Chọn đáp án đúng
Tìm nguyên hàm của hàm số
.
Ta có
Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!
Chọn đáp án đúng
Tìm nguyên hàm của hàm số
.
Ta có
Xét tính đúng sai của các nhận định
Hàm chi phí cận biên của sản phẩm được định nghĩa là đạo hàm của hàm chi phí. Một nhà máy sản xuất X với số lượng
sản phẩm A thì chi phí cận biên được mô hình hóa bởi công thức
(nghìn đồng) và chi phí sản xuất một sản phẩm A là 52 nghìn đồng. Các mệnh đề sau đúng hay sai?
a) Nếu hàm chi phí sản phẩm A là
thì
. Sai|||Đúng
b)
.Đúng||Sai
c)
. Đúng||Sai
d) Chi phí sản xuất 10 sản phẩm là
(nghìn). Sai|||Đúng
Hàm chi phí cận biên của sản phẩm được định nghĩa là đạo hàm của hàm chi phí. Một nhà máy sản xuất X với số lượng
sản phẩm A thì chi phí cận biên được mô hình hóa bởi công thức
(nghìn đồng) và chi phí sản xuất một sản phẩm A là 52 nghìn đồng. Các mệnh đề sau đúng hay sai?
a) Nếu hàm chi phí sản phẩm A là
thì
. Sai|||Đúng
b)
.Đúng||Sai
c)
. Đúng||Sai
d) Chi phí sản xuất 10 sản phẩm là
(nghìn). Sai|||Đúng
Hàm chi phí cận biên của sản phẩm được định nghĩa là đạo hàm của hàm chi phí. Một nhà máy sản xuất X với số lượng sản phẩm A thì chi phí cận biên được mô hình hóa bởi công thức
(nghìn đồng) và chi phí sản xuất một sản phẩm A là 52 nghìn đồng. Các mệnh đề sau đúng hay sai?
Hàm chi phí sản phẩm A là với
Theo giả thiết .
Vậy chi phí sản xuất 10 sản phẩm là (nghìn)
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Tìm nguyên hàm của hàm số
Nguyên hàm của hàm số
là hàm số nào trong các hàm số sau?
Vì với mọi
nên
Vậy đáp án cần tìm là:
Tính giá trị của tham số a
Biết
, a là các số hữu tỉ. Giá trị của a là:
Ta có:
Đặt
Đổi cận .
.
Chọn mệnh đề đúng
Cho hàm số
thỏa mãn
và
. Mệnh đề nào dưới đây đúng?
Ta có
Do nên
.
Vậy .
Tìm mệnh đề sai
Cho hàm số
là một nguyên hàm của hàm số
trên
. Các mệnh đề sau, mệnh đề nào sai.
Mệnh đề sai
Viết phương trình mặt phẳng
Trong không gian với hệ trục toạ độ
, cho tứ diện
có điểm
,
. Trên các cạnh
lần lượt lấy các điểm
thỏa:
. Viết phương trình mặt phẳng
biết tứ diện
có thể tích nhỏ nhất?
Áp dụng bất đẳng thức ta có:
Để nhỏ nhất khi và chỉ khi
Lúc đó mặt phẳng song song với mặt phẳng
và đi qua
.
Tìm các giá trị thực của tham số m và n
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng
,
. Với giá trị thực của
bằng bao nhiêu để
song song ![]()
Để song song
.
Vậy .
Tính diện tích hình phẳng
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Tìm nguyên hàm của hàm số
Tìm nguyên hàm ![]()
Đặt .
Khi đó
Xác định họ nguyên hàm
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Xác định tính đúng sai của từng phương án
Trong không gian
cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là
. Đúng||Sai
c) Cho
, tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm
nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian
cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là
. Đúng||Sai
c) Cho
, tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm
nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Sai: Hình chiếu của điểm trên trục
có tọa độ là
b) Đúng: Vì là trung điểm của
.
c) Đúng: Ta có .
vuông tại
.
d) Sai.
Gọi thỏa
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
.
Vậy .
Suy ra
Tính diện tích hình phẳng
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số
, trục hoành và các đường thẳng ![]()
Diện tích S của hình phẳng trên là:
Ta có:
=>
Chọn phương án thích hợp
Tìm
?
Đặt:
Mặt khác:
Từ ta có hệ:
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
??
Đặt
Chọn phân tích đúng
Cho tứ diện
. Gọi
là trọng tâm của tam giác
.Phân tích nào sau đây là đúng?
Ta có: là trọng tâm tam giác
khi
Độ dài đường sinh
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho
. Độ dài đường sinh
của hình nón bằng:

Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Tính giá trị của biểu thức
Biết hàm số
có nguyên hàm là
với
và
là phân số tối giản. Tính giá trị biểu thức
.
Ta có:
khi đó
Vậy đáp án cần tìm là:
Chọn đáp án đúng
Nếu
. Khi đó
bằng:
Ta có: .
Tìm tọa độ vectơ
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Tìm tọa độ biểu thức vectơ
Trong không gian
, cho
và
. Vectơ
có tọa độ là
Có , gọi
Vậy
PT mp trong hệ trục tọa độ Oxyz
Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi
lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là (
):
Theo đề bài, ta có:
Gọi
Ta có:
Chọn đáp án chính xác
Biết rằng
. Xác định
?
Ta có:
Do đó:
Tính bán kính đáy
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Chọn phương án đúng
Tìm
.
Vì lũy thừa của là số lẻ nên ta đổi biến
.
.
Xác định vectơ pháp tuyến của mặt phẳng
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
. Mặt phẳng
có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
.
Chọn đáp án đúng
Tìm một nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Tìm câu sai
Cho hình hộp chữ nhật
có
. Chọn kết luận sai dưới đây?
Hình vẽ minh họa
Đáp án sai là: .
Tìm điểm không thuộc mặt phẳng (Q)
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Gọi
là mặt phẳng đi qua
và song song với mặt phẳng
. Điểm nào sau đây không nằm trên mặt phẳng
?
Phương trình mặt phẳng đi qua
và song song với mặt phẳng
có dạng
Thay tọa độ các đáp án vào phương trình mặt phẳng ta có 3 điểm
thoả mãn, còn điểm
không thoả mãn.
Tính quãng đường của chất điểm
Một chất điểm đang chuyển động với vận tốc
thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian
kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc nên
Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Xác định hàm số f(x)
Nếu
thì
là hàm nào ?
Ta có: .
Chọn kết luận chính xác nhất
Cho hình vẽ:

Diện tích hình phẳng (phần gạch chéo) giới hạn bởi đồ thị 3 hàm số
như hình bên, bằng kết quả nào sau đây?
Diện tích miền tích phân được chia thành hai phần. Phần 1 với x nằm trong khoảng a đến b và phần 2 với x nằm trong khoảng b đến c:
.
Độ dài đường sinh
Trong không gian, cho tam giác ABC vuông tại A, AB =a và
. Độ dài đường sinh
của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là và chiều cao hình nón là
.
Vậy độ dài đường sinh của hình nón là:
Công thức tính thể tích khối tròn xoay
Cho hàm số
liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Thể tích khối tròn xoay tạo thành khi quay
quanh trục hoành được tính theo công thức:
Thể tích của khối tròn xoay cần tính là:
Xác định nguyên hàm
bằng
Ta có .
Chọn đáp án thích hợp
Trong không gian
, cho hai mặt phẳng
và
. Tập hợp tất cả các giá trị
để hai mặt phẳng này không song song là:
Ta có .
hệ này vô nghiệm
Hệ này vô nghiệm.
Do đó (P) không song song với (Q), với mọi giá trị của m.
Chọn mệnh đề đúng
Cho hàm số
liên tục nhận giá trị dương trên
và thỏa mãn
;
. Giá trị
gần nhất với giá trị nào sau đây?
Vì
Mà
Xác định các hệ số a, b, c, d
Tìm a, b, c, d để
là một nguyên hàm của
.
Ta có
Xác định phương trình mặt phẳng
Trong không gian
, phương trình của mặt phẳng
là:
Trong không gian , phương trình của mặt phẳng
là:
Tìm tọa độ trọng tâm của tam giác
Trong không gian với hệ trục tọa độ
, cho hình hộp
có
. Tọa độ trọng tâm tam giác
là
Hình vẽ minh họa
Gọi I là trung điểm của đoạn BD’ suy ra
Gọi là trọng tâm tam giác
Ta có: với
Do đó:
Vậy tọa độ trọng tâm tam giác cần tìm là
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: