = \cos x;Ox;x = - \frac{\pi}{2};x =
\frac{\pi}{2}?

    Hình vẽ minh họa

    Ta có: \cos x = 0 \Rightarrow x =
\frac{\pi}{2} + k\pi;k\mathbb{\in Z}

    Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng \left( - \frac{\pi}{2};\frac{\pi}{2}
ight)

    Diện tích hình giới hạn là S = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\left| \cos x ight|dx} = \left| \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\cos xdx} ight| = \left| \left. \ \sin x ight|_{- \frac{\pi}{2}}^{\frac{\pi}{2}} ight| = 2

  • Câu 23: Thông hiểu

    Chọn kết quả đúng

    Một công trình đang xây dựng được gắn hệ trục Oxyz (đơn vị trên mỗi trục tọa độ là mét). Ba bức tường (P),(Q),(R) (như hình vẽ) của tòa nhà lần lượt có phương trình: (P):x + 2y - 2z + 1 = 0, (Q):2x + y + 2z - 3 = 0,(R):2x + 4y - 4z - 19 = 0.

    Tính khoảng giữa hai bức tường (P)(R) của tòa nhà.

    Trước hết thực hiện kiểm tra tính song song hoặc vuông góc giữa các bức tường (P),(Q),(R) của tòa nhà.

    (P):x + 2y - 2z + 1 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{P} =
(1;2; - 2)

    (Q):2x + y + 2z - 3 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{Q} =
(2;1;2)

    (R):2x + 4y - 4z - 19 = 0. có vectơ pháp tuyến là {\overrightarrow{n}}_{R}
= (2;4; - 4)

    Ta có {\overrightarrow{n}}_{R} = (2;4; -
4) = 2(1;2; - 2) \Rightarrow {\overrightarrow{n}}_{R} =
2{\overrightarrow{n}}_{P} nên hai bức tường (P)(R)song song nhau

    {\overrightarrow{n}}_{P}.{\overrightarrow{n}}_{Q}
= 1.2 + 2.1 + ( - 2).2 = 0 \Rightarrow
{\overrightarrow{n}}_{P}\bot{\overrightarrow{n}}_{Q} nên bức tường (Q) vuông góc với hai bức tường (P)(R),

    Chọn điểm M( - 1;0;0) \in
(P)

    Do hai bức tường (P)(R)song song nhau nên:

    d\left( (P),(R) \right) = d\left( M,(R)
\right)= \frac{\left| 2.( - 1) + 4.0 - 4.0 - 19
\right|}{\sqrt{4 + 16 + 16}} = \frac{21}{6} = 3,5m

  • Câu 24: Vận dụng cao

    Chọn đáp án đúng

    Trong không gian với hệ trục toạ độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
9, điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C)có diện tích nhỏ nhất ?

    Mặt cầu (S) có tâm I(1,2,3),R = 3.

    Ta có IA < R nên điểm Anằm trong mặt cầu.

    Ta có : d\left( I,(P) \right) =
\sqrt{R^{2} - r^{2}}

    Diện tích hình tròn (C) nhỏ nhất \Leftrightarrow rnhỏ nhất \Leftrightarrow d\left( I,(P) \right) lớn nhất.

    Do d\left( I,(P) \right) \leq IA
\Rightarrow \max d\left( I,(P) \right) = IA Khi đó mặt phẳng(P) đi qua A và nhận \overrightarrow{IA} làm vtpt

    \Rightarrow (P):x + 2y + z - 2 =
0

  • Câu 25: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho bốn điểm A( - 1;3;1),B(1; - 1;2),C(2;1;3),D(0;1;
- 1). Mặt phẳng (P) chứa AB và song song với CD có phương trình là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 4;1) \\
\overrightarrow{CD} = ( - 2;0; - 4) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{CD} ightbrack = (8;3; -
4).

    Mặt phẳng (P) đi qua A( -
1;3;1), nhận \overrightarrow{n} =
\left\lbrack \overrightarrow{AB};\overrightarrow{CD} ightbrack =
(8;3; - 4) là vectơ pháp tuyến, có phương trình là

    \ 8(x + 1) + 3(y - 3) - 4(z - 1) =
0

    \Leftrightarrow 8x + 3y - 4z + 3 =
0

    (Thỏa mãn song song CD nên thỏa mãn đề bài).

  • Câu 26: Nhận biết

    Tìm tọa độ trung điểm của AB

    Trong không gian Oxyz, cho điểm A(1;2; - 3),\ \ B(3; - 2;1). Tọa độ trung điểm của AB là.

    Tọa độ trung điểm I của AB là:

    I = \left( \frac{1 + 3}{2};\frac{2 -
2}{2};\frac{- 3 + 1}{2} ight) = (2;0; - 1)

  • Câu 27: Nhận biết

    Diện tích xung quanh

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 28: Vận dụng

    Tìm giá trị a thỏa mãn điều kiện

    Tích phân I = \int\limits_0^1 {\frac{{2ax}}{{x + 1}}dx}  = \ln 2. Giá trị của a là:

    Ta có:

    I = \int\limits_0^1 {\frac{{2ax}}{{x + 1}}dx}  = 2a\int\limits_0^1 {\left( {1 - \frac{1}{{x + 1}}} ight)dx}  = 2a\left. {\left( {x - \ln \left| {x + 1} ight|} ight)} ight|_0^1 = 2a\left( {1 - \ln 2} ight)

    I = \ln 2 \Leftrightarrow 2a\left( {1 - \ln 2} ight) = \ln 2 \Leftrightarrow a = \frac{{\ln 2}}{{2 - 2\ln 2}}

  • Câu 29: Thông hiểu

    Tính giá trị biểu thức

    Cho \int_{}^{}{\frac{1}{x^{2} - 1}dx} =
a\ln|x - 1| + b\ln|x + 1| + C với a;b là các số hữu tỉ. Khi đó a - b bằng:

    Ta có: \frac{1}{x^{2} - 1} = \frac{1}{(x
- 1)(x + 1)} = \frac{1}{x - 1} - \frac{1}{x + 1}

    \Rightarrow \int_{}^{}{\frac{1}{x^{2} -
1}dx} = \int_{}^{}{\left( \frac{1}{x - 1} - \frac{1}{x + 1} ight)dx} =
\frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C

    Suy ra a = \frac{1}{2};b = - \frac{1}{2}
\Rightarrow a - b = 1.

  • Câu 30: Vận dụng

    Chọn phương án thíchhợp

    Trong không gian với hệ tọa độ Oxyz, cho A(1;0;2), B(3;1;4), C(3; - 2;1). Tìm tọa độ điểm S, biết SA vuông góc với (ABC), mặt cầu ngoại tiếp tứ diện S.ABC có bán kính bằng \frac{3\sqrt{11}}{2}S có cao độ âm.

    Hình vẽ minh họa

    Ta có \overrightarrow{AB} =
(2;1;2), \overrightarrow{AC} = (2;
- 2; - 1) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (3;6; -
6).

    Do SA vuông góc với nên một VTCP của đường thẳng SA được chọn là \overrightarrow{u} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3;6; -
6).

    Đường thẳng SA qua A(1;0;2) và có VTCP \overrightarrow{u} = (3;6; - 6) nên có phương trình tham số là:

    \left\{ \begin{matrix}
x = 1 + 3t \\
y = 6t \\
z = 2 - 6t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

    Do \overrightarrow{AB}.\overrightarrow{AC} = 4 - 2 -
2 = 0 \Rightarrow AB\bot AC \Rightarrow \Delta ABC vuông tại A.

    Gọi M là trung điểm BC, khi đó M là tâm đường tròn ngoại tiếp tam giác ABC. Gọi d là đường thẳng qua M và song song với SA nên d\bot(ABC), suy ra d là trục đường tròn ngoại tiếp \Delta ABC.

    Trong mặt phẳng (SAM) vẽ đường trung trực của SA cắt d tại I và cắt SA tại N.

    Mặt phẳng (ABC) qua A và có một VTPT \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3;6; -
6) nên có phương trình tổng quát là:

    3(x - 1) + 6y - 6(z - 2) = 0
\Leftrightarrow x + 2y - 2z + 3 = 0

    \overrightarrow{BC} = (0; - 3; - 3)
\Rightarrow BC = \sqrt{18} \Rightarrow BC^{2} = 18.

    Ta có R^{2} = IA^{2} + AM^{2}
\Leftrightarrow \frac{99}{4} = IM^{2} + \frac{1}{4}BC^{2} \Rightarrow IM
= \frac{9}{2}.

    Do S \in SA nên S(1 + 3t;6t;2 - 6t), mà SA = 2IM \Rightarrow SA = 9

    \Leftrightarrow d\left( S,(ABC) ight)
= 9

    \Leftrightarrow \frac{\left| 1 + 3t +
12t - 2(2 - 6t) + 3 ight|}{\sqrt{1^{2} + ( - 2)^{2} + 2^{2}}} =
9

    \Leftrightarrow |27t| = 27
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \Rightarrow S(4;6; - 4) \\
t = - 1 \Rightarrow S( - 2; - 6;8) \\
\end{matrix} ight., mà cao độ của S âm nên S(4;6; - 4) thỏa mãn.

  • Câu 31: Thông hiểu

    Tính tích phân

    Giá trị của H = \int_{0}^{1}{\left(
\frac{1}{2x + 1} + 3\sqrt{x} ight)dx}?

    Ta có:

    H = \int_{0}^{1}{\left( \frac{1}{2x + 1}
+ 3\sqrt{x} ight)dx} = \left. \ \left( \frac{1}{2}\ln|2x + 1| +
2x^{\frac{3}{2}} ight) ight|_{0}^{1} = 2 + \ln\sqrt{3}

  • Câu 32: Thông hiểu

    Tính góc giữa hai đường thẳng

    Cho tứ diện đều ABCD. Số đo giữa hai đường thẳng ABCD bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CD}.\overrightarrow{AM} = \overrightarrow{0} \\
\overrightarrow{CD}.\overrightarrow{MB} = \overrightarrow{0} \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{CD}.\overrightarrow{AB} = \overrightarrow{CD}.\left(
\overrightarrow{AM} + \overrightarrow{MB} ight) =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MB} =
\overrightarrow{0}

    Suu ra \overrightarrow{AB}\bot\overrightarrow{CD} nên số đo góc giữa hai đường thẳng AB;CD bằng 90^{0}.

  • Câu 33: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = 3x^2 + 1

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 34: Thông hiểu

    Chọn đáp án đúng

    Cho \int_{1}^{2}{\frac{1}{\sqrt{x^{2} +
1}}dx} = \ln\frac{2 + \sqrt{a}}{1 + \sqrt{b}},ab là các số hữu tỉ.. Giá trị \frac{a}{b} là:

    Ta đặt: t = x + \sqrt{x^{2} + 1}\Rightarrow \frac{dt}{t} = \frac{dx}{\sqrt{x^{2} + 1}}.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 + \sqrt{2} \\
x = 2 \Rightarrow t = 2 + \sqrt{5} \\
\end{matrix} ight..

    Ta có:

    \int_{1 + \sqrt{2}}^{2 +
\sqrt{5}}\frac{dt}{t} = \left. \ \left( \ln|t| ight) ight|_{1 +
\sqrt{2}}^{2 + \sqrt{5}}\ln\frac{2 + \sqrt{5}}{1 +
\sqrt{2}}.

  • Câu 35: Thông hiểu

    Xác định số cực trị của hàm số

    Hàm số F(x) là nguyên hàm của f(x) = (1 - x)\ln\left( x^{2} + 1
ight). Hỏi hàm số F(x) có bao nhiêu điểm cực trị?

    TXĐ: D\mathbb{= R}

    Ta có: F'(x) = f(x) = (1 -
x)\ln\left( x^{2} + 1 ight)

    \Rightarrow F'(x) = 0
\Leftrightarrow (1 - x)\ln\left( x^{2} + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - x = 0 \\
\ln\left( x^{2} + 1 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x^{2} + 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 0 \\
\end{matrix} ight.

    Phương trình F'(x) = 0 có 1 nghiệm đơn x = 1 và một nghiệm kép x = 0 nên hàm số F(x) có 1 điểm cực trị.

  • Câu 36: Nhận biết

    Chọn đáp án đúng

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

  • Câu 37: Nhận biết

    Độ dài đường sinh

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 38: Vận dụng

    Chọn đáp án đúng

    Nguyên hàm của hàm số f(x) = \dfrac{x}{(1+ x)^{5}} là

    Đặt u = x + 1 thì u' = 1.

    Khi đó

    \int_{}^{}{\frac{x}{(1 + x)^{5}}dx
= \int_{}^{}{\frac{u - 1}{u^{5}}du}}

    = \int_{}^{}{\left( \frac{1}{u} - \frac{1}{u^{5}}
ight)du = \int_{}^{}{u^{- 4}du - \int_{}^{}{u^{- 5}du}}}

    = - \frac{1}{3}.\frac{1}{u^{3}} +
\frac{1}{4}.\frac{1}{u^{4}} + C.

    Thay u = x + 1 ta được \int_{}^{}{\frac{x}{(x + 1)^{5}}dx = \frac{1}{4(x
+ 1)^{4}} - \frac{1}{3(x + 1)^{3}} + C}

  • Câu 39: Thông hiểu

    Độ dài đường chéo

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 40: Nhận biết

    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} =
(2;3;2);\overrightarrow{b} = (1;1; - 1). Khi đó tọa độ vectơ \overrightarrow{a} -
\overrightarrow{b} là:

    Ta có:

    \overrightarrow{a} - \overrightarrow{b}
= (2 - 1;3 - 1;2 + 1) = (1;2;3)

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo