Tính diện tích hình phẳng
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số
, trục hoành và các đường thẳng ![]()
Diện tích S của hình phẳng trên là:
Ta có:
=>
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 3: Nguyên hàm - Tích phân và ứng dụng Toán 12 các em nhé!
Tính diện tích hình phẳng
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số
, trục hoành và các đường thẳng ![]()
Diện tích S của hình phẳng trên là:
Ta có:
=>
Chọn công thức đúng
Cho hàm số
biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Tính giá trị biểu thức
Cho là một nguyên hàm của hàm số
và
. Tính ![]()
Cách 1:
Đặt
Khi đó
=>
Mặt khác
=> C = 0
=>
=>
Cách 2: . Sử dụng máy tính cầm tay để tính.
Tính diện tích hình phẳng
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
??
Đặt
Tính tích phân lượng giác
Tích phân
có giá trị là:
Ta biến đổi:
Đặt
Đổi cận
Xác định hàm số f(x)
Cho
. Tìm
biết
.
Ta có
.
Mà . Vậy
.
Chọn đáp án đúng
Tìm nguyên hàm của hàm số
.
Ta có
Tính thể tích chiếc lu
Một khối cầu có bán kính
, người ta cắt bỏ
phần bằng
mặt phẳng song song và vuông góc với bán kính, hai mặt phẳng đó đều cách tâm của khối cầu
để làm một chiếc lu đựng nước. Tính thể tích nước mà chiếc lu chứa được (coi độ dày của bề mặt không đáng kể).
Hình vẽ minh họa
Đặt trục tọa độ như hình vẽ. Thể tích cái được tính bằng cách cho đường tròn có phương trình quay quanh trục Ox.
Thể tích cái lu bằng;
Chọn phương án đúng
Tích phân
có giá trị là:
Xét tích phân
Ta biến đổi:.
Đặt.
Đổi cận .
Tìm giá trị của x
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
. Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được
. Tìm
?
Khi dừng hẳn
Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:
Công thức tính thể tích khối tròn xoay
Cho hàm số
liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Thể tích khối tròn xoay tạo thành khi quay
quanh trục hoành được tính theo công thức:
Thể tích của khối tròn xoay cần tính là:
Tính quãng đường vật đi được
Một vật chuyển động với vận tốc
thì tăng tốc với gia tốc
Tính quãng đường vật đi được trong khoảng thời gian
giây kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc
Khi đó quãng đường đi được bằng
Tính số tiền thu được
Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn
, trục nhỏ
. Biết cứ
dưa hấu sẽ làm được cốc sinh tố giá
đồng. Hỏi từ quả dưa hấu trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? Biết rằng bề dày vỏ dưa không đáng kể.
Đường elip có trục lớn , trục nhỏ
có phương trình:
.
Do đó thể tích quả dưa là
.
Do đó tiền bán nước thu được là đồng.
Chọn đáp án đúng
Tìm một nguyên hàm
của hàm số
, biết rằng
?
Ta có:
Theo bài ra ta có:
. Vậy
.
Chọn công thức thích hợp
Cho hai hàm số
và
liên tục trên
và thỏa mãn
. Gọi
là thể tích của khối tròn xoay sinh ra khi quay quanh
hình phẳng
giới hạn bởi các đường:
. Khi đó
được tính bởi công thức nào sau đây?
Ta cần nhớ lại công thức sau: Cho hai hàm số liên tục trên
. Khi đó thể tích của vật thể tròn xoay giới hạn bởi
(với
) và hai đường thẳng
khi quay quanh trục
là
.
Chọn đáp án đúng
Tìm một nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Tính giá trị của biểu thức
Biết
, với
. Tính giá trị
?
Ta có:
Khi đó:
Tìm họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là
Phân tích
Ta có:
Khi đó , đồng nhất hệ số thì ta được
Giải chi tiết
Ta có
Đáp số bài tập kiểm tra khả năng vận dụng:
Tìm giá trị của biểu thức
Cho tích phân
, a và b là các số hữu tỉ. Giá trị của
là:
Ta có:
, với
.
Đáp án đúng là .
Tính số tiền tối thiểu để trồng kín hoa trong vườn
Một khu vườn được quy hoạch để trồng hoa hồng được giới hạn bởi parabol và nửa đường tròn bán kính (phần tô màu trong hình vẽ). Hỏi số tiền tối thiểu để trồng kín hoa trong vườn? Biết mỗi mét vuông trồng hoa cần ít nhất 300.000 đồng.

Nửa đường tròn có phương trình
Xét parabol có trục đối xứng
nên có phương trình dạng
cắt
tại điểm
=>
cắt
tại điểm
thuộc
=>
Phương trình là:
Diện tích miền phẳng (phần tô màu trong hình là:
Xét đặt
=>
Ta có:
Khi đó ta có:
Số tiền trồng hoa tối thiểu là: đồng
Chọn đáp án đúng
Hãy xác định hàm số
từ đẳng thức: ![]()
Ta có:
Vậy .
Xác định nguyên hàm
bằng
Ta có .
Chọn kết luận đúng
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức
. Kết luận nào sau đây đúng?
Ta có:
Tính thể tích nước
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là
, chiều cao trong lòng cốc là
đang đựng một lượng nước.

Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là
, chiều cao trong lòng cốc là
đang đựng một lượng nước.

Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Ghi đáp án đúng vào chỗ trống
Một khối cầu có bán kính là
, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng
để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu
(làm tròn đến hàng đơn vị)

Đáp án: 622
Một khối cầu có bán kính là
, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng
để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu
(làm tròn đến hàng đơn vị)

Đáp án: 622
Trên hệ trục tọa độ , xét đường tròn
:
Nếu cho nửa trên trục của
quay quanh trục
ta được mặt cầu có bán kính bằng 6.
Nếu cho hình phẳng giới hạn bởi nửa trên trục
của
, trục
, hai đường thẳng
quay xung quanh
ta sẽ được khối tròn xoay chính là 1 phần cắt đi của khối cầu trong đề bài.
Ta có
Suy ra nửa trên trục của
có phương trình
Thể tích vật thể tròn xoay khi cho quay quanh
là
.
Thể tích khối cầu là .
Thể tích cần tìm là .
Xác định nguyên hàm theo yêu cầu
Kết quả nào dưới đây không phải là nguyên hàm của
?
Ta có:
.
Chọn đáp án đúng
Nếu
. Khi đó
bằng:
Ta có: .
Cho giá trị của tích phân
Cho giá trị của tích phân
,
. Giá trị của biểu thức
là:
Ta có:
Chọn đáp án đúng
Tích phân
có giá trị là:
Ta nhận thấy: . Ta dùng đổi biến số.
Đặt .
Đổi cận.
Tích phân có giá trị là:
.
Tìm giá trị biểu thức
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Xác định họ nguyên hàm
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Tính giá trị biểu thức
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
. Từ (*) và (**) suy ra
Do đó
Tìm số nghiệm nguyên dương của phương trình
Số nghiệm dương của phương trình:
, với
, a và b là các số hữu tỉ là:
Ta có:
Số nghiệm dương của phương trình: , với
là: 1
Chọn đáp án thích hợp
Nguyên hàm của hàm số
là
Ta có .
Đặt
Theo phương pháp nguyên hàm từng phần ta có
.
Chọn đáp án đúng
Theo phương pháp đổi biến số
, nguyên hàm của
là:
Ta có:
.
Đặt .
.
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số 
Đặt
=>
=>
Tìm mệnh đề sai
Cho hàm số
là một nguyên hàm của hàm số
trên
. Các mệnh đề sau, mệnh đề nào sai.
Mệnh đề sai
Tìm nguyên hàm của hàm số
Nguyên hàm của hàm số
là hàm số nào trong các hàm số sau?
Vì với mọi
nên
Vậy đáp án cần tìm là:
Tính diện tích của hình phẳng
Diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
là
Phương trình hoành độ giao điểm:
Khi đó:
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: