Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề khảo sát chất lượng Toán 12 (tháng 4) Đề 1

Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
Mô tả thêm:

VnDoc.com xin gửi tới bạn đọc Đề thi khảo sát chất lượng tháng 4 môn Toán lớp 12 (Có đáp án chi tiết).

  • Thời gian làm: 90 phút
  • Số câu hỏi: 22 câu
  • Số điểm tối đa: 22 điểm
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Chọn đáp án thích hợp

    Cho hình hộp ABCD.A'B'C'D'. Gọi MN lần lượt là trung điểm của BCCD. Vectơ nào sau đây bằng 2\overrightarrow{MN}?

    Ta có \overrightarrow{B'D'} cùng hướng với \overrightarrow{MN}B'D' = 2MN, suy ra \overrightarrow{B'D'} =2\overrightarrow{MN}

  • Câu 2: Nhận biết

    Xác định nhóm chứa trung vị của mẫu số liệu

    Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:

    Nhóm chứa trung vị của mẫu số liệu trên là

    Ta có: n = 42

    Nên trung vị của mẫu số liệu trên là Q_{2} = \frac{x_{21} + x_{22}}{2}

    x_{21},x_{22} \in \lbrack
40;60)

    Vậy nhóm chứa trung vị của mẫu số liệu trên là nhóm \lbrack 40;60)

  • Câu 3: Nhận biết

    Xác định tâm mặt cầu

    Trong không gian Oxyz, cho mặt cầu (S):(x + 3)^{2} + (y + 1)^{2} + (z -
1)^{2} = 2. Xác định tọa độ tâm của mặt cầu (S)

    Mặt cầu (S)có tâm là I( - 3; - 1;1).

  • Câu 4: Nhận biết

    Chọn phương án thích hợp

    Cho cấp số cộng \left( u_{n}
\right)u_{1} = 1u_{1} = 1u_{2} = 3. Giá trị của u_{3} bằng

    Công sai d = u_{2} - u_{1} = 2 nên u_{3} = u_{2} + d = 5.

  • Câu 5: Nhận biết

    Giải phương trình

    Nghiệm của phương trình \log_{5}(2x - 1) =\log_{5}3 là

    Ta có:

    \log_{5}(2x - 1) = \log_{5}3

    \Leftrightarrow 2x - 1 = 3
\Leftrightarrow x = 2

  • Câu 6: Nhận biết

    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là:

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là: z = 0

  • Câu 7: Thông hiểu

    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{a} = (2; - 3;3), \overrightarrow{b} = (0;2; - 1), \overrightarrow{c} = (3; - 1;5). Tìm tọa độ của vectơ \overrightarrow{u} =
2\overrightarrow{a} + 3\overrightarrow{b} -
2\overrightarrow{c}.

    Ta có:

    2\overrightarrow{a} = (4; -
6;6)

    3\overrightarrow{b} = (0;6; -
3)

    - 2\overrightarrow{c} = ( - 6;2; -
10)

    \Rightarrow \overrightarrow{u} =
2\overrightarrow{a} + 3\overrightarrow{b} - 2\overrightarrow{c} = ( -
2;2; - 7).

  • Câu 8: Nhận biết

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Gọi Q_{1},Q_{2},Q_{3} là tứ phân vị thứ nhất, tứ phân vị thứ hai và thứ ba của mẫu số liệu ghép nhóm. Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Khoảng tứ phân vị của mẫu ghép nhóm có công thức là: \Delta Q = Q_{3} - Q_{1}.

  • Câu 9: Nhận biết

    Chọn đáp án đúng

    Trong không gian Oxyz, hình chiếu vuông góc của điểm A(8;1;2) trên trục Ox có tọa độ là

    Hình chiếu vuông góc của điểm A(8;1;2) trên trục Ox (8;0;0).

  • Câu 10: Thông hiểu

    Chọn phương án thíchhợp

    Cho hàm số y\  = f(x) có bảng biến thiên như hình sau

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y\  = \ f(x)

    Ta có:

    \lim_{x ightarrow - \infty}y =
4,\lim_{x ightarrow + \infty}y = - 1 \RightarrowĐồ thị hàm số có hai tiệm cận ngang là y = - 1y = 4.

    \lim_{x ightarrow - 1^{-}}y = +
\infty,\lim_{x ightarrow - 1^{+}}y = - \infty \RightarrowĐồ thị hàm số có tiệm cận đứng x = -
1.

    \lim_{x ightarrow 1^{-}}y = -
\infty,\lim_{x ightarrow 1^{+}}y = + \infty \RightarrowĐồ thị hàm số có tiệm cận đứng x = 1.

    Nên đồ thị hàm số có 4 đường tiệm cận.

  • Câu 11: Thông hiểu

    Tính cosin của góc nhị diện

    Cho tứ diện S.ABC có các cạnh SA,SB,SC đôi một vuông góc và SA = SB = SC = 1. Gọi \alpha là góc phẳng nhị diện \lbrack S,BC,Abrack. Tính \cos\alpha.

    Hình vẽ minh họa

    Gọi D là trung điểm cạnh BC.

    Suy ra SD\bot BC (vì tam giác SBC cân tại S).

    Ta có: \left\{ \begin{matrix}
SA\bot SB \\
SA\bot SC \\
\end{matrix} \Rightarrow SA\bot(SBC) \Rightarrow SA\bot BC ight..

    SD\bot BC \Rightarrow BC\bot(SAD)
\Rightarrow BC\bot SD.

    Khi đó: \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
SD\bot BC \\
AD\bot BC \\
\end{matrix} ight. \Rightarrow
\lbrack S,BC,Abrack = SDA = \alpha.

    Xét \Delta SAD vuông tại S, ta có: \cos\alpha = \cos\widehat{SDA} = \frac{SD}{AD} =
\frac{1}{\sqrt{3}}.

  • Câu 12: Thông hiểu

    Tính giá trị biểu thức

    Cho F(x) là một nguyên hàm của f(x) = \frac{2}{x + 2}. Biết F( - 1) = 0. Tính F(2) kết quả là

    Ta có:

    \int_{- 1}^{2}{f(x)dx = F(2) - F( -
1)}

    \Leftrightarrow \int_{- 1}^{2}\frac{2}{x
+ 2} = \left. \ 2ln|x + 2| ight|_{- 1}^{2} = 2ln4 - 2ln1 =
2ln4

    \Leftrightarrow F(2) - F( - 1) =
2ln4

    \Leftrightarrow F(2) = 2ln4 (do F( - 1) = 0).

  • Câu 13: Thông hiểu

    Xét tính đúng sai của các phát biểu

    Cho hình lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng a, tam giác AB'C' cân tại A, mặt phẳng (AB'C') vuông góc với mặt phẳng (A'B'C')AA' = a\sqrt{3}.

    a) [TH] Mặt bên BCC'B' là hình chữ nhật. Đúng||Sai

    b) [TH] Hình chiếu vuông góc của A trên mặt phẳng (A'B'C') là trọng tâm của tam giác A'B'C'. Sai||Đúng

    c) [VD, VDC] Thể tích khối lăng trụ ABC.A'B'C' bằng \frac{3a^{3}\sqrt{3}}{8}. Đúng||Sai

    d) [VD, VDC] Khoảng cách giữa đường thẳng AA' và mặt phẳng BC' bằng \frac{a\sqrt{3}}{2} . Sai||Đúng

    Đáp án là:

    Cho hình lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng a, tam giác AB'C' cân tại A, mặt phẳng (AB'C') vuông góc với mặt phẳng (A'B'C')AA' = a\sqrt{3}.

    a) [TH] Mặt bên BCC'B' là hình chữ nhật. Đúng||Sai

    b) [TH] Hình chiếu vuông góc của A trên mặt phẳng (A'B'C') là trọng tâm của tam giác A'B'C'. Sai||Đúng

    c) [VD, VDC] Thể tích khối lăng trụ ABC.A'B'C' bằng \frac{3a^{3}\sqrt{3}}{8}. Đúng||Sai

    d) [VD, VDC] Khoảng cách giữa đường thẳng AA' và mặt phẳng BC' bằng \frac{a\sqrt{3}}{2} . Sai||Đúng

    Hình vẽ minh họa

    a) Gọi Hlà trung điểm của B'C' \Rightarrow \ \ \ AH\bot
B'C'(1)

    Ta có \Delta ABC là tam giác đều \Rightarrow A'H\bot
B'C' (2)

    Từ (1) và (2) suy ra B'C'\bot(AA'H) \Rightarrow
B'C'\bot AA' hay B'C'\bot B'B

    Mà mặt bên BCC'B' là hình bình hành.

    Vậy mặt bên BCC'B' là hình chữ nhật. Vậy mệnh đề a) đúng.

    b) Có H là trung điểm của B'C' \Rightarrow \ \ \ AH\bot
B'C'

    Ta có \left. \ \begin{matrix}
(AB'C')\bot(A'B'C') \\
(AB'C') \cap (A'B'C') = B'C' \\
\ AH \subset (AB'C');AH\bot B'C' \\
\end{matrix} ight\} \Rightarrow \
AH\bot(A'B'C')

    Vậy hình chiếu vuông góc của A trên mặt phẳng (A'B'C') là trung điểm của cạnh B'C'. Vậy mệnh đề b) sai.

    c) Tam giác A'B'C' đều cạnh a diện tích bằng S = \frac{a^{2}\sqrt{3}}{4}.

    AH\bot A'B'C' ; A'H \subset A'B'C' nên AH\bot A'H; tam giác A'AH vuông tại H.

    AH = \sqrt{A{A'}^{2} - A'H^{2}}
= \sqrt{(a\sqrt{3})^{2} - \left( \frac{a\sqrt{3}}{2} ight)^{2}} =
\frac{3a}{2}

    Khối lăng trụ ABC.A'B'C'có diện tích đáy S = \frac{a^{2}\sqrt{3}}{4}; đường cao h = AH = \frac{3a}{2}.

    Thể tích khối lăng trụ ABC.A'B'C' bằng V = Sh = \frac{a^{2}\sqrt{3}}{4}.\frac{3a}{2} =
\frac{3a^{3}\sqrt{3}}{8}.

    Vậy mệnh đề c) đúng.

    d) Ta có:AA'//(BB'C')
\Rightarrow d(AA',BC') = d\left( AA',(BB'C') ight)
= d\left( A',(BB'C') ight)

    Trong mặt phẳng (AA'HH'), kẻ A'K\bot HH'\ (K \in HH').

    Ta có B'C'\bot(AA'HH') suy ra B'C'\bot A'K.

    Suy ra A'K\bot(BB'C'C)
\Rightarrow d\left( A',(BB'C'C) ight) =
A'K.

    S_{AA'HH'} = A'H.AH =
A'K.HH' \Rightarrow A'K = \frac{A'H.AH}{HH'} =
\frac{\frac{a\sqrt{3}}{2}.\frac{3a}{2}}{a\sqrt{3}} =
\frac{3a}{4}.

    Vậy mệnh đề d) sai.

  • Câu 14: Vận dụng cao

    Xét tính đúng sai của các kết luận

    Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn \lbrack -
3;3brack và đồ thị hàm số y =
f'(x) như hình vẽ dưới đây.

    Biết f(1) = 6g(x) = f(x) - \frac{(x + 1)^{2}}{2}.

    a) [NB] g(1) = 4 Đúng||Sai

    b) [TH] g'(x) = f'(x) - (x +
1). Đúng||Sai

    c) [TH] Phương trình g'(x) =
0 có ba nghiệm phân biệt. Đúng||Sai

    d) [VD, VDC] Giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack là một số dương. Sai|||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn \lbrack -
3;3brack và đồ thị hàm số y =
f'(x) như hình vẽ dưới đây.

    Biết f(1) = 6g(x) = f(x) - \frac{(x + 1)^{2}}{2}.

    a) [NB] g(1) = 4 Đúng||Sai

    b) [TH] g'(x) = f'(x) - (x +
1). Đúng||Sai

    c) [TH] Phương trình g'(x) =
0 có ba nghiệm phân biệt. Đúng||Sai

    d) [VD, VDC] Giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack là một số dương. Sai|||Đúng

    a) [NB] g(1) = 4

    Ta có g(1) = f(1) - \frac{(1 + 1)^{2}}{2}
= f(1) - 2 = 4 \Rightarrow Khẳng định đúng

    b) [TH] g'(x) = f'(x) - (x +
1).

    g'(x) = f'(x) - (x + 1) \Rightarrow Khẳng định đúng

    c) [TH] Phương trình g'(x) =
0 có ba nghiệm phân biệt.

    Từ đồ thị hàm số y = f'(x)y = x + 1 ta có g'(x) = 0 \Leftrightarrow f'(x) = x + 1
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 3 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.\  \Rightarrow Khẳng định đúng.

    d) [VD, VDC] Giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack là một số dương.

    Qua đồ thị hình lưới

    Xét hình phẳng giới hạn bởi đồ thị y =
f'(x);\ y = x + 1;\ x = - 3;x = 1 có diện tích S_{1} > 4 \Leftrightarrow \int_{- 3}^{1}{\left|
f'(x) - (x + 1) ight|dx > 4 \Leftrightarrow \int_{-
3}^{1}{\left| g'(x) ight|dx > 4}}\

    \Leftrightarrow g(1) - g( - 3) > 4 \Rightarrow
g( - 3) < g(1) - 4 = 0

    Xét hình phẳng giới hạn bởi đồ thị y =
f'(x);\ y = x + 1;\ x = 1;x = 3 có diện tích S_{2} < 4

    \Leftrightarrow \int_{1}^{3}{\left|
f'(x) - (x + 1) ight|dx < 4 \Leftrightarrow \int_{1}^{3}{\left|
g'(x) ight|dx < 4}}

    \Leftrightarrow - g(3) + g(1) < 4
\Rightarrow g(3) > g(1) - 4 = 0.

    Dựa vào đồ thị ta có bảng biến thiên của hàm y = g(x) trên \lbrack - 3;3brack

    Từ bảng biến thiên suy ra giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack\min_{\lbrack - 3;3brack}g(x) = g( - 3) <
0.\Rightarrow Khẳng định sai.

  • Câu 15: Vận dụng

    Xét tính đúng sai của các mệnh đề sau

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trong đoạn \lbrack -
1;3brack như hình.

    Các mệnh đề sau đúng hay sai?

    a) [NB] Trên \lbrack -
1;3brack hàm số y = f(x)2 điểm cực trị. Đúng||Sai

    b) [TH] Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3brack6. Sai|||Đúng

    c) [TH] Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3brackbằng 6. Đúng||Sai

    d) [VD] Hàm số g(x) = f(4 - x) có đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack 1;3brack lần lượt bằng a\ và\ b. Khi đó giá trị của a^{2} + b^{2} = 53. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trong đoạn \lbrack -
1;3brack như hình.

    Các mệnh đề sau đúng hay sai?

    a) [NB] Trên \lbrack -
1;3brack hàm số y = f(x)2 điểm cực trị. Đúng||Sai

    b) [TH] Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3brack6. Sai|||Đúng

    c) [TH] Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3brackbằng 6. Đúng||Sai

    d) [VD] Hàm số g(x) = f(4 - x) có đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack 1;3brack lần lượt bằng a\ và\ b. Khi đó giá trị của a^{2} + b^{2} = 53. Đúng||Sai

    a) Đúng.

    Trên \lbrack -
1;3brack hàm số y = f(x) đạt cực trị tại x\  = \ 0;\ x\  = \
2.

    b) Sai.

    Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3brack7 khi x = 3. Mệnh đề sai.

    c) Đúng.

    Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3brack bằng - 1 + 7\  = 6. Mệnh đề đúng.

    d) Đúng.

    Xét Hàm số g(x) = f(4 -
x) trên đoạn \lbrack
1;3brack.

    Ta có g'(x) = - f'(4 -
x)

    g'(x) = 0 \Leftrightarrow f'(4 -
x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
4 - x = 0 \\
4 - x = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 4 otin \lbrack 1;3brack \\
x = 2 \in \lbrack 1;3brack \\
\end{matrix} ight.

    Ta có;

    g(1) = f(3) = 7;g(2) = f(2) = 2;2 <
g(3) = f(1) < 7

    Do đó y = g(x) đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack
1;3brack bằng 27.

    Hay a = 2,b = 7. Khi đó giá trị của a^{2} + b^{2} = 53. Mệnh đề đúng.

  • Câu 16: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Bạn Trang thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp 12C và lớp 12D ở bảng sau:

    Chiều cao (cm)

    [155; 160) [160; 165) [165; 170) [170; 175) [175; 180) [180; 185)

    Số học sinh nữ lớp 12C

    2

    7

    12

    3

    1

    1

    Số học sinh nữ lớp 12D

    5

    9

    8

    2

    2

    0

    Xét tính đúng/sai của các mệnh đề sau:

    a) [NB] Giá trị đại điện của nhóm \lbrack
165;\ 170)167,5. Đúng||Sai

    b) [TH] Khoảng biến thiên của mẫu số liệu ghép nhóm của lớp 12D là 30. Sai|||Đúng

    c) [VD, VDC] Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn học sinh nữ lớp 12D. Đúng||Sai

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12D có chiều cao trung bình đồng đều hơn. Sai|||Đúng

    Đáp án là:

    Bạn Trang thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp 12C và lớp 12D ở bảng sau:

    Chiều cao (cm)

    [155; 160) [160; 165) [165; 170) [170; 175) [175; 180) [180; 185)

    Số học sinh nữ lớp 12C

    2

    7

    12

    3

    1

    1

    Số học sinh nữ lớp 12D

    5

    9

    8

    2

    2

    0

    Xét tính đúng/sai của các mệnh đề sau:

    a) [NB] Giá trị đại điện của nhóm \lbrack
165;\ 170)167,5. Đúng||Sai

    b) [TH] Khoảng biến thiên của mẫu số liệu ghép nhóm của lớp 12D là 30. Sai|||Đúng

    c) [VD, VDC] Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn học sinh nữ lớp 12D. Đúng||Sai

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12D có chiều cao trung bình đồng đều hơn. Sai|||Đúng

    a) Đúng

    Giá trị đại điện của nhóm \left\lbrack
\mathbf{165}\mathbf{}\mathbf{;}\mathbf{\ }\mathbf{170} ight)\frac{165 + 170}{2} = 167,5.

    b) Sai

    Khoảng biến thiên của mẫu số liệu ghép nhóm của lớp 12D là 180 - 155 = 25.

    c) Đúng

    Xét mẫu số liệu của lớp 12C:

    Cỡ mẫu n_{C} = 2 + 7 + 12 + 3 + 1 + 1 =
26.

    Gọi x_{1}\ ;\ ...\ ;\ x_{26}là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp 12C được xếp theo thứ tự không giảm.

    Ta có

    x_{1}\ ;\ x_{2} \in \lbrack 155\ ;\
160),

    x_{3}\ ;\ ...\ ;\ x_{9} \in \lbrack 160\
;\ 165),

    x_{10}\ ;\ ...\ ;\ x_{21} \in \lbrack
165\ ;\ 170),

    x_{22}\ ;\ x_{23}\ ;x_{24} \in \lbrack
170\ ;\ 175),

    x_{25} \in \lbrack 175\ ;\
180),

    x_{26} \in \lbrack 180\ ;\
185).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{7} \in \lbrack 160\ ;\ 165).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: 

    Q_{1} = 160 + \frac{\frac{26}{4} - 2}{7}(165 -
160) \approx 163,214.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{20} \in \lbrack 165\ ;\ 170).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: 

    Q_{3} = 165 + \frac{\frac{3.26}{4} - (2 +
7)}{12}(170 - 165) = 169,375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{C} = Q_{3} - Q_{1} \approx 169,375 -
163,214 \approx 6,161.

     Xét mẫu số liệu của lớp 12D:

    Cỡ mẫu n_{D} = 5 + 9 + 8 + 2 + 2 + 0 =
26.

    Gọi x_{1}\ ;\ ...\ ;\ x_{26}là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp 12D được xếp theo thứ tự không giảm.

    Ta có

    x_{1}\ ;\ ...\ ;x_{5} \in \lbrack 155\ ;\
160),

    x_{6}\ ;\ ...\ ;\ x_{14} \in \lbrack 160\
;\ 165),

    x_{15}\ ;\ ...\ ;\ x_{22} \in \lbrack
165\ ;\ 170),

    x_{23}\ ;\ x_{24} \in \lbrack 170\ ;\
175),

    x_{25}\ ;\ x_{26} \in \lbrack 175\ ;\
180).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{7} \in \lbrack 160\ ;\ 165). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: {Q'}_{1} = 160 + \frac{\frac{26}{4} -
5}{9}(165 - 160) \approx 160,833.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{20} \in \lbrack 165\ ;\ 170).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: {Q'}_{3} = 165 + \frac{\frac{3.26}{4} - (5 +
9)}{8}(170 - 165) = 168,4375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{D} = {Q'}_{3} - {Q'}_{1} \approx
168,4375 - 160,833 \approx 7,6045.

    \Delta_{C} < \Delta_{D} nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn học sinh nữ lớp 12D.

    d) Sai

    Ta có bảng giá trị đại diện của nhóm:

    Chiều cao (cm)

    [155; 160) [160; 165) [165; 170) [170; 175) [175; 180) [180; 185)

    Giá trị đại diện

    157,5

    162,5

    167,5

    172,5

    177,5

    182,5

    Số học sinh nữ lớp 12C

    2

    7

    12

    3

    1

    1

    Số học sinh nữ lớp 12D

    5

    9

    8

    2

    2

    0

    Xét mẫu số liệu của lớp 12C:

    Số trung bình của mẫu số liệu ghép nhóm là: 

    {\overline{x}}_{C} = \frac{2.157,5 +
7.162,5 + 12.167,5 + 3.172,5 + 1.177,5 + 1.182,5}{26} =
\frac{2170}{13}.

    Phương sai của mẫu số liệu ghép nhóm là:

    S_{C}^{2} = \frac{1}{26}[
2.(157,5)^{2} + 7.(162,5)^{2} + 12.(167,5)^{2}+ 3.(172,5)^{2} +
1.(177,5)^{2} + 1.(182,5)^{2} ] - \left( \frac{2170}{13}
ight)^{2} \approx 29,475

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S_{C} = \sqrt{S_{C}^{2}} = \sqrt{29,475} \approx
5,429.

    Xét mẫu số liệu của lớp 12D:

    Số trung bình của mẫu số liệu ghép nhóm là: 

    {\overline{x}}_{D} = \frac{5.157,5 +
9.162,5 + 8.167,5 + 2.172,5 + 2.177,5 + 0.182,5}{26} = 165.

    Phương sai của mẫu số liệu ghép nhóm là:

    S_{D}^{2} = \frac{1}{26}[
5.(157,5)^{2} + 9.(162,5)^{2} + 8.(167,5)^{2}+ 2.(172,5)^{2} +
2.(177,5)^{2} + 0.(182,5)^{2} ]- (165)^{2} =
31,25

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S_{D} = \sqrt{S_{D}^{2}} = \sqrt{31,25} \approx
5,59.

    S_{C} < S_{D} nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn.

  • Câu 17: Thông hiểu

    Ghi đáp án vào ô trống

    Một tòa nhà có hình dạng là một hình chóp tứ giác đều có cạnh đáy là 160m và cạnh bên là 140m. Giả sử, từ một mặt bên của tòa nhà ta cần thiết kế con đường ngắn nhất để di chuyển đến tâm của đáy tòa nhà, khi đó quãng đường ngắn nhất có độ dài khoảng bao nhiêu mét?(quy tròn đến hàng chục).

    Đáp án: 57,4

    Đáp án là:

    Một tòa nhà có hình dạng là một hình chóp tứ giác đều có cạnh đáy là 160m và cạnh bên là 140m. Giả sử, từ một mặt bên của tòa nhà ta cần thiết kế con đường ngắn nhất để di chuyển đến tâm của đáy tòa nhà, khi đó quãng đường ngắn nhất có độ dài khoảng bao nhiêu mét?(quy tròn đến hàng chục).

    Đáp án: 57,4

    Giả sử các cạnh và các đỉnh của tòa nhà được mô phỏng như hình vẽ bên dưới

    Gọi H là giao điểm của ACBD.

    S.ABCD là chóp tứ giác đều nên ta có SA = SB = SC = SD.

    \Rightarrow HC = \frac{AC}{2} =
80\sqrt{2}m.

    Xét tam giác SHC vuông tại H, ta có:

    SH = \sqrt{SC^{2} - HC^{2}} =\sqrt{(140)^{2} - \left( 80\sqrt{2} ight)^{2}} =\sqrt{6800}m.

    Gọi I là trung điểm của BC, ta có SI\bot BC vì tam giác SBC cân tại S và ta có: HI =\frac{AB}{2}=80m.

    Kẻ HJ\bot SI, khi đó HJ\bot(SBC)\left\{ \begin{matrix}
HJ\bot SI \\
HJ\bot BC \\
\end{matrix} ight.

    =>d(H,(SBC)) = HJ

    =>HJ là quãng đường ngắn nhất để đào con đường vào tâm của đáy tòa nhà.

    Xét tam giác SHI vuông tại H, ta có:

    \frac{1}{HJ^{2}} = \frac{1}{SH^{2}} +
\frac{1}{HI^{2}} = \frac{1}{6800} + \frac{1}{6400}= \frac{33}{108800}
\Rightarrow HJ \approx 57,4m.

    Quãng đường ngắn nhất để đào con đường vào tâm của đáy tòa nhà khoảng 5 7 , 4 m.

  • Câu 18: Thông hiểu

    Ghi đáp án vào ô trống

    Ta xác định được các số a, b, c để đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) và có điểm cực trị (2;1). Tính giá trị biểu thức T = 2025(a + c -
b).

    Đáp án: 4050

    Đáp án là:

    Ta xác định được các số a, b, c để đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) và có điểm cực trị (2;1). Tính giá trị biểu thức T = 2025(a + c -
b).

    Đáp án: 4050

    Ta có: y' = 3x^{2} + 2ax +
b.

    Đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) nên ta có: a - b +c = 2.

    Đồ thị hàm số có điểm cực trị (2;1) nên \left\{ \begin{matrix}
4a + 2b + c = - 7 \\
y'(2) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
4a + 2b + c = 7 \\
4a + b = - 12 \\
\end{matrix} ight..

    Xét hệ phương trình \left\{
\begin{matrix}
a - b + c = 2 \\
4a + 2b + c = - 7 \\
4a + b = - 12 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = 0 \\
c = 5 \\
\end{matrix} ight..

    Vậy T = 2025(a + c - b) = 2025( - 3 + 5 -
0) = 4050.

  • Câu 19: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho một mô hình 3D mô phỏng một đường hầm như hình vẽ bên.

    Chiều dài của đường hầm mô hình là 5cm, mặt phẳng vuông góc với mặt đáy của đường hầm tạo được thiết diện là một hình parabol, thiết diện có độ dài cạnh đáy gấp đôi chiều cao. Tính thể tích không gian bên trong đường hầm mô hình, biết chiều cao của mỗi thiết diện parabol cho bởi công thứcy = 3 - \frac{2}{5}x (đơn vị là cm), với x là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Kết quả làm tròn đến hàng đơn vị.

    Đáp án: 29

    Đáp án là:

    Cho một mô hình 3D mô phỏng một đường hầm như hình vẽ bên.

    Chiều dài của đường hầm mô hình là 5cm, mặt phẳng vuông góc với mặt đáy của đường hầm tạo được thiết diện là một hình parabol, thiết diện có độ dài cạnh đáy gấp đôi chiều cao. Tính thể tích không gian bên trong đường hầm mô hình, biết chiều cao của mỗi thiết diện parabol cho bởi công thứcy = 3 - \frac{2}{5}x (đơn vị là cm), với x là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Kết quả làm tròn đến hàng đơn vị.

    Đáp án: 29

    Xét một thiết diện parabol có chiều cao là h và độ dài đáy 2h và chọn hệ trục Oxy như hình vẽ bên

    Parabol (P) có phương trình (P):\ \ y = ax^{2} + h,\ \ (a <
0)

    B(h;\ 0) \in (P) \Leftrightarrow 0 =
ah^{2} + h \Leftrightarrow a = - \frac{1}{h}\ \ (do\ h >
0)

    Diện tích S của thiết diện: S = \int_{- h}^{h}{\left( - \frac{1}{h}x^{2}
+ h ight)\ dx} = \frac{4h^{2}}{3}, kết hợp chiều cao h = 3 - \frac{2}{5}x

    Ta được diện tích thiết diện là S(x) =
\frac{4}{3}\left( 3 - \frac{2}{5}x ight)^{2}.

    Thể tích không gian bên trong của đường hầm mô hình:

    V = \int_{0}^{5}{S(x)\ dx} =
\int_{0}^{5}{\frac{4}{3}\left( 3 - \frac{2}{5}x ight)^{2}\ dx} \approx
28,888

    Vậy V \approx 29\ \ \left( cm^{3}
ight).

  • Câu 20: Vận dụng

    Ghi đáp án đúng vào ô trống

    Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có 6viên kẹo màu cam, còn lại là kẹo màu vàng và kẹo xanh. Hà lấy ngẫu nhiên 1 viên kẹo từ trong túi, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm 1 viên kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai viên kẹo màu cam là \frac{1}{3}. Hỏi ban đầu trong túi có bao nhiêu viên kẹo?

    Đáp án: 10

    Đáp án là:

    Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có 6viên kẹo màu cam, còn lại là kẹo màu vàng và kẹo xanh. Hà lấy ngẫu nhiên 1 viên kẹo từ trong túi, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm 1 viên kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai viên kẹo màu cam là \frac{1}{3}. Hỏi ban đầu trong túi có bao nhiêu viên kẹo?

    Đáp án: 10

    Gọi A là biến cố “Hà lấy được viên kẹo màu cam ở lần thứ nhất”

    Gọi B là biến cố “Hà lấy được viên kẹo màu cam ở lần thứ hai”

    Ta có: xác suất Hà lấy được cả hai viên kẹo màu cam là \frac{1}{3}, suy ra P(AB) = \frac{1}{3}

    Gọi n là số viên kẹo ban đầu trong túi \left( n \in \mathbb{N}^{*},\ n
eq 1 ight)

    P(A) = \frac{6}{n}; P\left( \left. \ B ight|A ight) = \frac{5}{n -
1}

    Theo công thức nhân xác suất, ta có:

    P(AB) = P(A) \cdot P\left( \left. \ B
ight|A ight)= \frac{6}{n} \cdot \frac{5}{n - 1} = \frac{30}{n^{2} -n} = \frac{1}{3}

    \Leftrightarrow n^{2} - n = 90

    \Leftrightarrow n^{2} -
n - 90 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = - 9 \\
n = 10 \\
\end{matrix} ight..

    Ta được n = - 9 (loại) hoặc n = 10 (nhận).

    Vậy ban đầu trong túi có 10 viên kẹo.

  • Câu 21: Vận dụng

    Ghi đáp án đúng vào ô trống

    Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông 60(km) và về phía Nam 40(km), đồng thời cách mặt đất 2(km). Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc 80(km) và về phía Tây 50(km), đồng thời cách mặt đất 4(km). Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.

    Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.

    Đáp án: 20,8

    Đáp án là:

    Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông 60(km) và về phía Nam 40(km), đồng thời cách mặt đất 2(km). Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc 80(km) và về phía Tây 50(km), đồng thời cách mặt đất 4(km). Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.

    Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.

    Đáp án: 20,8

    Chọn hệ trục tọa độ Oxyz, với gốc đặt tại điểm xuất phát của hai chiếc máy bay, mặt phẳng (Oxy) trùng với mặt đất, trục Ox hướng về phía Bắc, trục Oy hướng về phía Tây, trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét (xem hình vẽ).

    Chiếc máy bay thứ nhất có tọa độ ( - 40;
- 60;2).

    Chiếc máy bay thứ hai có tọa độ (80;50;4).

    Do chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng nên ở vị trí trung điểm, suy ra chiếc máy bay thứ ba có tọa độ \left( \frac{- 40 + 80}{2};\frac{- 60 +
50}{2};\frac{2 + 4}{2} ight) = (20; - 5;3).

    Khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó là:

    \sqrt{20^{2} + ( - 5)^{2} + 3^{2}}
\approx 20,8(km).

  • Câu 22: Vận dụng

    Ghi đáp án đúng vào ôtrống

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;1;5),\ \ B(3;0;1),\ \ C( - 1;2;0) và điểm M(a;b;c) thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA} lớn nhất. Tính P = a - 2b + 4c.

    Đáp án: 13

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;1;5),\ \ B(3;0;1),\ \ C( - 1;2;0) và điểm M(a;b;c) thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA} lớn nhất. Tính P = a - 2b + 4c.

    Đáp án: 13

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (4 - a;1 - b;5 - c) \\
\overrightarrow{MB} = (3 - a; - b;1 - c) \\
\overrightarrow{MC} = ( - 1 - a;2 - b; - c) \\
\end{matrix} ight.

    \overrightarrow{MA}.\overrightarrow{MB}
+ 2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA}

    = (4 - a)(3 - a) + (1 - b)( - b) + (5 -
c)(1 - c)

    + 2(3 - a)( - 1 - a) + 2( - b)(2 - b) +
2(1 - c)( - c)

    - 5(4 - a)( - 1 - a) - 5(1 - b)(2 - b) -
5(5 - c)( - c)

    = - 2a^{2} - 2b^{2} - 2c^{2} + 4a + 10b
+ 17c + 21

    = - 2(a - 1)^{2} - 2\left( b -
\frac{5}{2} ight)^{2} - 2\left( c - \frac{17}{4} ight)^{2} +
\frac{573}{8} \leq \frac{573}{8}

    Dấu bằng xảy ra khi và chỉ khi\left\{
\begin{matrix}
a = 1 \\
b = \frac{5}{2} \\
c = \frac{17}{4} \\
\end{matrix} ight.. Khi đó P =
a - 2b + 4c = 13.

Chúc mừng Bạn đã hoàn thành bài!

Đề khảo sát chất lượng Toán 12 (tháng 4) Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo