Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi giữa kì 1 Toán 12 Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn mệnh đề đúng

    Cho hàm số y = \frac{x + 1}{\sqrt{x^{2} +
1}}. Mệnh đề nào sau đây là đúng?

    TXĐ: D\mathbb{= R} suy ra đồ thị hàm số không có tiệm cận đứng.

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{x + 1}{\sqrt{x^{2} + 1}}= \lim_{x
ightarrow + \infty}\frac{x\left( 1 + \frac{1}{x} ight)}{|x|\sqrt{1 +
\frac{1}{x^{2}}}} = \lim_{x ightarrow + \infty}\frac{x\left( 1 +
\frac{1}{x} ight)}{x\sqrt{1 + \frac{1}{x^{2}}}} = 1ightarrow y =1 là TCN;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x + 1}{\sqrt{x^{2} + 1}}= \lim_{x
ightarrow - \infty}\frac{x\left( 1 + \frac{1}{x} ight)}{|x|\sqrt{1 +
\frac{1}{x^{2}}}} = \lim_{x ightarrow - \infty}\frac{x\left( 1 +
\frac{1}{x} ight)}{- x\sqrt{1 + \frac{1}{x^{2}}}} = - 1ightarrow y= - 1 là TCN.

    Vậy đồ thị hàm số không có tiệm cận đứng và có đúng hai tiệm cận ngang.

  • Câu 2: Nhận biết

    Tính tổng số cạnh

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 3: Vận dụng

    Hình hộp đứng có đáy hình thoi

    Một hình hộp đứng có đáy là hình thoi (không phải là hình vuông) có bao nhiêu mặt phẳng đối xứng?

    Hình hộp đứng có đáy là hình thoi (không phải là hình chữ nhật) có 3 mặt phẳng đối xứng bao gồm:

    Hình hộp đứng

    - Hai mặt phẳng chứa đường chéo của đáy và vuông góc với đáy.

    - Một mặt phẳng là mặt phẳng trung trực của cạnh bên.

  • Câu 4: Thông hiểu

    Xác định tọa độ giao điểm

    Tìm tọa độ giao điểm của đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 2}{x +
2}.

    TXĐ D\mathbb{= R}\backslash\left\{ - 2
ight\}.

    Dễ thấy đồ thị hàm số có TCĐ: x = -
2 và TCN: y = 1.

    Suy ra giao điểm của hai đường tiệm cận là ( - 2\ ;\ 1).

  • Câu 5: Nhận biết

    Chọn kết luận đúng

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

    Đồ thị trong hình vẽ là hàm số có dạng y= \frac{ax + b}{cx + d}

    Đồ thị hàm số có tiệm cận ngang là y =1 và tiệm cận đứng x = 2 nên hàm số cần tìm là y = \frac{x + 3}{x -2}.

  • Câu 6: Nhận biết

    Chọn kết quả chính xác

    Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x^{3} - 3x trên \lbrack 1;2brack bằng:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y(1) = - 2 \\
y(2) = 2 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack 1;2brack}y = 2 \\
\min_{\lbrack 1;2brack}y = - 2 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 1;2brack bằng 0.

  • Câu 7: Nhận biết

    Tính thể tích

    Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là 10{\text{c}}{{\text{m}}^2},\,\,20{\text{c}}{{\text{m}}^2},\,\,32{\text{c}}{{\text{m}}^2}. Tính thể tích V của hình hộp chữ nhật đã cho.

     

    Xét hình hộp chữ nhật ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật.

    Theo bài ra, ta có \left\{ \begin{gathered}  {S_{ABCD}} = 10\,{\text{c}}{{\text{m}}^{\text{2}}} \hfill \\  {S_{ABB'A'}} = 20\,{\text{c}}{{\text{m}}^2} \hfill \\  {S_{ADD'A'}} = 30\,{\text{c}}{{\text{m}}^2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  AB.AD = 10 \hfill \\  AB.AA' = 20 \hfill \\  AA'.AD = 32 \hfill \\ \end{gathered}  ight.

    Nhân vế theo vế, ta được {\left( {AA'.AB.AD} ight)^2} = 6400 \Rightarrow AA'.AB.AD = 80.

    Vậy  {V_{ABCD.A'B'C'D'}} = AA'.AB.AD = 80\,{\text{c}}{{\text{m}}^{\text{3}}}.

  • Câu 8: Nhận biết

    Xác định giao điểm

    Đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm:

    Ta có: x = 0 \Rightarrow y = 0^{4} -
0^{2} - 2 = - 2

    Vậy đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm (0; -
2).

  • Câu 9: Vận dụng

    Tìm giá trị tham số m theo yêu cầu

    Cho hàm số y = \frac{\ln x - 4}{\ln x -2m} với m là tham số. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số đồng biến trên khoảng (1;e). Tìm số phần tử của S.

    Ta có: y = f(x) = \frac{\ln x - 4}{\ln x
- 2m}

    Đặt t = \ln x, điều kiện t \in (0;1)

    g(t) = \frac{t - 4}{t - 2m}; g'(t) = \frac{- 2m + 4}{(t -
2m)^{2}}

    Để hàm số f(x) đồng biến trên (1;e) thì hàm số g(t) đồng biến trên (0;1) \Leftrightarrow g'(t) > 0,\ \ t \in
(0;1)

    \Leftrightarrow \frac{- 2m +
4}{(t - 2m)^{2}} > 0,t \in (0;1)

    \Leftrightarrow \left\{ \begin{matrix}
- 2m + 4 > 0 \\
2m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\frac{1}{2} < m < 2 \\
m < 0 \\
\end{matrix} ight.

    S là tập hợp các giá trị nguyên dương \Rightarrow S = \left\{ 1
ight\}.

    Vậy số phần tử của tập S1.\Leftrightarrow \left\{ \begin{matrix}
- 2m + 4 > 0 \\
2m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\dfrac{1}{2} < m < 2 \\
m < 0 \\
\end{matrix} ight.

  • Câu 10: Thông hiểu

    Tìm m thỏa mãn yêu cầu bài toán

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} + mx^{2} + (2m - 1)x -
1 đồng biến trên tập số thực?

    Ta có: y' = x^{2} + 2mx + 2m -
1

    Hàm số đồng biến trên \mathbb{R} khi

    y' \geq 0 \Leftrightarrow x^{2} +
2mx + 2m - 1

    \Leftrightarrow \Delta' \leq 0
\Leftrightarrow m^{2} - 2m + 1 \leq 0 \Leftrightarrow m = 1

    Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 11: Nhận biết

    Tìm khoảng đồng biến của hàm số

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Hàm số đã cho đồng biến trên ( -
1;2).

  • Câu 12: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y=f(x) có bảng biến thiên như hình bên.

    Số nghiệm của phương trình f(x) - 3 =
0

    Ta có: f(x) - 3 = 0 \Leftrightarrow f(x)
= 3, theo bảng biến thiên ta có phương trình có 3 nghiệm.

  • Câu 13: Vận dụng cao

    Chọn đáp án thích hợp

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= \frac{\sqrt{x^{2} - 8x} - 4}{\sqrt{x^{2} - 8x} + m} nghịch biến trên ( - 1;0) là:

    Đặt t = \sqrt{x^{2} - 8x}

    Điều kiện xác định x^{2} - 8x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 8 \\
\end{matrix} ight.

    Xét hàm t = \sqrt{x^{2} - 8x};x \in ( -
1;0) ta có:

    t' = \frac{2x - 8}{2\sqrt{x^{2} -
8x}} = \frac{x - 4}{\sqrt{x^{2} - 8x}} < 0;\forall x \in ( -
1;0)

    Ta có bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số t =
\sqrt{x^{2} - 8x} nghịch biến trên khoảng ( - 1;0)t
\in (0;3)

    Khi đó yêu cầu bài toán \Leftrightarrow y
= \frac{t - 4}{t + m} đồng biến trên (0;3)

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m + 4}{(t +
m)^{2}};\forall x \in D

    Để hàm số đồng biến trên (0;3) thì

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;3) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m + 4 > 0 \\
\left\lbrack \begin{matrix}
- m \leq 0 \\
- m \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 4 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 4 < m \leq - 3 \\
m \geq 0 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là m \in ( - 4; -
3brack \cup \lbrack 0; + \infty)

  • Câu 14: Vận dụng

    Tìm m để hàm số có cực đại cực tiểu

    Cho hàm số y = x^{3} + 3x^{2} + mx + m -
2 với m là tham số thực, có đồ thị là \left( C_{m} \right). Tìm tất cả các giá trị của m để \left( C_{m} \right) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.

