Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Phương trình mũ và phương trình lôgarit (Khó)

Hãy cùng Luyện tập củng cố các bài tập Trắc nghiệm Phương trình mũ và phương trình lôgarit các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tính tích các nghiệm

    Tích các nghiệm của phương trình {\log _2}x.{\log _4}x.{\log _8}x.{\log _{16}}x = \frac{{81}}{{24}}  là:

    Hướng dẫn:

    Điều kiện: x >0

    Ta có: {\log _2}x.{\log _4}x.{\log _8}x.{\log _{16}}x = \frac{{81}}{{24}} \Leftrightarrow \left( {{{\log }_2}x} ight)\left( {\frac{1}{2}{{\log }_2}x} ight)\left( {\frac{1}{3}{{\log }_2}x} ight)\left( {\frac{1}{4}{{\log }_2}x} ight) = \frac{{81}}{{24}}

    \Leftrightarrow \log _2^4 = 81 \Leftrightarrow {\log _2}x =  \pm 3 \Leftrightarrow x = 8  hoặc x = \frac{1}{8}. (thỏa mãn điều kiện)

    Vậy tập nghiệm của phương trình đã cho là S = \left\{ {\frac{1}{8};8} ight\} \Rightarrow {x_1}.{x_2} = 1.

  • Câu 2: Nhận biết
    Đếm số nghiệm

    Số nghiệm của phương trình {\log _2}x.{\log _3}(2x - 1) = 2{\log _2}x là:

    2 || hai nghiệm || Hai nghiệm || 2 nghiệm

    Đáp án là:

    Số nghiệm của phương trình {\log _2}x.{\log _3}(2x - 1) = 2{\log _2}x là:

    2 || hai nghiệm || Hai nghiệm || 2 nghiệm

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  2x - 1 > 0 \hfill \\  {\log _2}x.{\log _3}(2x - 1) = 2{\log _2}x \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{2} \hfill \\  {\log _2}x\left[ {{{\log }_3}(2x - 1) - 2} ight] = 0 \hfill \\ \end{gathered}  ight. 

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{2} \hfill \\  \left[ \begin{gathered}  {\log _2}x = 0 \hfill \\  {\log _3}(2x - 1) = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{2} \hfill \\  \left[ \begin{gathered}  x = 1 \hfill \\  x = 5 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 1 \hfill \\  x = 5 \hfill \\ \end{gathered}  ight.

    Vậy PT có hai nghiệm.

  • Câu 3: Nhận biết
    Số nghiệm của PT logarit

    Phương trình \log _2^2(x + 1) - 6{\log _2}\sqrt {x + 1}  + 2 = 0 có số nghiệm là:

    2 || hai || 2 nghiệm || Hai nghiệm

    Đáp án là:

    Phương trình \log _2^2(x + 1) - 6{\log _2}\sqrt {x + 1}  + 2 = 0 có số nghiệm là:

    2 || hai || 2 nghiệm || Hai nghiệm

     PT\Leftrightarrow \left\{ \begin{gathered}  x + 1 > 0 \hfill \\  {\log ^2}_2(x + 1) - 3{\log _2}(x + 1) + 2 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  \left[ \begin{gathered}  {\log _2}(x + 1) = 1 \hfill \\  {\log _2}(x + 1) = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  \left[ \begin{gathered}  x = 1 \hfill \\  x = 3 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 1 \hfill \\  x = 3 \hfill \\ \end{gathered}  ight.

    Vậy PT có 2 nghiệm.

  • Câu 4: Vận dụng
    Tìm họ nghiệm

    Phương trình {9^{{{\sin }^2}x}} + {9^{{{\cos }^2}x}} = 6 có họ nghiệm là ?

    Hướng dẫn:

     Ta có: {9^{{{\sin }^2}x}} + {9^{{{\cos }^2}x}} = 6

    \Leftrightarrow {9^{1 - {{\cos }^2}x}} + {9^{{{\cos }^2}x}} = 6 \Leftrightarrow \frac{9}{{{9^{{{\cos }^2}x}}}} + {9^{{{\cos }^2}x}} - 6 = 0{\text{   }}\left( * ight)

    Đặt t = {9^{{{\cos }^2}x}},{\text{ }}\left( {1 \leqslant t \leqslant 9} ight).

    Khi đó: \left( * ight) \Leftrightarrow \frac{9}{t} + t - 6 = 0 \Leftrightarrow {t^2} - 6t + 9 = 0 \Leftrightarrow t = 3.

    Với t = 3 \Rightarrow {9^{{{\cos }^2}x}} = 3 \Leftrightarrow {3^{2{{\cos }^2}x}} = {3^1} \Leftrightarrow 2{\cos ^2}x - 1 = 0

    \Leftrightarrow \cos 2x = 0 \Leftrightarrow \boxed{x = \frac{\pi }{4} + \frac{{k\pi }}{2}},{\text{ }}\left( {k \in \mathbb{Z}} ight).

  • Câu 5: Vận dụng cao
    Tìm m thỏa mãn

    Với giá trị nào của tham số m thì phương trình {4^x} - m{.2^{x + 1}} + 2m = 0 có hai nghiệm {x_1},{\text{ }}{x_2} thoả mãn {x_1} + {x_2} = 3 ?

    Hướng dẫn:

     Ta có: {4^x} - m{.2^{x + 1}} + 2m = 0 \Leftrightarrow {\left( {{2^x}} ight)^2} - 2m{.2^x} + 2m = 0{\text{      }}\left( * ight)

    Phương trình (*) là phương trình bậc hai ẩn 2^x có: \Delta ' = {\left( { - m} ight)^2} - 2m = {m^2} - 2m.

    Phương trình (*) có nghiệm \Leftrightarrow {m^2} - 2m \geqslant 0 \Leftrightarrow m\left( {m - 2} ight) \geqslant 0 \Leftrightarrow \left[ \begin{gathered}  m \geqslant 2 \hfill \\  m \leqslant 0 \hfill \\ \end{gathered}  ight.

    Áp dụng định lý Vi-ét ta có: {2^{{x_1}}}{.2^{{x_2}}} = 2m \Leftrightarrow {2^{{x_1} + {x_2}}} = 2m

    Do đó {x_1} + {x_2} = 3 \Leftrightarrow {2^3} = 2m \Leftrightarrow m = 4.

    Thử lại ta được m=4 thỏa mãn.

  • Câu 6: Vận dụng cao
    Tìm m để có 2 nghiệm trái dấu

    Với giá trị của tham số m thì phương trình \left( {m + 1} ight){16^x} - 2\left( {2m - 3} ight){4^x} + 6m + 5 = 0 có hai nghiệm trái dấu?

    Hướng dẫn:

    Đặt {4^x} = t > 0

    Phương trình đã cho trở thành: \underbrace {\left( {m + 1} ight){t^2} - 2\left( {2m - 3} ight)t + 6m + 5}_{f\left( t ight)} = 0

    Yêu cầu bài toán \Leftrightarrow \left( * ight) có hai nghiệm {t_1},{\text{ }}{t_2} thỏa mãn 0 < {t_1} < 1 < {t_2}.

    \ \Leftrightarrow \left\{ \begin{gathered}  m + 1 e 0 \hfill \\  \left( {m + 1} ight)f\left( 1 ight) < 0 \hfill \\  \left( {m + 1} ight)\left( {6m + 5} ight) > 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  m + 1 e 0 \hfill \\  \left( {m + 1} ight)\left( {3m + 12} ight) < 0 \hfill \\  \left( {m + 1} ight)\left( {6m + 5} ight) > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow  - 4 < m <  - 1

  • Câu 7: Nhận biết
    Tìm tập nghiệm PT Logarit

    Phương trình \log _2^{}x + {\log _2}(x - 1) = 1 có tập nghiệm là:

    {2} || T={2}

    Đáp án là:

    Phương trình \log _2^{}x + {\log _2}(x - 1) = 1 có tập nghiệm là:

    {2} || T={2}

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x - 1 > 0 \hfill \\  {\log _2}\left[ {x(x - 1)} ight] = 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {x^2} - x - 2 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 2.

  • Câu 8: Thông hiểu
    Tính tích

    Gọi x_1, x_2là nghiệm của phương trình {\log _x}2 - {\log _{16}}x = 0. Khi đó tích x_1.x_2 bằng:

    1 || x1.x2=1

    Đáp án là:

    Gọi x_1, x_2là nghiệm của phương trình {\log _x}2 - {\log _{16}}x = 0. Khi đó tích x_1.x_2 bằng:

    1 || x1.x2=1

    Điều kiện: 0 < x e 1

    PT \Leftrightarrow {\log _x}2 - {\log _{16}}x = 0 \Leftrightarrow {\log _x}2 - {\log _{{2^4}}}x = 0 \Leftrightarrow {\log _x}2 - \frac{1}{4}{\log _2}x = 0

    \Leftrightarrow {\log _x}2 - \frac{1}{{4{{\log }_x}2}} = 0 \Leftrightarrow \frac{{4{{({{\log }_x}2)}^2} - 1}}{{4{{\log }_x}2}} = 0 \Leftrightarrow 4{({\log _x}2)^2} - 1 = 0

    \Leftrightarrow {({\log _x}2)^2} = \frac{1}{4} \Leftrightarrow \left[ \begin{gathered}  {\log _x}2 = \frac{1}{2} \hfill \\  {\log _x}2 =  - \frac{1}{2} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  2 = {x^{\frac{1}{2}}} \hfill \\  2 = {x^{ - \frac{1}{2}}} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  {x_1} = 4 \hfill \\  {x_2} = \frac{1}{4} \hfill \\ \end{gathered}  ight.

    Vậy {x_1}.{x_2} = 4.\frac{1}{4} = 1.

  • Câu 9: Thông hiểu
    Tìm tập nghiệm của PT logarit

    Phương trình \log _2^2x - 4{\log _2}x + 3 = 0 có tập nghiệm là?

    Hướng dẫn:

    Điều kiện: x > 0

    \log _2^2x - 4{\log _2}x + 3 = 0 \Leftrightarrow \left[ \begin{gathered}  {\log _2}x = 1 \hfill \\  {\log _2}x = 3 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 2 \hfill \\  x = 8 \hfill \\ \end{gathered}  ight.

    Vậy PT có tập nghiệm là S={8;2}.

  • Câu 10: Thông hiểu
    Tìm nghiệm nguyên nhỏ nhất

    Nghiệm nguyên nhỏ nhất của phương trình - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight) là?

    3 || ba || Ba

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của phương trình - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight) là?

    3 || ba || Ba

    Điều kiện: x>2

    Ta có: - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight)

    \Leftrightarrow  - 2{\log _3}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight)

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}\left( {x - 2} ight) = 0 \hfill \\  {\log _5}x =  - 1 \hfill \\ \end{gathered}  ight. 

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}\left( {x - 2} ight) = 0 \hfill \\  {\log _5}x =  - 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = \frac{1}{5} \hfill \\ \end{gathered}  ight.

    So điều kiện suy ra phương trình có nghiệm x=3.

  • Câu 11: Vận dụng cao
    Khẳng định đúng?

    Biết phương trình \frac{1}{{{{\log }_2}x}} - \frac{1}{2}{\log _2}x + \frac{7}{6} = 0 có hai nghiệm x_1, x_2. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Điều kiện: \left\{ \begin{gathered}  x > 0 \hfill \\  {\log _2}x e 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x e 1 \hfill \\ \end{gathered}  ight..

    Đặt t = {\log _2}x. Phương trình đã cho trở thành 3{t^2} - 7t - 6 = 0.

    \Leftrightarrow \left[ \begin{gathered}  t = 3 \hfill \\  t =  - \frac{2}{3} \hfill \\ \end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}  {\log _2}x = 3 \hfill \\  {\log _2}x =  - \frac{2}{3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = {2^3} = 9 \hfill \\  x = {2^{ - \frac{2}{3}}} = \frac{1}{{\sqrt[3]{4}}} \hfill \\ \end{gathered}  ight. (thỏa mãn điều kiện)

    Vậy tập nghiệm của phương trình đã cho là S = \left\{ {8;\frac{1}{{\sqrt[3]{4}}}} ight\} \Rightarrow x_1^3 + x_2^3 = \frac{{2049}}{4}.

  • Câu 12: Vận dụng
    Tính tích 2 nghiệm

    Gọi x_1, x_2 là 2 nghiệm của phương trình \frac{1}{{4 + {{\log }_2}x}} + \frac{2}{{2 - {{\log }_2}x}} = 1. Khi đó x_1.x_2 bằng:

    Hướng dẫn:

     Điều kiện: \left\{ \begin{gathered}  x > 0 \hfill \\  x e 4 \hfill \\  x e \frac{1}{{16}} \hfill \\ \end{gathered}  ight..

    Đặt t = {\log _2}x ,điều kiện \left\{ \begin{gathered}  t e  - 4 \hfill \\  t e 2 \hfill \\ \end{gathered}  ight.. Khi đó phương trình trở thành:

    \frac{1}{{4 + t}} + \frac{2}{{2 - t}} = 1 \Leftrightarrow {t^2} + 3t + 2 = 0 \Leftrightarrow \left[ \begin{gathered}  t =  - 1 \hfill \\  t =  - 2 \hfill \\ \end{gathered}  ight. \Rightarrow \left[ \begin{gathered}  x = \frac{1}{2} \hfill \\  x = \frac{1}{4} \hfill \\ \end{gathered}  ight.

    Vậy {x_1}.{x_2} = \frac{1}{8}.

  • Câu 13: Vận dụng
    Chọn phát biểu đúng

    Phương trình {2^{x - 3}} = {3^{{x^2} - 5x + 6}} có hai nghiệm x_1, x_2 trong đó x_1 < x_2, hãy chọn phát biểu đúng?

    Hướng dẫn:

     Logarit hóa hai vế của phương trình (theo cơ số 2) ta được:

    {2^{x - 3}} = {3^{{x^2} - 5x + 6}} \Leftrightarrow {\log _2}{2^{x - 3}} = {\log _2}{3^{{x^2} - 5x + 6}}

    \Leftrightarrow \left( {x - 3} ight){\log _2}2 = \left( {{x^2} - 5x + 6} ight){\log _2}3

    \Leftrightarrow \left( {x - 3} ight) - \left( {x - 2} ight)\left( {x - 3} ight){\log _2}3 = 0

    \Leftrightarrow \left( {x - 3} ight).\left[ {1 - \left( {x - 2} ight){{\log }_2}3} ight] = 0 \Leftrightarrow \left[ \begin{gathered}  x - 3 = 0 \hfill \\  1 - \left( {x - 2} ight){\log _2}3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  \left( {x - 2} ight){\log _2}3 = 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x - 2 = \frac{1}{{{{\log }_2}3}} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = {\log _3}2 + 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = {\log _3}2 + {\log _3}9 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = {\log _3}18 \hfill \\ \end{gathered}  ight.

  • Câu 14: Vận dụng cao
    Tổng 2 nghiệm PT mũ

    Gọi x_1, x_2 là hai nghiệm của phương trình {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}.  Khi đó, tổng hai nghiệm bằng?

    Hướng dẫn:

     Ta có: {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}

    \Leftrightarrow {8.2^{{x^2} + 1}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{{4.2}^{2\left( {{x^2} + 1} ight)}} - {{4.2}^{{x^2} + 1}} + 1}

    Đặt t = {2^{{x^2} + 1}}\left( {t \geqslant 2} ight), phương trình trên tương đương với:

    8t = {t^2} + \sqrt {4{t^2} - 4t + 1}  \Leftrightarrow {t^2} - 6t - 1 = 0 \Leftrightarrow t = 3 + \sqrt {10} (vì t \geq 2).

    Từ đó suy ra {2^{{x^2} + 1}} = 3 + \sqrt {10}  \Leftrightarrow \left[ \begin{gathered}  {x_1} = \sqrt {{{\log }_2}\frac{{3 + \sqrt {10} }}{2}}  \hfill \\  {x_2} =  - \sqrt {{{\log }_2}\frac{{3 + \sqrt {10} }}{2}}  \hfill \\ \end{gathered}  ight.

     

    Vậy tổng hai nghiệm bằng 0.

  • Câu 15: Vận dụng
    Đếm số nghiệm thực

    Phương trình {\left( {\sqrt 3  - \sqrt 2 } ight)^x} + {\left( {\sqrt 3  + \sqrt 2 } ight)^x} = {\left( {\sqrt {10} } ight)^x} có tất cả bao nhiêu nghiệm thực ?

    Hướng dẫn:

     Ta có: {\left( {\sqrt 3  - \sqrt 2 } ight)^x} + {\left( {\sqrt 3  + \sqrt 2 } ight)^x} = {\left( {\sqrt {10} } ight)^x}\Leftrightarrow {\left( {\frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }}} ight)^x} + {\left( {\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }}} ight)^x} = 1

    Xét hàm số f\left( x ight) = {\left( {\frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }}} ight)^x} + {\left( {\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }}} ight)^x}

    Ta có: f\left( 2 ight) = 1

    Hàm số f (x) nghịch biến trên R do các cơ số \frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }} < 1;\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }} < 1.

    Vậy phương trình có nghiệm duy nhất là x=2.

  • Câu 16: Nhận biết
    Giải PT Logarit

    Phương trình {\log _2}(x + 3) + {\log _2}(x - 1) = {\log _2}5 có nghiệm là:

    2 || hai || x=2 || Hai

    Đáp án là:

    Phương trình {\log _2}(x + 3) + {\log _2}(x - 1) = {\log _2}5 có nghiệm là:

    2 || hai || x=2 || Hai

     PT \Leftrightarrow \left\{ \begin{gathered}  x - 1 > 0 \hfill \\  (x + 3)(x - 1) = 5 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {x^2} + 2x - 8 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \left[ \begin{gathered}  x =  - 8 \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow x = 2

  • Câu 17: Vận dụng cao
    Tìm tất cả các giá trị thực của m

    Tìm tất cả các giá trị thực của tham số m để phương trình \log _3^2x + \sqrt {\log _3^2x + 1}  - 2m - 1 = 0 có ít nhất một nghiệm thuộc đoạn \left[ {1;{3^{\sqrt 3 }}} ight]?

    Hướng dẫn:

     Với x \in \left[ {1;{3^{\sqrt 3 }}} ight] hay 1 \leqslant x \leqslant {3^{\sqrt 3 }} \Rightarrow \sqrt {\log _3^21 + 1}  \leqslant \sqrt {\log _3^2x + 1}  \leqslant \sqrt {\log _3^2{3^{\sqrt 3 }} + 1} hay 1 \leqslant t \leqslant 2.

    Khi đó bài toán được phát biểu lại là: “Tìm m để phương trình có ít nhất một nghiệm thuộc đoạn [1;2]”.

    Ta có PT \Leftrightarrow 2m = {t^2} + t + 2

    Xét hàm số f(t) = {t^2} + t - 2,{\text{ }}\forall t \in \left[ {1;2} ight],{\text{ }}f'(t) = 2t + 1 > 0,{\text{ }}\forall t \in \left[ {1;2} ight]

    Suy ra hàm số đồng biến trên [1;2].

    Khi đó phương trình có nghiệm khi 0 \leqslant 2m \leqslant 4 \Leftrightarrow 0 \leqslant m \leqslant 2.

    Vậy 0 \leqslant m \leqslant 2  là các giá trị của m cần tìm.

  • Câu 18: Nhận biết
    Tìm nghiệm của PT

    Phương trình {\log _2}(3x - 2) = 2 có nghiệm là: 

    x=2 || 2 || hai

    Đáp án là:

    Phương trình {\log _2}(3x - 2) = 2 có nghiệm là: 

    x=2 || 2 || hai

     PT \Leftrightarrow \left\{ \begin{gathered}  3x - 2 > 0 \hfill \\  3x - 2 = 4 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{2} \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 2.

  • Câu 19: Thông hiểu
    Phương trình trở thành

    Nếu đặt t = {\log _2}x thì phương trình \frac{1}{{5 - {{\log }_2}x}} + \frac{2}{{1 + {{\log }_2}x}} = 1 trở thành phương trình nào?

    Hướng dẫn:

    Đặt t = {\log _2}x

    PT \Leftrightarrow \frac{1}{{5 - t}} + \frac{2}{{1 + t}} = 1 \Leftrightarrow \frac{{1 + t + 2(5 - t)}}{{(5 - t)(1 + t)}} = 1

    \Leftrightarrow 1 + t + 2(5 - t) = (5 - t)(1 + t)

    \Leftrightarrow 11 - t = 5 + 4t - {t^2} \Leftrightarrow {t^2} - 5t + 6 = 0.

  • Câu 20: Thông hiểu
    Điều kiện xác định

    Điều kiện xác định của phương trình \log ({x^2} - 6x + 7) + x - 5 = \log (x - 3) là:

    Hướng dẫn:

    Điều kiện phương trình xác định:  

    \left\{ \begin{gathered}  {x^2} - 6{\text{x + 7}} > 0 \hfill \\  x - 3 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x > 3 + \sqrt 2  \hfill \\  x < 3 - \sqrt 2  \hfill \\ \end{gathered}  ight. \hfill \\  x > 3 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 3 + \sqrt 2

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 12 (cũ)

Xem thêm