Đề thi giữa học kì 1 Toán 9 năm học 2020 - 2021 - Đề 2

Đề thi giữa kì 1 môn Toán 9 năm 2020 được VnDoc biên soạn là đề thi hay và chất lượng cho các bạn học sinh tham khảo củng cố kiến thức, ôn luyện rèn luyện kỹ năng giải Toán, chuẩn bị cho bài thi giữa học kì 1 lớp 9 đạt kết quả cao. Mời các em học sinh tham khảo chi tiết.

Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 9, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 9 sau: Nhóm Tài liệu học tập lớp 9. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.

Bản quyền thuộc về VnDoc.
Nghiêm cấm mọi hình thức sao chép nhằm mục đích thương mại.

Đề thi giữa học kì 1 môn Toán 9 – Đề số 2

Bài 1 (1 điểm): Tìm điều kiện để các căn thức dưới đây có nghĩa:

a) \sqrt {16 - 4x} b) \sqrt {3x + 7}

Bài 2 (2 điểm): Rút gọn các biểu thức dưới đây:

a) A = \sqrt {72} - \sqrt 4 .\frac{1}{2} + \sqrt {32} + \sqrt {162}

b) B = \frac{1}{{\sqrt 7 - 4}} + \frac{1}{{\sqrt 7 + 4}}

Bài 3 (2 điểm): Cho hai biểu thức M = \frac{1}{{\sqrt x - \sqrt {x - 1} }} - \frac{1}{{\sqrt x + \sqrt {x - 1} }}N = \frac{{\sqrt {x - 1} }}{{\sqrt x - 5}}

a) Rút gọn biểu thức P = M:N

b) Tính giá trị của biểu thức P tại x = 4 - 2\sqrt 3

Bài 4 (2 điểm): Giải phương trình:

a) {x^2} - 8x - 9 = 0 b) \sqrt {5x + 4} = x + 2

Bài 5 (3 điểm): Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm.

a) Chứng minh tam giác ABC là tam giác vuông.

b) Vẽ đường cao AH (H ∈ BC). Tính độ dài của BH, HC và AH.

c) Trên tia đối của tia BA, lấy điểm D sao cho BD = BC. Chứng minh: {\mathop{\rm AD}\nolimits} .BC = \frac{{{{{\mathop{\rm CD}\nolimits} }^2}}}{2}

d) Tính diện tích tam giác BCD

Đáp án đề thi giữa học kì 1 môn Toán 9 – Đề số 2

Bài 1:

a) Để biểu thức \sqrt {16 - 4x} có nghĩa thì 16 - 4x \ge 0 \Leftrightarrow x \le 4

b) Để biểu thức \sqrt {3x + 7} có nghĩa thì 3x + 7 \ge 0 \Leftrightarrow x \ge \frac{{ - 7}}{3}

Bài 2:

a) A = \sqrt {72} - \sqrt 4 .\frac{1}{2} + \sqrt {32} + \sqrt {162}

A = \sqrt {36.2} - 2.\frac{1}{2} + \sqrt {16.2} + \sqrt {81.2}

A = 6\sqrt 2 - 1 + 4\sqrt 2 + 9\sqrt 2

A = 19\sqrt 2 - 1

b) B = \frac{1}{{\sqrt 7 - 4}} + \frac{1}{{\sqrt 7 + 4}} = \frac{{\sqrt 7 + 4 + \sqrt 7 - 4}}{{\left( {\sqrt 7 - 4} \right)\left( {\sqrt 7 + 4} \right)}} = \frac{{2\sqrt 7 }}{{7 - 16}} = \frac{{2\sqrt 7 }}{{ - 9}} = \frac{{ - 2\sqrt 7 }}{9}

Bài 3:

a) M = \frac{1}{{\sqrt x - \sqrt {x - 1} }} - \frac{1}{{\sqrt x + \sqrt {x - 1} }}; điều kiện x \ge 1

M = \frac{{\sqrt x + \sqrt {x - 1} - \left( {\sqrt x - \sqrt {x - 1} } \right)}}{{\left( {\sqrt x - \sqrt {x - 1} } \right)\left( {\sqrt x + \sqrt {x - 1} } \right)}} = \frac{{2\sqrt {x - 1} }}{{x - \left( {x - 1} \right)}} = 2\sqrt {x - 1}

N = \frac{{\sqrt {x - 1} }}{{\sqrt x - 5}}; điều kiện x \ge 0;x \ne 25

P = M:N = 2\sqrt {x - 1} .\frac{{\sqrt x - 5}}{{\sqrt {x - 1} }} = 2\left( {\sqrt x - 5} \right)

Vậy P = 2\left( {\sqrt x - 5} \right)

b) Tại x = 4 - 2\sqrt 3(tm) thì \sqrt x = \sqrt {4 - 2\sqrt 3 } = \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} = \sqrt 3 - 1

P = 2\left( {\sqrt 3 - 1 - 5} \right) = 2\left( {\sqrt 3 - 6} \right) = 2\sqrt 3 - 12

Vậy tại x = 4 - 2\sqrt 3 thì P = 2\sqrt 3 - 12

Bài 4:

a) {x^2} - 8x - 9 = 0

\Leftrightarrow {x^2} + x - 9x - 9 = 0

\Leftrightarrow x\left( {x + 1} \right) - 9\left( {x + 1} \right) = 0

\Leftrightarrow \left( {x - 9} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 9\\ x = - 1 \end{array} \right.

Vậy S = {-1; 9}

b) \sqrt {5x + 4} = x + 2(1)

Điều kiện 5x + 4 \ge 0 \Leftrightarrow x \ge \frac{{ - 4}}{5}

(1) \Leftrightarrow \left\{ \begin{array}{l} x + 2 \ge 0\\ 5x + 4 = {\left( {x + 2} \right)^2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \ge - 2\\ 5x + 4 = {x^2} + 4x + 4 \end{array} \right.

\Leftrightarrow \left\{ \begin{array}{l} x \ge - 2\\ {x^2} - x = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \ge - 2\\ \left[ \begin{array}{l} x = 0\\ x = 1 \end{array} \right.\left( {tm} \right) \end{array} \right.

Vậy S = {0; 1}

Bài 4:

Đề thi giữa học kì 1 Toán 9 năm học 2020 - 2021 - Đề 2

a) Xét ∆ABC có:

\left. \begin{array}{l} {{\mathop{\rm AB}\nolimits} ^2} + {{\mathop{\rm AC}\nolimits} ^2} = {6^2} + {8^2} = 100\\ {{\mathop{\rm BC}\nolimits} ^2} = {10^2} = 100 \end{array} \right\} \Rightarrow {{\mathop{\rm AB}\nolimits} ^2} + {{\mathop{\rm AC}\nolimits} ^2} = {{\mathop{\rm BC}\nolimits} ^2}

⇒ABC vuông tại A (Pitago đảo)

b) Xét ∆ABC vuông tại A(cmt), có AH ⊥ BC:

+ {{\mathop{\rm AB}\nolimits} ^2} = {\mathop{\rm BH}\nolimits} .BC(hệ thức lượng trong tam giác vuông)

\Rightarrow {\mathop{\rm BH}\nolimits} = \frac{{{{{\mathop{\rm AB}\nolimits} }^2}}}{{{\mathop{\rm BC}\nolimits} }} = \frac{{36}}{{100}} = \frac{9}{{25}}(cm)

+ {{\mathop{\rm AC}\nolimits} ^2} = {\mathop{\rm CH}\nolimits} .CB(hệ thức lượng trong tam giác vuông)

\Rightarrow {\mathop{\rm CH}\nolimits} = \frac{{{{{\mathop{\rm AC}\nolimits} }^2}}}{{{\mathop{\rm BC}\nolimits} }} = \frac{{64}}{{100}} = \frac{{16}}{{25}}(cm)

+ {{\mathop{\rm AH}\nolimits} ^2} = {\mathop{\rm BH}\nolimits} .HC(hệ thức lượng trong tam giác vuông)

\Rightarrow {{\mathop{\rm AB}\nolimits} ^2} = \frac{9}{{25}}.\frac{{16}}{{25}} \Rightarrow {\mathop{\rm AB}\nolimits} = \frac{{12}}{{25}}(cm)

c) + Có AD = AB + BD = 6 + 10 = 16 (cm)

+ Xét ∆ADC vuông tại A có:

{{\mathop{\rm AD}\nolimits} ^2} + {{\mathop{\rm AC}\nolimits} ^2} = {{\mathop{\rm CD}\nolimits} ^2}(Pitago)

\Rightarrow {\mathop{\rm CD}\nolimits} = \sqrt {{{16}^2} + {8^2}} = 8\sqrt 5(cm)

+ Có AD.BC = 16.10 = 160

\frac{{C{D^2}}}{2} = \frac{{320}}{2} = 160

Vậy {\mathop{\rm AD}\nolimits} .BC = \frac{{C{D^2}}}{2}

d) + {{\mathop{\rm S}\nolimits} _{\Delta ABC}} = \frac{1}{2}{\mathop{\rm AB}\nolimits} .AC = \frac{1}{2}.6.8 = 24 (cm2)

+ {{\mathop{\rm S}\nolimits} _{\Delta {\mathop{\rm ACD}\nolimits} }} = \frac{1}{2}{\mathop{\rm A}\nolimits} {\mathop{\rm D}\nolimits} .AC = \frac{1}{2}.16.8 = 64(cm2)

Vậy S∆BCD = 64 – 24 = 40 (cm2)

---------------

Ngoài Đề kiểm tra giữa học kì 1 môn Toán lớp 9, các bạn học sinh còn có thể tham khảo các đề thi học kì 1 lớp 9, đề thi học kì 2 lớp 9 các môn Toán, Văn, Anh, Lý, Địa, Sinh mà chúng tôi đã sưu tầm và chọn lọc. Với đề thi lớp 9 này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn ôn thi tốt

Đánh giá bài viết
2 2.622
0 Bình luận
Sắp xếp theo
Đề thi giữa kì 1 lớp 9 Xem thêm