    Đạo hàm y' = 3x^{2} + 6x +
m.

    Ta có \bigtriangleup '_{y'} = 9 -
3m.

    Hàm số có cực đại và cực tiểu khi \bigtriangleup '_{y'} > 0
\Leftrightarrow m < 3.

    Ta có y = \left( \frac{1}{3}x +\frac{1}{3} \right).y' +\left( \frac{2m}{3} - 2 \right)x + \left(\frac{2m}{3} - 2 \right).

    Gọi x_{1},\ \ x_{2} là hoành độ của hai điểm cực trị khi đó

    \left\{ \begin{matrix}
y_{1} = \left( \dfrac{2m}{3} - 2 ight)x_{1} + \left( \dfrac{2m}{3} - 2
ight) \\
y_{2} = \left( \dfrac{2m}{3} - 2 ight)x_{2} + \left( \dfrac{2m}{3} - 2
ight) \\
\end{matrix} ight.\ .

    Theo định lí Viet, ta có \left\{
\begin{matrix}
x_{1} + x_{2} = - 2 \\
x_{1}x_{2} = \dfrac{m}{3} \\
\end{matrix} ight.\ .

    Hai điểm cực trị nằm về hai phía trục hoành khi y_{1}.y_{2} < 0

    \Leftrightarrow \left( \frac{2m}{2} - 2
ight)^{2}\left( x_{1} + 1 ight)\left( x_{2} + 1 ight) <
0

    \Leftrightarrow \left( \frac{2m}{2} - 2
ight)^{2}\left( x_{1}x_{2} + x_{1} + x_{2} + 1 ight) <
0

    \Leftrightarrow \left( \frac{2m}{3} - 2
ight)^{2}\left( \frac{m}{3} - 1 ight) < 0 \Leftrightarrow \left\{
\begin{matrix}
m < 3 \\
m eq 3 \\
\end{matrix} ight.\  \Leftrightarrow m < 3: thỏa mãn.

  • Câu 15: Nhận biết

    Tìm số mặt của đa diện

    Tìm số mặt của hình đa diện dưới đây là?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 16: Nhận biết

    Chọn đáp án đúng

    Giá trị lớn nhất của hàm số y = x^{3} +
2x^{2} - 7x - 3 trên đoạn \lbrack -
1;2brack bằng:

    Ta có: y' = 3x^{2} + 4x -
7

    y' = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = - \dfrac{7}{3} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}
y(1) = - 7 \\
y(2) = - 1 \\
y( - 1) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}y = y( -
1) = 5

  • Câu 17: Thông hiểu

    Mênh đề đúng?

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 18: Thông hiểu

    Chia khối lăng trụ

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 19: Thông hiểu

    Tìm số tiệm cận ngang của đồ thị hàm số

    Đồ thị hàm số y = \frac{2x + 1}{3x -
\sqrt{x - 1}} có bao nhiêu đường tiệm cận ngang?

    TXĐ: D = \lbrack 1\ ; + \infty)\
.

    Do đó ta chỉ xét 1 trường hợp như sau:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{2x + 1}{3x - \sqrt{x - 1}}= \lim_{x
ightarrow + \infty}\frac{2 + \frac{1}{x}}{3 - \sqrt{\frac{1}{x} -\frac{1}{x^{2}}}} = \frac{2}{3} ightarrow y = \frac{2}{3} là TCN.

    Vậy đồ thị hàm số có đúng một TCN.

  • Câu 20: Thông hiểu

    Chọn kết luận đúng

    Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = \frac{1}{3}x^{3} - 3x^{2} + 5x -
1

    Ta có: y' = x^{2} - 6x + 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 5 \\
\end{matrix} ight.

    y'' = 2x - 6 \Rightarrow \left\{
\begin{matrix}
y''(1) = - 4 < 0 \\
y''(5) = 4 > 0 \\
\end{matrix} ight. nên hàm số đạt cực đại tại điểm x = 1 và đạt cực tiểu tại x = 5;y_{CT} = - \frac{28}{3}
    y'(5) = 0 suy ra tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = -
\frac{28}{3}

    Vậy tiếp tuyến song song với trục hoành.

  • Câu 21: Nhận biết

    Tìm khẳng định đúng

    Cho hàm số y =
\frac{2x + 2}{x - 1}. Khẳng định nào sau đây đúng?

    Ta có: y' = \frac{- 4}{(x - 1)^{2}}
< 0;\forall x eq 1

    Suy ra hàm số nghịch biến trên khoảng ( -
\infty;1),(1; + \infty)

    (2; + \infty) \subset (1; +
\infty) nên hàm số cũng nghịch biến trên khoảng (2; + \infty).

  • Câu 22: Thông hiểu

    Tìm số cạnh

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 23: Thông hiểu

    Tính giá trị của biểu thức

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = \frac{x}{2} - \sqrt{x + 2} trên đoạn \lbrack - 1;34brack lần lượt là Mm. Tính giá trị của biểu thức A = M + 3m?

    Ta có: y' = \frac{1}{2} -
\frac{1}{2\sqrt{x + 2}} = \frac{\sqrt{x + 2} - 1}{2\sqrt{x +
2}}

    y' = 0 \Leftrightarrow \sqrt{x + 2}
= 1 \Leftrightarrow x = - 1

    \left\{ \begin{matrix}f( - 1) = - \dfrac{3}{2} \\f(34) = 11 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}m = - \dfrac{3}{2} \\M = 11 \\\end{matrix} ight.\  \Rightarrow A = \frac{13}{2}

  • Câu 24: Nhận biết

    Mệnh đề nào sai

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 25: Thông hiểu

    Tìm giá trị nhỏ nhất của hàm số trên khoảng

    Tính giá trị nhỏ nhất của hàm số y = 3x +
\frac{4}{x^{2}} trên khoảng (0; +
\infty).

    Cách 1:

    y = 3x + \frac{4}{x^{2}} = \frac{3x}{2}
+ \frac{3x}{2} + \frac{4}{x^{2}} \geq
3\sqrt[3]{\frac{3x}{2}.\frac{3x}{2}.\frac{4}{x^{2}}} =
3\sqrt[3]{9}

    Dấu " = " xảy ra khi \frac{3x}{2} = \frac{4}{x^{2}}
\Leftrightarrow x = \sqrt[3]{\frac{8}{3}}.

    Vậy \min_{(0; + \infty)}y =
3\sqrt[3]{9}

    Cách 2:

    Xét hàm số y = 3x +
\frac{4}{x^{2}} trên khoảng (0; +
\infty)

    Ta có y = 3x + \frac{4}{x^{2}}
\Rightarrow y' = 3 - \frac{8}{x^{3}}

    Cho y' = 0 \Leftrightarrow
\frac{8}{x^{3}} = 3 \Leftrightarrow x^{3} = \frac{8}{3} \Leftrightarrow
x = \sqrt[3]{\frac{8}{3}}

    \Rightarrow \min_{(0; + \infty)}y =
y\left( \sqrt[3]{\frac{8}{3}} ight) = 3\sqrt[3]{9}

  • Câu 26: Thông hiểu

    Chọn khẳng định đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 27: Thông hiểu

    Chọn đáp án thích hợp

    Hai điểm cực trị của đồ thị hàm số y = (x
- 2)^{2}(x + 1)

    Ta có:

    f^{'}(x) = 2(x - 2)(x + 1) + (x -
2)^{2}

    = 2x^{2} - 2x - 4 + x^{2} - 4x + 4 =
3x^{2} - 6x

    f^{'}(x) = 0 = > x = 1;x =
2

    Vậy hai điểm cực trị cần tìm là: A(0;4),B(2;0)

  • Câu 28: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 29: Nhận biết

    Tìm số mặt của đa diện

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 30: Thông hiểu

    Thể tích chóp tứ giác

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên (SAB)(SAD) cùng vuông góc với mặt phẳng đáy (ABCD). Tính theo a thể tích V của khối chóp S.ABCD.

     

    Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra SA \bot \left( {ABCD} ight). Do đó chiều cao khối chóp là SA = a\sqrt {15}.

    Diện tích hình chữ nhật ABCD là {S_{ABCD}} = AB.BC = 2{a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{2{a^3}\sqrt {15} }}{3}

  • Câu 31: Nhận biết

    Chọn đáp án thích hợp

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho đạt cực tiểu tại

    Theo bảng biến thiên thì hàm số đạt cực tiểu tại điểm x = - 1

  • Câu 32: Nhận biết

    Thể tích khối chóp

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a \sqrt 2. Tính thể tích của khối chóp?

     thể tích chóp

    Diện tích hình vuông ABCD{S_{ABCD}} = {a^2}.

    Chiều cao khối chóp là SA = a \sqrt 2

    Vậy áp dụng công thức, ta có thể tích khối chóp là:

    {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 2 }}{3}

  • Câu 33: Thông hiểu

    Xác định khoảng chứa tham số m

    Để hàm số y = x^{3} - 3x^{2} + m (với m là tham số) đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x +
m

    Hàm số đạt cực tiểu tại x = 2 \Rightarrow
y'(2) = 0 \Leftrightarrow m = 0

    Khi m = 0 \Rightarrow y' = 3x^{2} -
6x \Rightarrow y'' = 6x - 6

    Ta có: y''(2) = 6.2 - 6 = 6 >
0 suy ra hàm số đạt cực tiểu tại x
= 2

    Vậy m \in ( - 1;1) thì hàm số đạt cực tiểu tại x = 2.

  • Câu 34: Vận dụng

    Tính thể tích biết hình chiếu

    Tính thể tích V của khối lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB = 1,{\text{ }}AC = 2 ; cạnh bên AA' = \sqrt 2. Biết hình chiếu vuông góc của A' trên mặt đáy (ABC)  trùng với chân đường cao hạ từ B của tam giác ABC

     

    Gọi H là chân đường cao hạ từ B trong \Delta ABC.

    Theo giả thiết, ta có A'H \bot \left( {ABC} ight)

    Tam giác vuông ABC, có BC = \sqrt {A{C^2} - A{B^2}}  = \sqrt 3; AH = \frac{{A{B^2}}}{{AC}} = \frac{1}{2}.

    Tam giác vuông A'HA, có A'H = \sqrt {AA{'^2} - A{H^2}}  = \frac{{\sqrt 7 }}{2}.

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{\sqrt 3 }}{2}

    Vậy {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.A'H = \frac{{\sqrt {21} }}{4}.

     

  • Câu 35: Nhận biết

    Chọn phương án thích hợp

    Cho hàm số y = f(x)\lim_{x ightarrow + \infty}f(x) = 2,\lim_{x
ightarrow - \infty}f(x) = - 2\lim_{x ightarrow 2^{+}}f(x) = 3. Khi đó đồ thị có?

    Do \lim_{x ightarrow + \infty}f(x) =
2,\lim_{x ightarrow - \infty}f(x) = - 2x ightarrow \pm \infty ra số nên là tiệm cận ngang.

    \lim_{x ightarrow 2^{+}}f(x) =
3x ightarrow 2^{+} ra số nên không là tiện cận đứng được.

  • Câu 36: Vận dụng cao

    Ghi đáp án vào ô trống

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 37: Thông hiểu

    Tính V lăng trụ tam giác đều

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 38: Nhận biết

    Chọn đáp án sai

    Cho hàm số y = \frac{{2{x^2} - 3x + 2}}{{{x^2} - 2x - 3}}. Khẳng định nào sau đây sai?

    Ta có:

    \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - 3x + 2}}{{{x^2} - 2x - 3}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - \dfrac{3}{x} + \dfrac{2}{{{x^2}}}}}{{1 - \dfrac{2}{x} - \dfrac{3}{{{x^2}}}}} = 2

    => y = 2 là tiệm cận ngang của đồ thị hàm số

    Ta cũng có: \mathop {\lim }\limits_{x \to \left( { - 1} ight)} y = \infty ;\mathop {\lim }\limits_{x \to 3} y = \infty => x = 1; x = 32 là tiệm cận đứng của đồ thị hàm số

  • Câu 39: Thông hiểu

    Hình không phải đa diện lồi

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 40: Thông hiểu

    Chọn khẳng định đúng

    Cho đồ thị hàm số y = \frac{x^{2} - 2x}{1 - x}. Khẳng định nào sau đây đúng?

    Tập xác định D = ( - \infty;1) \cup (1; +
\infty)

    Ta có: y' = - 1 - \frac{1}{(1 -
x)^{2}} < 0;\forall x \in D

    Do đó hàm số nghịch biến trên từng khoảng xác định.

    Vậy khẳng định đúng là: “Hàm số nghịch biến trên các khoảng ( - \infty;1)(1; + \infty)”.

  • Câu 41: Vận dụng cao

    Chia khối tứ diện

    Cho khối tứ diện ABCD. Lấy điểm M nằm giữa A và B, điểm N nằm giữa C và D. Bằng hai mp (CDM)(ABN), ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?

    Chia khối tứu diện

    Dựa vào hình vẽ, ta thấy hai mặt phẳng (CDM) và (ABN) chia khối tứ diện ABCD thành bốn khối tứ diện:  MBND, MBNC, AMDN, AMNC

  • Câu 42: Thông hiểu

    Chọn đáp án đúng

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{4} - 2x^{2} + 3 - 2m = 0 có nghiệm thuộc ( - 2;2)?

    Ta có: x^{4} - 2x^{2} + 3 =
2m

    Xét hàm số f(x) = x^{4} - 2x^{2} +
3f'(x) = 4x^{3} - 4x + 3 =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Theo yêu cầu bài toán ta có: 2 \leq 2m
\leq 11 \Leftrightarrow 1 \leq m \leq 5,5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;4;5 ight\}

  • Câu 43: Nhận biết

    Tìm giá trị cực tiểu của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho bằng:

    Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại x = - 1x
= 1; giá trị cực tiểu bằng -
4.

  • Câu 44: Vận dụng

    Tìm m để hàm số đạt giá trị lớn nhất

    Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = \frac{{{x^2} - {m^2} - 2}}{{x - m}} trên đoạn [0; 4] bằng -1?

    Ta có: f'\left( x ight) = \frac{{{m^2} - m + 2}}{{{{\left( {x - m} ight)}^2}}} > 0;\forall m e 0

    Với x = m e \left[ {0;4} ight] \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m > 4} \\   {m < 0} \end{array}} ight. ta được hàm số f(x) đồng biến trên khoảng (0; 4)

    => \mathop {\max }\limits_{\left[ {0;4} ight]} f\left( x ight) = f\left( 4 ight) = \frac{{2 - {m^2}}}{{4 - m}}

    Theo bài ra ta có: \frac{{2 - {m^2}}}{{4 - m}} =  - 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 2} \\   {m =  - 3} \end{array}} ight.

    Kết hợp với điều kiện \left[ {\begin{array}{*{20}{c}}  {m > 4} \\   {m < 0} \end{array}} ight. => m = -3 là giá trị cần tìm

    Vậy có 1 giá trị của tham số m thỏa mãn yêu bài toán đề bài.

  • Câu 45: Nhận biết

    Tìm giá trị lớn nhất của hàm số

    Giá trị trị lớn nhất của hàm số f(x) =
x^{3} - 3x^{2} - 9x + 10 trên đoạn \lbrack 0;4brack bằng

    Ta có f'(x) = 3x^{2} - 6x -
9.

    f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 3(tm) \\
\end{matrix} ight.

    Do đó f(0) = 10, f(3) = - 17, f(4) = - 10.

    Vậy \max_{\lbrack 0;4brack}f(x) = f(0)
= 10

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo