Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Xác định nguyên hàm I

    Tìm I = \int_{}^{}\frac{\sin x}{\sin x +
\cos x}dx?

    Đặt: T = \int_{}^{}{\frac{\cos x}{\sin x
+ \cos x}dx}

    \Rightarrow I + T =
\int_{}^{}{\frac{\sin x}{\sin x + \cos x}dx + \int_{}^{}{\frac{\cos
x}{\sin x + \cos x}dx}}

    = \int_{}^{}{\frac{\sin x + \cos x}{\sin
x + \cos x}dx = x + C_{1}}(1)

    Ta lại có :

    I - T = \int_{}^{}{\frac{\sin x}{\sin x
+ \cos x}dx - \int_{}^{}{\frac{\cos x}{\sin x + \cos x}dx
=}}\int_{}^{}{\frac{\sin x - \cos x}{\sin x + \cos x}dx}

    \Leftrightarrow I - T = -\int_{}^{}{\frac{d\left( \sin x + \cos x \right)}{\sin x + \cos x}}= -\ln\left| \sin x + \cos x \right| + C_{2}(2)

    Từ (1);(2) ta có hệ: \left\{ \begin{matrix}
I + T = x + C_{1} \\
I - T = - \ln\left| \sin x + \cos x \right| + C_{2} \\
\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}I = \dfrac{1}{2}\left( x - \ln\left| \sin x + \cos x \right| \right) + C\\T = \dfrac{1}{2}\left( x + \ln\left| \sin x + \cos x \right| \right) + C\\\end{matrix} \right.

  • Câu 2: Nhận biết

    Tính tích phân I

    Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx} có giá trị là:

     Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx} có giá trị là:

    I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx}  = \left. {\left( { - \cos x - \sin x} ight)} ight|_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} =  - 2

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 3: Nhận biết

    Xác định tích vô hướng

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

  • Câu 4: Vận dụng

    Tìm các giá trị b và c theo yêu cầu

    Trong không gian với hệ toạ độ Oxyz, cho A(1;0;0), B(0;b;0), C(0;0;c), (b
> 0,c > 0) và mặt phẳng (P):y
- z + 1 = 0. Xác định b và c biết mặt phẳng (ABC) vuông góc với mặt phẳng (P) và khoảng cách từ O đến (ABC) bằng \frac{1}{3}.

    Phương trình mặt phẳng (ABC) có dạng \frac{x}{1} + \frac{y}{b} + \frac{z}{c}
= 1 \Leftrightarrow bcx + cy + bz - bc = 0

    Theo giả thiết: \left\{ \begin{matrix}
(ABC)\bot(P) \\
d\left( O,(ABC) \right) = \frac{1}{3} \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
c - b = 0 \\
\frac{| - bc|}{\sqrt{(bc)^{2} + c^{2} + b^{2}}} = \frac{1}{3} \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
b = c \\
\frac{b^{2}}{\sqrt{b^{4} + 2b^{2}}} = \frac{1}{3} \\
\end{matrix} \right.

    \Leftrightarrow 3b^{2} = \sqrt{b^{4} +
2b^{2}} \Leftrightarrow 8b^{4} = 2b^{2}

    \Leftrightarrow b = \frac{1}{2}
\Rightarrow c = \frac{1}{2}

  • Câu 5: Nhận biết

    Diện tích toàn phần

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 6: Thông hiểu

    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =
x\sqrt{x}.

    Ta có:

    \int_{}^{}{x\sqrt{x}dx =
\int_{}^{}{x^{\frac{3}{2}}dx = \frac{2}{5}x^{\frac{5}{2}} + C =
\frac{2}{5}x^{2}\sqrt{x} + C}}.

  • Câu 7: Vận dụng cao

    Chọn phương án thích hợp

    Tìm I =
\int_{}^{}\frac{cos^{4}x}{sin^{4}x + cos^{4}x}dx?

