Phương pháp giải một số dạng bài tập khảo sát hàm số trong kì thi tuyển sinh Đại học
Phương pháp giải một số dạng bài tập khảo sát hàm số trong kì thi tuyển sinh Đại học là một tài liệu hay, có chất lượng với hệ thống kiến thức đầy đủ, chắc chắn phần hàm số với cách trình bày cực kì chi tiết và dễ hiểu mà VnDoc muốn gửi tới các bạn và giáo viên để luyện thi đại học môn Toán, ôn thi môn toán phần khảo sát hàm số có hiệu quả tốt nhất.
Khảo sát hàm số trong đề thi Đại học
PHƯƠNG PHÁP GIẢI MỘT SỐ DẠNG BÀI TẬP
KHẢO SÁT HÀM SỐ TRONG KỲ THI TSĐH
A) Cực đại cực tiểu hàm số bậc 3: y = ax3 + bx2 + cx + d
* ) Điều kiện để hàm số có cực đại cực tiểu là: y’=0 có 2 nghiệm phân biệt
* ) Hoành độ điểm cực đại cực tiểu kí hiệu là x1, x2, khi đó x1, x2 là 2 nghiệm của phương trình y’=0
* ) Để tính tung độ điểm cực đại cực tiểu ta nên dùng phương pháp tách đạo hàm để tính phương trình đường thẳng đi qua điểm cực đại cực tiểu
+ Cơ sở của phương pháp này là: Nếu hàm số bậc 3 đạt cực đại cực tiểu tại x1, x2, thì f '(x1) = f '(x2)=0
+ Phân tích y = f '(x).p(x) +h(x). Từ đó ta suy ra tại x1, x2 thì y1 = h(x1); y2 = h(x2) => y = h(x) là đường thẳng đi qua điểm cực đại cực tiểu
+ Kí hiệu k là hệ số góc của đường thẳng đi qua điểm cực đại cực tiểu
* ) Các câu hỏi thường gặp liên quan đến điểm cực đại cực tiểu hàm số bậc 3 là:
1) Tìm điều kiện để đường thẳng đi qua điểm cực đại cực tiểu của hàm số song song với đường thẳng y= ax+b
+ Điều kiện là: y’=0 có 2 nghiêm phân biệt
+ Viết phương trình đường thẳng đi qua điểm cực đại cực tiểu
+ Giải điều kiện k = a
2) Tìm điều kiện để đường thẳng đi qua điểm cực đại cực tiểu vuông góc với đường thẳng y=ax+b
+ Điều kiện là: y’ = 0 có 2 nghiêm phân biệt
+ Viết phương trình đường thẳng đi qua điểm cực đại cực tiểu
+ Giải điều kiện k = -1/a
- Học toán lớp 12 qua video: Khảo sát và vẽ đồ thị hàm số
- Bảng công thức Tích phân - Đạo hàm - Mũ - Logarit
- Bảng công thức Tích phân - Đạo hàm - Mũ - Logarit
- Bài 1: Lũy thừa
- Toán 12 Bài 1: Lũy thừa
- Giải bài tập trang 55, 56 SGK Giải tích lớp 12: Lũy thừa
- Bài 2: Hàm số lũy thừa
- Toán 12 Bài 2: Hàm số lũy thừa
- Giải bài tập trang 60, 61 SGK Giải tích lớp 12: Hàm số lũy thừa
- Trắc nghiệm môn Toán lớp 12: Lũy thừa - Hàm số lũy thừa
- Câu hỏi trắc nghiệm môn Toán lớp 12: Hàm số lũy thừa - Hàm số mũ
- Bài 3: Lôgarit
- Toán 12 bài 3: Logarit
- Giải bài tập trang 68 SGK Giải tích lớp 12: Lôgarit
- Bài tập trắc nghiệm chuyên đề mũ và logarit có lời giải chi tiết
- Câu hỏi trắc nghiệm môn Toán lớp 12: Hàm số lôgarit
- Bài 4: Hàm số mũ. Hàm số lôgarit
- Toán 12 Bài 4: Hàm số mũ Hàm số Logarit
- Giải bài tập trang 77 SGK Giải tích lớp 12: Hàm số mũ. Hàm số lôgarit
- Câu hỏi trắc nghiệm môn Toán lớp 12: Hàm số lũy thừa - Hàm số mũ
- Câu hỏi trắc nghiệm môn Toán lớp 12: Hàm số lôgarit
- Bài tập hàm số mũ và logarit
- Bài 5: Phương trình mũ và phương trình lôgarit
- Toán 12 Bài 5: Phương trình mũ và Phương trình Logarit
- Giải bài tập trang 84, 85 SGK Giải tích lớp 12: Phương trình mũ và phương trình lôgarit
- 9 phương pháp giải phương trình mũ và phương trình lôgarit
- Câu hỏi trắc nghiệm môn Toán lớp 12: Phương trình mũ
- Bài tập phương trình mũ
- Câu hỏi trắc nghiệm môn Toán lớp 12: Phương trình lôgarit
- Toán 12 Bài 5: Phương trình mũ và Phương trình Logarit
- Giải bài tập trang 84, 85 SGK Giải tích lớp 12: Phương trình mũ và phương trình lôgarit
- 9 phương pháp giải phương trình mũ và phương trình lôgarit
- Câu hỏi trắc nghiệm môn Toán lớp 12: Phương trình mũ
- Bài tập phương trình mũ
- Câu hỏi trắc nghiệm môn Toán lớp 12: Phương trình lôgarit
- Bài 6: Bất phương trình mũ và bất phương trình lôgarit
- Giải bài tập Toán 12 chương 2 bài 6: Bất phương trình mũ và bất phương trình lôgarit
- Giải SBT Toán 12 bài tập trắc nghiệm chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số logarit