Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

9 phương pháp giải phương trình mũ và phương trình lôgarit

Phương pháp giải phương trình mũ và phương trình lôgarit

VnDoc xin giới thiệu với các bạn một số phương pháp giải phương trình mũ và phương trình lôgarit đưa ra một số phương pháp thường dùng để giải các bài tập về phương trình mũ và phương trình lôgarit. Hy vọng tài liệu này sẽ giúp các bạn trong quá trình học tập môn toán lớp 12 và chuẩn bị cho kì thi tốt nghiệp THPT quốc gia sắp tới đây.

Chuyên đề: phương trình và bất phương trình chứa căn thức

Chuyên đề bất phương trình vô tỉ

Bài tập phương trình mũ

Ôn thi Đại học môn Toán - Chuyên đề: Mũ và Logarit

Phương pháp 1: GIẢI PHƯƠNG TRÌNH CƠ BẢN
af(x) = b <=> f (x) = logab; logaf(x) = b <=> f(x) = a.

Ví dụ 1. Giải các phương trình:

a) 3x²-5x+4 = 81 ; b) log2(3x - 4) = 3.

Giải

a) 3x²-5x+4 = 81 <=> x2 - 5x + 4 = log381 <=> x2 - 5x + 4 = log334

<=> x2 - 5x + 4 = 4 <=> x2 - 5x = 0 <=> x(x - 5) = 0 <=> [x = 0
x = 5

Vậy phương trình đã cho có hai nghiệm x = 0 và x = 5

b) log2(3x - 4) = 3.

ĐK: 3x - 4 > 0 <=> x > 4/3

log2(3x - 4) = 3 <=> 3x - 4 = 23 <=> 3x - 4 = 8 <=> 3x = 12 <=> x = 4

Vậy phương trình đã cho có nghiệm x = 4.

Phương pháp 2: ĐƯA VỀ CÙNG CƠ SỐ

1) Đối với phương trình mũ: biến đổi phương trình về dạng af(x) = ag(x)

- Nếu cơ số a là một số dương khác 1 thì af(x) = ag(x) <=> f(x) = g(x)

- Nếu cơ số a thay đổi thì af(x) = ag(x) <=> {a > 0
(a - 1)[f(x) - g(x)] = 0

2) Đối với phương trình logarit: biến đổi về phương trình dạng

logaf(x) = logag(x) <=> {0 < a ≠ 1
f(x) > 0
f(x) = g(x)

Ví dụ 1. Giải các phương trình:

a) 3x²-5x+4 = 81 ; b) log2(3x - 4) = 3.

Giải

a) 3x²-5x+4 = 81 <=> x2 - 5x + 4 = log234

<=> x2 - 5x + 4 = 4 <=> x2 - 5x = 0 <=> x(x - 5) = 0 <=> [x = 0
x = 5

Vậy phương trình đã cho có hai nghiệm x = 0 và x = 5

b) log2(3x - 4) = 3.

ĐK: 3x - 4 > 0 <=> x > 4/3

log2(3x - 4) = 3 <=> 3x - 4 = 23 <=> 3x - 4 = 8 <=> 3x = 12 <=> x = 4

Vậy phương trình đã cho có nghiệm x = 4.

Phương pháp giải phương trình

Chia sẻ, đánh giá bài viết
69
Chọn file muốn tải về:
Chỉ thành viên VnDoc PRO tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Lớp 12

    Xem thêm