    Đặt: T =
\int_{}^{}{\frac{sin^{4}x}{sin^{4}x + cos^{4}x}dx}

    \Rightarrow I + T =
\int_{}^{}{\frac{cos^{4}x}{sin^{4}x + cos^{4}x}dx +
\int_{}^{}{\frac{sin^{4}x}{sin^{4}x + cos^{4}x}dx}}

    = \int_{}^{}\frac{sin^{4}x +
cos^{4}x}{sin^{4}x + cos^{4}x}dx = x + C_{1}(1)

    Mặt khác:

    I - T =
\int_{}^{}{\frac{cos^{4}x}{sin^{4}x + cos^{4}x}dx -
\int_{}^{}{\frac{sin^{4}x}{sin^{4}x + cos^{4}x}dx}} = \int_{}^{}\frac{cos^{4}x - sin^{4}x}{sin^{4}x +
cos^{4}x}dx

    \Leftrightarrow I - T =
\int_{}^{}{\frac{cos^{2}x - sin^{2}x}{1 -
2sin^{2}x.cos^{2}x}dx} =
\int_{}^{}\frac{cos2x}{1 - \frac{1}{2}sin^{2}x}dx

    \Leftrightarrow I - T =
\int_{}^{}{\frac{2cos2x}{2 - sin^{2}2x}dx} = \frac{1}{2\sqrt{2}}\ln\left( \frac{\sqrt{2} +
sin2x}{\sqrt{2} - sin2x} \right) + C_{2}(2)

    Từ (1);(2) ta có hệ:

    \left\{ \begin{matrix}I + T = x + C_{1} \\I - T = \dfrac{1}{2\sqrt{2}}\ln\left( \dfrac{\sqrt{2} + sin2x}{\sqrt{2} -sin2x} \right) + C_{2} \\\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}I = \dfrac{1}{2}\left( x + \dfrac{1}{2\sqrt{2}}\ln\left( \dfrac{\sqrt{2} +sin2x}{\sqrt{2} - sin2x} \right) \right) + C \\T = \dfrac{1}{2}\left( x - \dfrac{1}{2\sqrt{2}}\ln\left( \dfrac{\sqrt{2} +sin2x}{\sqrt{2} - sin2x} \right) \right) + C \\\end{matrix} \right.

  • Câu 8: Thông hiểu

    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho các vectơ \overrightarrow{a}(2;m - 1;3)\overrightarrow{b}(1;3; - 2n). Xác định giá trị của m;n để hai vectơ đã cho có cùng hướng?

    Ta có: Hai vectơ \overrightarrow{a}(2;m -
1;3)\overrightarrow{b}(1;3; -
2n) cùng hướng nên

    \overrightarrow{a} =k.\overrightarrow{b};(k > 0) \Leftrightarrow \left\{ \begin{matrix}2 = k \\m - 1 = 3k \\3 = k( - 2n) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = k \\m = 7 \ = - \dfrac{3}{4} \\\end{matrix} ight.

    Vậy m = 7;n = - \frac{3}{4} là đáp án cần tìm.

  • Câu 9: Thông hiểu

    Chọn đáp án thích hợp

    Hàm số nào dưới đây là họ nguyên hàm của hàm số y = cos2x?

    Ta có: \int_{}^{}{\cos2xdx} =\frac{1}{2}\sin2x + C

    = \frac{1}{2}.2\sin x\cos x + C =\frac{1}{2}.\left( 1 + 2\sin x\cos x ight) + C -\frac{1}{2}

    = \frac{1}{2}.\left( \sin^{2}x +2\sin x\cos x + \cos^{2}x ight) + C'

    = \frac{1}{2}.\left( \sin x + \cos x
ight)^{2} + C'

    Vậy đáp án cần tìm là: y =
\frac{1}{2}\left( \sin x + \cos x ight)^{2} + C.

  • Câu 10: Nhận biết

    Diện tích toàn phần

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:

    Do thiết diện đi qua trục hình trụ nên ta có h = 2R.

    Diện tích toàn phần là: {S_{tp}} = 2\pi R\left( {R + h} ight) = 6\pi {R^2} (đvdt).

  • Câu 11: Thông hiểu

    Chọn phương án thích hợp

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{5x - 2}.

    Ta có

    \int_{}^{}{f(x)dx = \int_{}^{}{\frac{dx}{5x - 2}}}

    = \frac{1}{5}\int_{}^{}{\frac{d(5x - 2)}{5x- 2} = \frac{1}{5}\ln|5x - 2| + C}

  • Câu 12: Nhận biết

    Giao điểm 3 mp

    Ba mặt phẳng 2x + y - z - 1 = 0,3x - y - z + 2 = 0,4x - 2y + z - 3 = 0 cắt nhau tại điểm A.Tọa độ của A là:

     Tọa độ của A là nghiệm của hệ phương trình :

    \left\{ \begin{array}{l}2x + y - z - 1 = 0\left( 1 ight)\\3x - y - z + 2 = 0\left( 2 ight)\\4x - 2y + z - 3 = 0\left( 3 ight)\end{array} ight.

    Giải (1),(2) tính x,y theo z được x = \frac{{2z - 1}}{5};y = \frac{{z + 7}}{5}

    Thế vào phương trình (3) được z=3, từ đó có x=1,y=2.

    Vậy A(1, 2, 3).

  • Câu 13: Thông hiểu

    Chọn đáp án đúng

    Tính\int_{}^{}{\cos
x.sin^{2}x.dx}

    Ta có: \int_{}^{}{\cos x.sin^{2}x.dx =
\int_{}^{}{sin^{2}x.d\left( \sin x \right) = \frac{sin^{3}x}{3} +
C}}

  • Câu 14: Thông hiểu

    Tính tang của góc

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 15: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)?

    Ta có: f(x) = (x + 1)(x + 2) = x^{2} + 3x
+ 2

    \int_{}^{}{f(x)}dx = \int_{}^{}{\left(
x^{2} + 3x + 2 ight)dx} = \frac{x^{3}}{3} + \frac{3}{2}x^{2} + 2x +
C

  • Câu 16: Vận dụng

    Tính đường cao nón

    Cho hình nón đỉnh S có đáy là hình tròn tâm O. Dựng hai đường sinh SA và SB, biết tam giác SAB vuông và có diện tích bằng 4a^2. Góc tạo bởi giữa trục SO và mặt phẳng (SAB) bằng 30^0. Đường cao h của hình nón bằng:

     Tính đường cao nón

    Theo giả thiết ta có tam giác SAB vuông cân tại S.

    Gọi E là trung điểm AB, suy ra\left\{ \begin{array}{l}SE \bot AB\\OE \bot AB\end{array} ight.  và SE = \frac{1}{2}AB.

    Ta có {S_{\Delta SAB}} = \frac{1}{2}AB.SE = 4{a^2} \Leftrightarrow \frac{1}{2}AB.\frac{1}{2}AB = 4{a^2}

    \Rightarrow AB = 4a \Rightarrow SE = 2a.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH.

    Từ đó suy ra OH \bot \left( {SAB} ight) nên

    {30^0} = \widehat {SO,\left( {SAB} ight)} = \widehat {SO,SH} = \widehat {OSH} = \widehat {OSE}

    Trong tam giác vuông SOE, ta có SO = SE.\cos \widehat {OSE} = a\sqrt 3

  • Câu 17: Thông hiểu

    Tìm điểm không thuộc mặt phẳng (Q)

    Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 1;2;1) và mặt phẳng (P):2x - y + z - 3 = 0. Gọi (Q) là mặt phẳng đi qua A và song song với mặt phẳng (P). Điểm nào sau đây không nằm trên mặt phẳng (Q)?

    Phương trình mặt phẳng (Q)đi qua A và song song với mặt phẳng (P) có dạng

    (Q):2x - y + z + 3 = 0

    Thay tọa độ các đáp án vào phương trình mặt phẳng (Q) ta có 3 điểm K;I;M thoả mãn, còn điểm N không thoả mãn.

  • Câu 18: Thông hiểu

    Tính diện tích tam giác

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;1;1),B(4;3;2),C(5;2;1). Diện tích của tam giác ABC là:

    Ta có: \overrightarrow{AB} =
(3;2;1),\overrightarrow{AC} = (4;1;0)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 1;4; -
5)

    Diện tích tam giác ABC

    S = \frac{1}{2}\left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\frac{1}{2}\sqrt{( - 1)^{2} + 4^{2} + ( - 5)^{2}} =
\frac{\sqrt{42}}{2}

  • Câu 19: Thông hiểu

    Xác định giá trị nguyên của tham số a

    Tích phân I = \int_{1}^{2}\frac{ax -
2}{\sqrt{ax^{2} - 4x}}dx = 2\sqrt{3} - 1. Giá trị nguyên của a là:

    Ta có: \left( ax^{2} - 4x ight)' =
2ax - 4 = 2(ax - 2).

    \Rightarrow I =
\frac{1}{2}\int_{1}^{2}\frac{2ax - 4}{\sqrt{ax^{2} -
4x}}dx.

    Đặt t = ax^{2} - 4x \Rightarrow dt = (2ax
- 4)dx.

    Đổi cận \left\{ \begin{matrix}
x = 2 \Rightarrow t = 4a - 8 \\
x = 1 \Rightarrow t = a - 4 \\
\end{matrix} ight..

    Ta có:

    I = \frac{1}{2}\int_{a - 4}^{4a -
8}\frac{1}{\sqrt{t}}dt = \left. \ \left( \sqrt{t} ight) ight|_{a -
4}^{4a - 8} = \sqrt{4a - 8} - \sqrt{a - 4}

    Theo đề bài:

    I = 2\sqrt{3} - 1
\Leftrightarrow \sqrt{4a - 8} - \sqrt{a - 4} = 2\sqrt{3} -
1

    \Leftrightarrow ..... \Leftrightarrow a =
5.

  • Câu 20: Nhận biết

    Tìm tọa độ giao điểm

    Trong không gian với hệ trục tọa độ Oxyz. Tọa độ giao điểm Mcủa mặt phẳng (P):2x + 3y + z - 4 = 0 với trục Ox là?

    Gọi M(a,0,0) là điểm thuộc trục Ox. Điểm M \in (P) \Rightarrow 2a - 4 = 0 \Leftrightarrow a
= 2 .

    Vậy M(2,0,0) là giao điểm của (P),Ox.

    Phương pháp trắc nghiệm

    Giải hệ PT gồm PT của (P) và của (Ox): \left\{ \begin{matrix}
2x + 3y + z - 4 = 0 \\
y = 0 \\
z = 0 \\
\end{matrix} \right.; bấm máy tính.

  • Câu 21: Nhận biết

    Chọn đáp án đúng

    Hàm số f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số nào sau đây?

    Ta có: f'(x) = - e^{- x} + 2 nên f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số y = - e^{- x} +
2.

  • Câu 22: Thông hiểu

    Chọn công thức đúng

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack. Gọi D là hình phẳng giới hạn bởi đồ thị (C):y = f(x), trục hoành, hai đường thẳng x = a;x = b (như hình vẽ bên).

    Giả sử S_{D} là diện tích của hình phẳng D. Chọn công thức đúng?

    Dựa vào đồ thị hình vẽ ta thấy:

    + Đồ thị cắt trục hoành tại điểm O(0;0)

    + Trên đoạn \lbrack a;0brack, đồ thị ở phía dưới trục hoành nên \left|
f(x) ight| = - f(x)

    + Trên đoạn \lbrack 0;bbrack, đồ thị ở phía trên trục hoành nên \left|
f(x) ight| = f(x)

    Do đó: S_{D} = \int_{a}^{b}{\left| f(x)
ight|dx} = - \int_{a}^{0}{f(x)dx} + \int_{0}^{b}{f(x)dx}

  • Câu 23: Thông hiểu

    Ghi đáp án đúng vào ô trống

    Một khu đất trồng cây cảnh (phần được tô đậm) là hình phẳng giới hạn bởi y = f(x) = \sqrt{x}y = g(x) = x - 2 như hình bên dưới (đơn vị trên mỗi trục toạ độ là m). Cần tính diện tích của khu đất để báo cho đơn vị thiết kế trước trồng cây cảnh khi kí hợp đồng. Diện tích của khu đất là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười).

    Đáp án: 3,3 m2

    Đáp án là:

    Một khu đất trồng cây cảnh (phần được tô đậm) là hình phẳng giới hạn bởi y = f(x) = \sqrt{x}y = g(x) = x - 2 như hình bên dưới (đơn vị trên mỗi trục toạ độ là m). Cần tính diện tích của khu đất để báo cho đơn vị thiết kế trước trồng cây cảnh khi kí hợp đồng. Diện tích của khu đất là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười).

    Đáp án: 3,3 m2

    Phương trình hoành độ giao điểm của các đồ thị hàm số y = \sqrt{x},y = x - 2.

    \sqrt{x} = x - 2 \Leftrightarrow \left\{
\begin{matrix}
x \geq 2 \\
x = (x - 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x^{2} - 5x + 4 = 0 \\
\end{matrix} \Leftrightarrow x = 4. ight.

    Diện tích của hình phẳng cần tìm là

    S = \int_{0}^{4}\sqrt{x}dx -
\int_{0}^{4}(x - 2)dx = \frac{10}{3} \approx 3,3(m^{2}).

  • Câu 24: Nhận biết

    Chọn đáp án đúng

    Tìm nguyên hàm của hàm số f(x) = (2x -
3)^{2} .

    Ta có \int_{}^{}{f(x)dx =
\frac{1}{3.2}(2x - 3)^{3} + C}

  • Câu 25: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Nhận biết

    Xác định nguyên hàm

    Nguyên hàm \int_{}^{}{\left\lbrack
\sin(2x + 3) + \cos(3 - 2x) \right\rbrack dx} là:

    Ta có:

    \int_{}^{}{\left\lbrack \sin(2x + 3) +
\cos(3 - 2x) \right\rbrack dx}

    = - 2cos(2x + 3) - 2sin(3 - 2x) +
C.

  • Câu 27: Thông hiểu

    Xét tính đúng sai của mỗi kết luận

    Trong không gian Oxyz, cho hai điểm A( - 1;3;0)B(2;0; - 3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} = ( -
1;3;0). Đúng||Sai

    b) \overrightarrow{OB} =
\overrightarrow{2i} - 3\overrightarrow{j}. Sai||Đúng

    c) \overrightarrow{AB} = ( -
3;3;3). Sai||Đúng

    d) Tứ giác OABC là hình bình hành khi \overrightarrow{OC} =
3\overrightarrow{i} - 3\overrightarrow{j} -
3\overrightarrow{k}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A( - 1;3;0)B(2;0; - 3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} = ( -
1;3;0). Đúng||Sai

    b) \overrightarrow{OB} =
\overrightarrow{2i} - 3\overrightarrow{j}. Sai||Đúng

    c) \overrightarrow{AB} = ( -
3;3;3). Sai||Đúng

    d) Tứ giác OABC là hình bình hành khi \overrightarrow{OC} =
3\overrightarrow{i} - 3\overrightarrow{j} -
3\overrightarrow{k}. Đúng||Sai

    a) Đúng

    \overrightarrow{OA} = ( -
1;3;0).

    b) Sai

    \overrightarrow{OB} = \overrightarrow{2i}
- 3\overrightarrow{k}.

    c) Sai

    \overrightarrow{AB} = \left( x_{B} -
x_{A}^{};y_{B} - y_{A};z_{B} - z_{A} ight) = (3; - 3; -
3).

    d) Đúng

    Ta có: \overrightarrow{AB} = (3; - 3; -
3),

    OABC là hình bình hành

    \Leftrightarrow \overrightarrow{OC} =
\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x_{C} = 3 \\
y_{C} = - 3 \\
z_{C} = - 3 \\
\end{matrix} ight.\  \Rightarrow C(3; - 3; - 3)

  • Câu 28: Nhận biết

    Công thức tính thể tích khối tròn xoay

    Cho hàm số y = f\left( x ight) liên tục trên đoạn \left[ {a;b} ight]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f\left( x ight), trục hoành và hai đường thẳng x = a;x = b;\left( {a < b} ight). Thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức:

    Thể tích của khối tròn xoay cần tính là: V = 2\pi \int\limits_a^b {{f^2}\left( x ight)dx}

  • Câu 29: Nhận biết

    Chọn khẳng định đúng

    Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = \sqrt{- e^{x} +
4x}, trục hoành và hai đường thẳng x = 1;x = 2. Gọi V là thể tích của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?

    Áp dụng công thức thể tích khối tròn xoay ta có:

    V = \pi\int_{a}^{b}{\left\lbrack f(x)
ightbrack^{2}dx}

    Khi đó áp dụng vào bài toán ta được:

    V = \pi\int_{1}^{2}{\left\lbrack \sqrt{-
e^{x} + 4x} ightbrack^{2}dx} = \pi\int_{1}^{2}{\left( 4x - e^{x}
ight)dx} .

  • Câu 30: Nhận biết

    Tính thể tích tứ diện

    Trong không gian với hệ tọa độ Oxyz, tính thể tích tứ diện OABC, biết A;B;C lần lượt là giao điểm của mặt phẳng 2x - 3y + 4z + 24 = 0 với trục Ox,Oy,Oz.

    Theo giả thiết ta có: A( -
12;0;0),B(0;8;0),C(0;0; - 6) suy ra

    V_{OABC} = \frac{1}{6}OA.OB.OC =
\frac{1}{6}.12.8.6 = 96

  • Câu 31: Thông hiểu

    Tìm vận tốc của xe đạp B

    Xe đạp A xuất phát từ C, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t) =
\frac{t^{2}}{100} + \frac{13t}{30}(m/s) trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một xe đạp B cũng xuất phát từ C, chuyển động thẳng cùng hướng với A nhưng chậm hơn 10 giây so với A và có gia tốc bằng a\left( m/s^{2} ight) (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng bao nhiêu?

    Quãng đường xe đạp A đi được cho đến khi hai xe gặp nhau là:

    S = \int_{0}^{25}{\left(
\frac{t^{2}}{100} + \frac{13t}{30} ight)dt} =
\frac{375}{2}(m)

    Vận tốc của xe đạp B tại thời điểm t(s) tính từ lúc B xuất phát là: v_{B}(t) = at

    Quãng đường xe đạp B đi được cho đến khi hai xe gặp nhau là:

    S = \int_{0}^{15}{(at)dt} = \left. \
\left( \frac{at^{2}}{2} ight) ight|_{0}^{15} =
\frac{225a}{2}(m)

    \Rightarrow \frac{225a}{2} =
\frac{375}{2} \Rightarrow a = \frac{5}{3}

    Vậy vận tốc của B tại thời điểm đuổi kịp A là: v_{B}(15) = 15a = 25(m/s)

  • Câu 32: Nhận biết

    Chọn phương án đúng

    Tích phân I = \int_{- 1}^{1}{\left( x^{3}
+ 3x + 2 \right)dx}có giá trị là:

    Thực hiện giải toán theo hai bước sau:

    Cách 1: I = \int_{- 1}^{1}{\left( x^{3} +
3x + 2 ight)dx} = \left. \ \left( \frac{1}{4}x^{4} + \frac{3}{2}x^{2}
+ 2x ight) ight|_{- 1}^{1} = 4.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 33: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = cos3x

    Tìm nguyên hàm của hàm số f\left( x ight) = \cos 3x

     Ta có: \int {\cos 3xdx}  = \frac{{\sin 3x}}{3} + C

  • Câu 34: Vận dụng

    Tính giá trị biểu thức T

    Trong không gian Oxyz, cho A(3;2; - 1), B( - 1;0;5). Điểm M(a;b;c) thay đổi thuộc mặt phẳng (Oxy). Tính giá trị của biểu thức T = a + b + c khi \left| \overrightarrow{MA} + \overrightarrow{MB}
\right| nhỏ nhất.

    Gọi K là điểm thỏa: \overrightarrow{KA} + \overrightarrow{KB} =
\overrightarrow{0} \Leftrightarrow K(1;1;2).

    Ta có:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} \right| = \left| \left( \overrightarrow{MK} +
\overrightarrow{KA} \right) + \left( \overrightarrow{MK} +
\overrightarrow{KB} \right) \right|

    = \left| 2\overrightarrow{MK} + \left(
\overrightarrow{KA} + \overrightarrow{KB} \right) \right| = \left|
2\overrightarrow{MK} \right| = 2MK.

    Do đó \left| \overrightarrow{MA} +
\overrightarrow{MB} \right| nhỏ nhất khi và chỉ khi MK nhỏ nhất.

    Điều này xảy ra khi và chỉ khi M là hình chiếu của K lên mặt phẳng (Oxy).

    Suy ra M(1;1;0).

    Vậy T = a + b + c = 1 + 1 + 0 =
2.

  • Câu 35: Thông hiểu

    Tìm nguyên hàm của hàm số

    Xác định nguyên hàm F(x) của hàm số f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1}?

    Ta có:

    f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1} = \frac{(x + 1)^{3} - 2}{(x + 1)^{2}} = x + 1 -
\frac{2}{(x + 1)^{2}}

    \Rightarrow F(x) = \frac{x^{2}}{2} + x +
\frac{2}{x + 1} + C

  • Câu 36: Thông hiểu

    Xác định hàm số f(x)

    Nếu \int_{}^{}{f(x)dx = e^{x} + sin^2x+ C} thì f(x) là hàm nào ?

    Ta có: \left( e^{x} + sin^{2}x + C\right)^{'} = e^{x} + sin2x.

  • Câu 37: Nhận biết

    Tính cosin của hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = ( -
3;4;0)\overrightarrow{b} =
(5;0;12). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 3}{13}

  • Câu 38: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số f(x) = cos3x.cosx. Một nguyên hàm của hàm số f(x) bằng 0 khi x = 0 là:

    Ta có:

    F(x) =\int_{}^{}{\cos3x.\cos x.dx}

    = \frac{1}{2}\int_{}^{}{(cos2x +
cos4x)dx} = \frac{1}{8}sin4x + \frac{1}{4}sin2x + C

    F(0) = 0 \Leftrightarrow \frac{1}{8}sin0
+ \frac{1}{4}sin0 + C = 0

    \Leftrightarrow C = 0

    Vậy F(x) = \frac{cos4x}{8} +
\frac{cos2x}{4}

  • Câu 39: Nhận biết

    Tìm họ nguyên hàm F(x) của hàm số

    Họ nguyên hàm F(x) của hàm số f(x) = cot^{2}x là :

    Ta có: \int_{}^{}{cot^{2}xdx =
\int_{}^{}{\left( cot^{2}x + 1 - 1 \right)dx =} - \cot x - x +
C}.

  • Câu 40: Vận dụng cao

    Tính giá trị lớn nhất của biểu thức

    Cho điểm A( - 3;5; - 5),B(5; -
3;7) và mặt phẳng (\alpha):x + y +
z = 0. Xét điểm M thay đổi trên (\alpha), giá trị lớn nhất của MA^{2} - 2MB^{2} bằng:

    Hình vẽ minh họa

    Xét N là điểm thỏa mãn \overrightarrow{NA} - 2\overrightarrow{NB} =
0 thế thì

    \overrightarrow{OA} -
\overrightarrow{ON} - 2\overrightarrow{OB} + 2\overrightarrow{ON} = 0
\Leftrightarrow \overrightarrow{ON} = 2\overrightarrow{OB} -
\overrightarrow{OA}

    hay N(13; - 11;19).

    Ta có

    MA^{2} - 2MB^{2}== {\overrightarrow{MA}}^{2} -
2{\overrightarrow{MB}}^{2}

    = (\overrightarrow{MN} +
\overrightarrow{NA})^{2} - 2(\overrightarrow{MN} +
\overrightarrow{NB})^{2}

    = - {\overrightarrow{MN}}^{2} +
{\overrightarrow{NA}}^{2} - 2\overrightarrow{NB}\ ^{2} +
2\overrightarrow{MN}(\overrightarrow{NA} -
2\overrightarrow{NB})

    = - MN^{2} + NA^{2} - 2NB^{2}(\
\text{do~}\overrightarrow{NA} - 2\overrightarrow{NB} = 0)

    \leq - HN^{2} + NA^{2} - 2NB^{2}(H\
\text{là\ hình\ chiếu\ của~}N\ \text{lên~}(\alpha))

    = - d^{2}\lbrack N,(\alpha)brack +
NA^{2} - 2NB^{2} = 397

    Dấu " = " xảy ra khi M là hình chiếu của N lên (\alpha).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo