Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    PT mp trong hệ trục tọa độ Oxyz

    Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi \alpha ,\,\,\beta ,\,\,\gamma lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là ( OH = p):

    Theo đề bài, ta có: H\left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight) \Rightarrow \overrightarrow {OH}  = \left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight)

    Gọi M\left( {x,y,z} ight) \in \left( P ight)

    \Rightarrow \overrightarrow {HM}  = \left( {x - p\cos \alpha ,y - p\cos \beta ,z - c\cos \gamma } ight)

    Ta có:

    \overrightarrow {OH}  \bot \overrightarrow {HM}

    \Leftrightarrow \left( {x - p\cos \alpha } ight)p\cos \alpha  + \left( {y - p\cos \beta } ight)p\cos \beta  + \left( {z - p\cos \gamma } ight)p\cos \gamma \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,

    \Leftrightarrow \left( P ight):x\cos \alpha  + y\cos \beta  + z\cos \gamma  - p = 0

  • Câu 2: Thông hiểu

    Tính bán kính đáy

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 3: Nhận biết

    Viết PT mp đi qua 3 điểm

    Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm A\left( {\,2,\,\,0,\,\,3\,} ight);\,\,\,B\left( {\,4,\,\, - 3,\,\,2\,} ight);\,\,\,C\left( {\,0,\,\,2,\,\,5\,} ight)

    Theo đề bài, ta có cặp vecto chỉ phương của \left( P ight):\overrightarrow {AB}  = \left( {2, - 3, - 1} ight);\overrightarrow {AC}  = \left( { - 2,2,2} ight)

    Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của

    \left( P ight):\overrightarrow n  = \left( { - 4, - 2, - 2} ight) =  - 2\left( {2,1,1} ight)

    Mp (P) đi qua A (2,0,3) và nhận vecto có tọa độ (2,1,1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 2} ight)2 + y.1 + \left( {z - 3} ight).1 = 0

    \Leftrightarrow 2x + y + z - 7 = 0

  • Câu 4: Thông hiểu

    Tìm câu sai

    Cho hình hộp chữ nhật ABCD.A_{1}B_{1}C_{1}D_{1}AB = a,BC = 2a,AA_{1} = 3a. Chọn kết luận sai dưới đây?

    Hình vẽ minh họa

    Đáp án sai là: \left(
\overrightarrow{AB_{1}};\overrightarrow{C_{1}D} ight) =
45^{0}.

  • Câu 5: Nhận biết

    Chọn khẳng định sai

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (1; -
2;0)\overrightarrow{b} = ( -
2;3;1). Khẳng định nào sau đây sai?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1;1;1) suy ra “\overrightarrow{a} + \overrightarrow{b} = ( - 1;1;
- 1)” là khẳng định sai.

  • Câu 6: Nhận biết

    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 1x =
3 bằng

    Diện tích hình giới hạn là S =
\int_{1}^{3}{\left| x^{3} ight|dx} = \left| \int_{3}^{3}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{1}^{3}
ight| = 20

  • Câu 7: Vận dụng

    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    a) Sai: Hình chiếu của điểm M trên trục Oy có tọa độ là (0;3;0)

    b) Đúng: Vì N là trung điểm của ME

    \Leftrightarrow \left\{ \begin{matrix}- 1 = \dfrac{2 + x_{E}}{2} \\1 = \dfrac{3 + y_{E}}{2} \\1 = \dfrac{- 1 + z_{E}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{E} = - 4 \\y_{E} = - 1 \\z_{E} = 3 \\\end{matrix} \Rightarrow E( - 4; - 1;3) ight.\  ight..

    c) Đúng: Ta có \overrightarrow{NM} =
(3;2; - 2);\overrightarrow{NP} = (2;m - 2;2).

    \bigtriangleup MNP vuông tại N \Leftrightarrow\overrightarrow{NM}.\overrightarrow{NP} = 0

    \Leftrightarrow 3.2 + 2.(m - 2) + ( -
2).2 = 0 \Leftrightarrow m = 1.

    d) Sai.

    Gọi J(x;y;z) thỏa 3\overrightarrow{JM} - \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - ( - 1 - x) = 0 \\3(3 - y) - (1 - y) = 0 \\3( - 1 - z) - (1 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{7}{2} \\y = 4 \\z = - 2 \\\end{matrix} ight.\  ight.

    Suy ra J\left( \frac{7}{2};4; - 2
ight).

    Khi đó T = |3\overrightarrow{IM} -
\overrightarrow{IN}| = |3\overrightarrow{IJ} + 3\overrightarrow{JM} -
\overrightarrow{IJ} - \overrightarrow{JN}| = |2\overrightarrow{IJ}| =
2IJ.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của J trên (Oxy)

    \Leftrightarrow I\left( \frac{7}{2};4;0 ight).

    Vậy a = \frac{7}{2};b = 4;c =
0.

    Suy ra 2a+b+c=11

  • Câu 8: Nhận biết

    Xác định phương trình mặt phẳng (P)

    Trong không gian với hệ toạ độ Oxyz , cho ba điểm A(2;1;3);B(3;0;2);C(0; - 2;1) . Phương trình mặt phẳng (P) đi qua A,B và cách C một khoảng lớn nhất?

    Hình vẽ minh họa

    Gọi H,K lần lượt là hình chiếu C của lên mp(P) và doạn thẳng AB

    Ta có : CH = d\left( I,(P) \right) \leq
CK \Rightarrow d\left( C,(P) \right) lớn nhất khi H \equiv K. Khi đó mặt phẳng (P) đi qua A,B và vuông với mặt phẳng (ABC)

    Ta có \overrightarrow{n_{p}} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} \right\rbrack \land
\overrightarrow{AB} = ( - 9, - 6, - 3)

    \Rightarrow (P):3x + 2y + z - 11 =
0

  • Câu 9: Vận dụng cao

    Viết phương trình mặt phẳng

    Trong không gian với hệ trục toạ độ Oxyz, cho tứ diện ABCD có điểm A(1;1;1),B(2;0;2),C( - 1; - 1;0),D(0;3;4). Trên các cạnh AB,AC,AD lần lượt lấy các điểm B',C',D' thỏa: \frac{AB}{AB'} + \frac{AC}{AC'} +
\frac{AD}{AD'} = 4. Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất?

    Áp dụng bất đẳng thức AM - GM ta có:

    4 = \frac{AB}{AB'} +
\frac{AC}{AC'} + \frac{AD}{AD'} \geq
3\sqrt[3]{\frac{AB.AC.AD}{AB'.AC'.AD'}}

    \Rightarrow
\frac{AB^{'}.AC^{'}.AD^{'}}{AB.AC.AD} \geq
\frac{27}{64}

    \Rightarrow
\frac{V_{AB'C'D'}}{V_{ABCD}} =
\frac{AB'.AC'.AD'}{AB.AC.AD} \geq \frac{27}{64}

    \Rightarrow V_{AB'C'D'} \geq
\frac{27}{64}V_{ABCD}

    Để V_{AB'C'D'} nhỏ nhất khi và chỉ khi \frac{AB'}{AB} =
\frac{AC'}{AC} = \frac{AD'}{AD} = \frac{3}{4}

    \Rightarrow \overrightarrow{AB'} =
\frac{3}{4}\overrightarrow{AB} \Rightarrow B'\left(
\frac{7}{4};\frac{1}{4};\frac{7}{4} \right)

    Lúc đó mặt phẳng (B'C'D') song song với mặt phẳng (BCD)và đi qua B'\left( \frac{7}{4};\frac{1}{4};\frac{7}{4}
\right)

    \Rightarrow (B'C'D'):16x +
40y - 44z + 39 = 0.

  • Câu 10: Thông hiểu

    Xác định công thức diện tích hình phẳng

    Cho đồ thị hàm số y = f(x). Diện tích hình phẳng (phần gạch trong hình) là:

    Diện tích hình phẳng (phần gạch trong hình) là: S = \int_{- 3}^{0}{f(x)dx} +
\int_{4}^{0}{f(x)dx}

  • Câu 11: Thông hiểu

    Xác định hàm số f(x)

    Nếu \int_{}^{}{f(x)dx = e^{x} + sin^2x+ C} thì f(x) là hàm nào ?

    Ta có: \left( e^{x} + sin^{2}x + C\right)^{'} = e^{x} + sin2x.

  • Câu 12: Vận dụng

    Diện tích của thiết diện

    Một hình nón có bán kính đáy R, góc ở đỉnh là 60^0. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo 90^0 . Diện tích của thiết diện là:

     Diện tích của thiết diện

    Vì góc ở đỉnh là 60^0nên thiết diện qua trục SAC là tam giác đều cạnh 2R.

    Suy ra đường cao của hình nón là SI = R\sqrt 3.

    Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng 90^0 nên IAB là tam giác vuông cân tại I, suy ra AB = R\sqrt 2.

    Gọi M là trung điểm của AB thì \left\{ \begin{array}{l}IM \bot AB\\SM \bot AB\end{array} ight.IM = \frac{{R\sqrt 2 }}{2}.

    Trong tam giác vuông SIM, ta có SM = \sqrt {S{I^2} + I{M^2}}  = \frac{{R\sqrt {14} }}{2}

    Vậy {S_{\Delta SAB}} = \frac{1}{2}AB.SM = \frac{{{R^2}\sqrt 7 }}{2} (đvdt).

  • Câu 13: Nhận biết

    Chọn đáp án đúng

    Tìm nguyên hàm của hàm số f(x) = (2x -
3)^{2} .

    Ta có \int_{}^{}{f(x)dx =
\frac{1}{3.2}(2x - 3)^{3} + C}

  • Câu 14: Thông hiểu

    Tìm tọa độ điểm M

    Trong không gian Oxyz, điểm M thuộc trục Oy và cách đều hai mặt phẳng (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0 có tọa độ là?

    Ta có M \in Oy suy ra M(0;m;0).

    Theo đề bài ra ta có:

    d\left( M,(P) ight) = d\left( M,(Q)
ight)

    \Leftrightarrow \frac{|m + 1|}{\sqrt{3}}
= \frac{| - m - 5|}{\sqrt{3}} \Leftrightarrow m = - 3

    Vậy M(0; - 3;0).

  • Câu 15: Thông hiểu

    Chọn đáp án đúng

    Tìm một nguyên hàm F(x) của hàm số f(x) = x.e^{- x} thỏa mãn F(0) = 1?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = e^{- x}dx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - e^{- x} \\
\end{matrix} ight.

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
x.e^{- x} ight)dx}

    = - xe^{- x} + \int_{}^{}{e^{- x}dx} +
C

    = - xe^{- x} - e^{- x} + C. Theo bài ra ta có: F(0) = 1 \Leftrightarrow - 1 -
1 + C = 1 \Rightarrow C = 2

    Vậy - (x + 1)e^{- x} + 2 là đáp án cần tìm.

  • Câu 16: Nhận biết

    Chọn đáp án đúng

    Trong không gian Oxyz cho A(2;0;0),B(0; - 2;0),C(0;0; - 1). Viết phương trình mặt phẳng (ABC)?

    Phương trình mặt phẳng (ABC)\frac{x}{2} + \frac{y}{- 2} + \frac{z}{-
1} = 1

  • Câu 17: Thông hiểu

    Chọn đáp án đúng

    Cho \int_{1}^{2}{\frac{1}{\sqrt{x^{2} +
1}}dx} = \ln\frac{2 + \sqrt{a}}{1 + \sqrt{b}},ab là các số hữu tỉ.. Giá trị \frac{a}{b} là:

    Ta đặt: t = x + \sqrt{x^{2} + 1}\Rightarrow \frac{dt}{t} = \frac{dx}{\sqrt{x^{2} + 1}}.

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 + \sqrt{2} \\
x = 2 \Rightarrow t = 2 + \sqrt{5} \\
\end{matrix} ight..

    Ta có:

    \int_{1 + \sqrt{2}}^{2 +
\sqrt{5}}\frac{dt}{t} = \left. \ \left( \ln|t| ight) ight|_{1 +
\sqrt{2}}^{2 + \sqrt{5}}\ln\frac{2 + \sqrt{5}}{1 +
\sqrt{2}}.

  • Câu 18: Vận dụng

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm I = \int_{}^{}{(x -1)\sin2x.dx}

    I = \int_{}^{}{(x -1)\sin2xdx}

    Đặt x - 1 = u \Rightarrow dx =
du.

    \sin2xdx = dv \Rightarrow v = -\dfrac{1}{2}.\cos2x

    Khi đó I = \frac{- (x - 1)}{2}.\cos2x +\frac{1}{2}\int_{}^{}{\cos2xdx}

    = \frac{(1 - x)\cos2x}{2} +\frac{1}{4}.\sin2x + C

  • Câu 19: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =\sin^{4}x\cos x??

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    \int_{}^{}{\left( \sin^{4}x\cos xight)dx} = \int_{}^{}{t^{4}dt} = \frac{t^{5}}{5} + C =\frac{1}{5}\sin^{5}x + C

  • Câu 20: Vận dụng cao

    Tính giá trị của tham số a

    Biết I = \int_{0}^{1}{\frac{\sqrt{ln^{3}x
+ 3x}\left( ln^{2}x + \frac{1}{3}x \right)}{x}dx} = \frac{2}{9}\left(
\sqrt{1 + ae + 27e^{2} + 27e^{3}} - 3\sqrt{3} \right), a là các số hữu tỉ. Giá trị của a là:

    Ta có:

    I = \int_{1}^{e}{\frac{\sqrt{ln^{3}x +
3x}\left( ln^{2}x + \frac{1}{3}x ight)}{x}dx}

    =
\frac{1}{3}\int_{1}^{e}{\frac{\sqrt{ln^{3}x + 3x}\left( 3ln^{2}x + x
ight)}{x}dx}

    Đặt t = ln^{3}x + 3x \Rightarrow dt =
\frac{3}{x}ln^{2}x + 1

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 3 \\
x = e \Rightarrow t = 1 + 3e \\
\end{matrix} ight..

    \Rightarrow I = \int_{3}^{1 +
3e}\sqrt{t}dt = \frac{2}{3}\left. \ \left( \sqrt{t^{3}} ight)
ight|_{3}^{1 + 3e} = \frac{2}{3}\left( \sqrt{(1 + 3e)^{3}} - 3\sqrt{3}
ight).

    = \frac{2}{9}\left( \sqrt{1 + 9e +
27e^{2} + 27e^{3}} - 3\sqrt{3} ight) \Rightarrow a = 9

  • Câu 21: Nhận biết

    Chọn đáp án đúng

    Nếu \int_{0}^{1}{f(x)dx} =
2;\int_{1}^{2}{f(x)dx} = 4. Khi đó \int_{0}^{2}{f(x)dx} bằng:

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx} = 2 + 4 = 6.

  • Câu 22: Thông hiểu

    Tính giá trị tích phân I

    Tích phân I = \int_{0}^{1}{(2x + 1)\ln(x
+ 1)dx} có giá trị là:

    Xét giá trị tích phân I =
\int_{0}^{1}{(2x + 1)\ln(x + 1)dx}

    Đặt \left\{ \begin{matrix}
u = \ln(x + 1) \\
dv = (2x + 1)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = \frac{1}{x + 1}dx \\
v = x^{2} + x \\
\end{matrix} ight..

    \Rightarrow I = \left. \ \left\lbrack
\left( x^{2} + x ight)\ln(x + 1) ightbrack ight|_{0}^{1} -
\int_{0}^{1}{xdx}

    = \left. \ \left\lbrack \left( x^{2} + x
ight)\ln(x + 1) ightbrack ight|_{0}^{1} - \left. \ \left(
\frac{x^{2}}{2} ight) ight|_{0}^{1} = 2ln2 -
\frac{1}{2}

    Đáp án đúng là I = 2ln2 -
\frac{1}{2}.

  • Câu 23: Nhận biết

    Tính diện tích hình phẳng

    Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y =  - {x^2} + 2x - 2, trục hoành và các đường thẳng x = 0;x = 3

    Diện tích S của hình phẳng trên là: S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}

    Ta có: - {x^2} + 2x - 2 \leqslant 0;\forall x \in \left[ {0;3} ight]

    => S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}  = \int\limits_0^3 {\left( {{x^2} - 2x + 2} ight)dx = \left. {\left( {\frac{{{x^3}}}{3} - {x^2} + 2x} ight)} ight|_0^3 = 6\left( {dvdt} ight)}

  • Câu 24: Nhận biết

    Độ dài đường sinh

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 25: Thông hiểu

    Tính giá trị của biểu thức

    Biết F(x) là nguyên hàm của f(x) = 4^{x}F(1) = \dfrac{1}{\ln2}. Khi đó giá trị F(2) bằng:

    Ta có \int_{}^{}{4^{x}dx =
\frac{1}{\ln4}.4^{x} + C = F(x)}

    F(1) = \frac{1}{\ln2} \Leftrightarrow
\frac{4}{\ln4} + C = \frac{1}{\\ln2} \Leftrightarrow C = -
\frac{1}{\ln2}.

    Do đó F(2) = \frac{1}{\ln4}.4^{2} -
\frac{1}{\ln2} = \frac{16}{2\ln2} - \frac{1}{\ln2} =
\frac{7}{\ln2}.

  • Câu 26: Thông hiểu

    Xác định giá trị nguyên của tham số a

    Tích phân I = \int_{1}^{2}\frac{ax -
2}{\sqrt{ax^{2} - 4x}}dx = 2\sqrt{3} - 1. Giá trị nguyên của a là:

    Ta có: \left( ax^{2} - 4x ight)' =
2ax - 4 = 2(ax - 2).

    \Rightarrow I =
\frac{1}{2}\int_{1}^{2}\frac{2ax - 4}{\sqrt{ax^{2} -
4x}}dx.

    Đặt t = ax^{2} - 4x \Rightarrow dt = (2ax
- 4)dx.

    Đổi cận \left\{ \begin{matrix}
x = 2 \Rightarrow t = 4a - 8 \\
x = 1 \Rightarrow t = a - 4 \\
\end{matrix} ight..

    Ta có:

    I = \frac{1}{2}\int_{a - 4}^{4a -
8}\frac{1}{\sqrt{t}}dt = \left. \ \left( \sqrt{t} ight) ight|_{a -
4}^{4a - 8} = \sqrt{4a - 8} - \sqrt{a - 4}

    Theo đề bài:

    I = 2\sqrt{3} - 1
\Leftrightarrow \sqrt{4a - 8} - \sqrt{a - 4} = 2\sqrt{3} -
1

    \Leftrightarrow ..... \Leftrightarrow a =
5.

  • Câu 27: Nhận biết

    Xác định nguyên hàm

    \int_{}^{}{x^{2}dx} bằng

    Ta có \int_{}^{}{x^{2}dx} =\frac{1}{3}x^{3} + C.

  • Câu 28: Thông hiểu

    Tính giá trị của biểu thức

    Biết hàm số f(x) = 2x\left( 1 + 3x^{3}
\right) có nguyên hàm là F(x) =
ax^{2} + \frac{b}{c}x^{5} + C với a,b,c\mathbb{\in Z}\frac{b}{c} là phân số tối giản. Tính giá trị biểu thức T = \frac{a + b +
c}{a.b.c}.

    Ta có: f(x) = 2x\left( 1 + 3x^{3} \right)
= 2x + 6x^{4}

    \int_{}^{}{f(x)dx} = x^{2} +
\frac{6x^{5}}{5} + C khi đó a = 1;b
= 6;c = 5

    \Rightarrow T = \frac{1 + 6 + 5}{1.6.5}
= \frac{2}{5}

    Vậy đáp án cần tìm là: T =
\frac{2}{5}

  • Câu 29: Thông hiểu

    Chọn mệnh đề đúng

    Cho hàm số f(x) thỏa mãn f'(x) = 3 - 5\sin x và f(0) = 10. Mệnh đề nào dưới đây đúng?

    Ta có f(x) = \int_{}^{}{f'(x)dx =
\int_{}^{}{(3 - 5\sin x)dx = 3x + 5\cos x + C}}

    Do f(0) = 10 nên 3.0 + 5cos0 + C = 10 \Leftrightarrow C =
5.

    Vậy f(x) = 3x + 5\cos x + 5.

  • Câu 30: Nhận biết

    Độ dài đường sinh

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 31: Nhận biết

    Xác định họ nguyên hàm

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y =
x^{5}.Phát biểu nào sau đây đúng?

    Ta có \left(
\frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}
ight)\mathbf{'}\mathbf{=}\mathbf{x}^{\mathbf{5}}

    Vậy đáp án cần tìm là: \frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}\mathbf{+
C}.

  • Câu 32: Thông hiểu

    Chọn đáp án đúng

    Biết rằng \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx} = \frac{1}{a} + \frac{\pi}{b} với a;b là các số hữu tỉ. Giá trị của a.b là:

    Ta có: I = \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx}

    Đặt \left\{ \begin{matrix}u = x + 1 \\dv = \cos2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \dfrac{1}{2}\sin2x \\\end{matrix} ight.

    \Rightarrow I = \left. \ \frac{1}{2}(x +1)\sin2x ight|_{0}^{\frac{\pi}{4}} -\frac{1}{2}\int_{0}^{\frac{\pi}{4}}{\sin2xdx}

    \Rightarrow I = \frac{1}{2}\left(\frac{\pi}{4} + 1 ight) + \left. \ \frac{1}{4}\cos2xight|_{0}^{\frac{\pi}{4}} = \frac{\pi}{8} + \frac{1}{4}

    \Rightarrow a.b = 8.4 = 32

  • Câu 33: Nhận biết

    Tìm mệnh đề sai

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) trên K. Các mệnh đề sau, mệnh đề nào sai.

    Mệnh đề sai \left( \int_{}^{}{f(x)dx}
\right)^{'} = f'(x).

  • Câu 34: Vận dụng cao

    Chọn phương án thích hợp

    Tìm I =
\int_{}^{}\frac{cos^{4}x}{sin^{4}x + cos^{4}x}dx?

    Đặt: T =
\int_{}^{}{\frac{sin^{4}x}{sin^{4}x + cos^{4}x}dx}

    \Rightarrow I + T =
\int_{}^{}{\frac{cos^{4}x}{sin^{4}x + cos^{4}x}dx +
\int_{}^{}{\frac{sin^{4}x}{sin^{4}x + cos^{4}x}dx}}

    = \int_{}^{}\frac{sin^{4}x +
cos^{4}x}{sin^{4}x + cos^{4}x}dx = x + C_{1}(1)

    Mặt khác:

    I - T =
\int_{}^{}{\frac{cos^{4}x}{sin^{4}x + cos^{4}x}dx -
\int_{}^{}{\frac{sin^{4}x}{sin^{4}x + cos^{4}x}dx}} = \int_{}^{}\frac{cos^{4}x - sin^{4}x}{sin^{4}x +
cos^{4}x}dx

    \Leftrightarrow I - T =
\int_{}^{}{\frac{cos^{2}x - sin^{2}x}{1 -
2sin^{2}x.cos^{2}x}dx} =
\int_{}^{}\frac{cos2x}{1 - \frac{1}{2}sin^{2}x}dx

    \Leftrightarrow I - T =
\int_{}^{}{\frac{2cos2x}{2 - sin^{2}2x}dx} = \frac{1}{2\sqrt{2}}\ln\left( \frac{\sqrt{2} +
sin2x}{\sqrt{2} - sin2x} \right) + C_{2}(2)

    Từ (1);(2) ta có hệ:

    \left\{ \begin{matrix}I + T = x + C_{1} \\I - T = \dfrac{1}{2\sqrt{2}}\ln\left( \dfrac{\sqrt{2} + sin2x}{\sqrt{2} -sin2x} \right) + C_{2} \\\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}I = \dfrac{1}{2}\left( x + \dfrac{1}{2\sqrt{2}}\ln\left( \dfrac{\sqrt{2} +sin2x}{\sqrt{2} - sin2x} \right) \right) + C \\T = \dfrac{1}{2}\left( x - \dfrac{1}{2\sqrt{2}}\ln\left( \dfrac{\sqrt{2} +sin2x}{\sqrt{2} - sin2x} \right) \right) + C \\\end{matrix} \right.

  • Câu 35: Nhận biết

    Tìm nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = x^{3} + 3x +
2 là hàm số nào trong các hàm số sau?

    \left( \frac{x^{4}}{4} +
\frac{3x^{2}}{2} + 2x \right)' = \frac{4x^{3}}{4} + \frac{3.2x}{2} +
2 = x^{3} + 3x + 2 với mọi x\mathbb{\in R}nên \int_{}^{}{f(x)dx} = F(x)

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{4}}{4} + \frac{3x^{2}}{2} + 2x + C

  • Câu 36: Thông hiểu

    Chọn đáp án chính xác

    Biết rằng A = \int_{}^{}\frac{\cos
x}{\sin x + \cos x}dx;B = \int_{}^{}\frac{\sin x}{\sin x + \cos
x}dx. Xác định T = 4B -
2A?

    Ta có: \left\{ \begin{gathered}
  A + B = \int 1 dx = x + {C_1} \hfill \\
  A - B = \int {\frac{{\cos x - \sin x}}{{\sin x + \cos x}}} dx = \ln \left| {\sin x + \cos x} ight| + {C_2} \hfill \\ 
\end{gathered}  ight.

    Do đó:\left\{ \begin{gathered}
  A = \frac{{x + \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} + {C_2}}}{2} \hfill \\
  B = \frac{{x - \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} - {C_2}}}{2} \hfill \\ 
\end{gathered}  ight.

    \Rightarrow T = 4B - 2A = x - 3\ln\left|\sin x + \cos x ight| + C

  • Câu 37: Nhận biết

    Công thức tính thể tích khối tròn xoay

    Cho hàm số y = f\left( x ight) liên tục trên đoạn \left[ {a;b} ight]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f\left( x ight), trục hoành và hai đường thẳng x = a;x = b;\left( {a < b} ight). Thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức:

    Thể tích của khối tròn xoay cần tính là: V = 2\pi \int\limits_a^b {{f^2}\left( x ight)dx}

  • Câu 38: Nhận biết

    Tìm ba điểm thẳng hàng trong 4 điểm đã cho

    Trong không gian Oxyz, cho bốn điểm A( - 1;\ 2;\ 0), B(3;\ 1;\ 0), C(0;\ 2;\ 1)D(1;\ 2;\ 2). Trong đó có ba điểm thẳng hàng là

    Ta có: \overrightarrow{AC} = (1;\ 0;\
1), \overrightarrow{AD} = (2;\ 0;\
2)

    \overrightarrow{AC} \land
\overrightarrow{AD} = \overrightarrow{0}, nên hai vecto \overrightarrow{AC}, \overrightarrow{AD} cùng phương, hay ba điểm \mathbf{A}\mathbf{,}\mathbf{C}\mathbf{,}\mathbf{D} thẳng hàng.

    Nhận xét: Có thể vẽ phát họa lên hệ tọa độ Oxyz để nhìn nhận dễ dàng hơn.

  • Câu 39: Thông hiểu

    Chọn đáp án đúng

    Trong không gian Oxyz, cho hai điểm A(5; - 4;2),B(1;2;4). Mặt phẳng đi qua A và vuông góc với đường thẳng AB là:

    Gọi (α) là mặt phẳng đi qua A(5; -
4;2) và vuông góc với đường thẳng AB.

    Do (α) vuông góc với AB nên vectơ pháp tuyến của mặt phẳng (α) là \overrightarrow{n_{(\alpha)}} =
\overrightarrow{n_{AB}} = ( - 4;6;2)

    Vậy phương trình mặt phẳng (α) là:

    - 4(x - 5) + 6(y + 4) + 2(z - 2) =
0

    \Leftrightarrow 2x - 3y - z - 20 =
0

  • Câu 40: Thông hiểu

    Tìm tọa độ trọng tâm của tam giác

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D'A(0;0;0),B(3;0;0),C(0;3;0),D'(0;3; -3). Tọa độ trọng tâm tam giác A'B'C

    Hình vẽ minh họa

    Gọi I là trung điểm của đoạn BD’ suy ra I\left( \frac{3}{2};\frac{3}{2}; - \frac{3}{2}ight)

    Gọi G(a;b;c) là trọng tâm tam giác A'B'C

    Ta có: \overrightarrow{DI} =3\overrightarrow{IG} với \left\{\begin{matrix}\overrightarrow{DI} = \left( \frac{3}{2}; - \frac{3}{2}; - \frac{3}{2}ight) \\\overrightarrow{IG} = \left( a - \frac{3}{2};b - \frac{3}{2};c +\frac{3}{2} ight) \\\end{matrix} ight.

    Do đó:

    \left\{ \begin{matrix}\frac{3}{2} = 3\left( a - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( b - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( c + \frac{3}{2} ight) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 1 \\c = - 2 \\\end{matrix} ight.\  \Rightarrow G(2;1; - 2)

    Vậy tọa độ trọng tâm tam giác cần tìm là (2;1; - 2)

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo