Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề khảo sát chất lượng Toán 12 (tháng 4) Đề 3

Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
Mô tả thêm:

VnDoc.com xin gửi tới bạn đọc Đề thi khảo sát chất lượng tháng 4 môn Toán lớp 12 (Có đáp án chi tiết).

  • Số câu hỏi: 22 câu
  • Số điểm tối đa: 22 điểm
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Chọn phương án thích hợp

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC. Khi đó:

    Ta có:

    G là trọng tâm tam giác ABC nên \overrightarrow{GA} + \overrightarrow{GB} +\overrightarrow{GC} = \overrightarrow{0}

    \Rightarrow \overrightarrow{GD} +\overrightarrow{DA} + \overrightarrow{GD} + \overrightarrow{DB} +\overrightarrow{GD} + \overrightarrow{DC} =\overrightarrow{0}

    \Rightarrow \overrightarrow{DA} +\overrightarrow{DB} + \overrightarrow{DC} + 3\overrightarrow{GD} =\overrightarrow{0}

    \Rightarrow \overrightarrow{DA} +\overrightarrow{DB} + \overrightarrow{DC} - 3\overrightarrow{DG} =\overrightarrow{0}

    \Rightarrow \overrightarrow{DA} +\overrightarrow{DB} + \overrightarrow{DC} =3\overrightarrow{DG}.

  • Câu 2: Thông hiểu

    Xác định trung vị của mẫu số liệu ghép nhóm

    Điểm thi giữa kỳ 1 môn toán của một lớp học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:

    Điểm thi

    [1,5; 4,5)

    [4,5; 7,5)

    [7,5; 10,5)

    Số học sinh

    7

    18

    10

    Trung vị của mẫu số liệu ghép nhóm trên là

    Cỡ mẫu là n = 7 + 18 + 10 =
35.

    Gọi x_{1},x_{2},\ldots,x_{35} là số điểm của 35 học sinh và giả sử dãy này được sắp xếp theo thứ tự không giảm. Khi đó, trung vị là x_{18} thuộc nhóm \lbrack 4,5;7,5).

    Ta xác định được n = 35,n_{m} = 18,C =
7,u_{m} = 4,5,u_{m + 1} = 7,5.

    Trung vị của mẫu số liệu ghép nhóm là:

    M_{e} = 4,5 + \dfrac{\dfrac{35}{2} -7}{18}(7,5 - 4,5) = 6,25.

  • Câu 3: Nhận biết

    Tìm tọa độ tâm mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x + 1)^{2} + (y - 2)^{2} + (z - 1)^{2} =
9. Tìm tọa độ tâm I và tính bán kính R của (S)

    Mặt cầu (S):(x + 1)^{2} + (y - 2)^{2} +
(z - 1)^{2} = 9 có tâm I( -
1;2;1) và bán kính R =
3.

  • Câu 4: Nhận biết

    Tìm công sai của cấp số cộng

    Cho cấp số cộng \left( u_{n}
\right) với u_{1} = 3, u_{2} = 5. Công sai của cấp số cộng đã cho bằng:

    Công sai của cấp số cộng đã cho là d =
u_{2} - u_{1} = 5 - 3 = 2.

  • Câu 5: Thông hiểu

    Giải phương trình mũ

    Nghiệm của phương trình 3^{x - 1} =
27

    Ta có:

    3^{x - 1} = 27 \Leftrightarrow 3^{x - 1}
= 3^{3} \Leftrightarrow x = 4.

  • Câu 6: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình của mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Mặt phẳng (P)đi qua A(0;1;1)và nhận vecto \overrightarrow{AB} = (1;1;2)là vectơ pháp tuyến

    (P):1(x - 0) + 1(y - 1) + 2(z - 1) =
0

    \Leftrightarrow x + y + 2z - 3 =
0.

  • Câu 7: Nhận biết

    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = ( - 1;\ 2;\
0)\overrightarrow{v} = (1;\  -
2;\ 3). Toạ độ của vectơ \overrightarrow{u} + \overrightarrow{v} là:

    Ta có \overrightarrow{u} +
\overrightarrow{v} = ( - 1 + 1;\ 2 - 2;\ 0 + 3) = (0;\ 0;\
3).

  • Câu 8: Thông hiểu

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường (km)

    \lbrack 2,7;3,0) \lbrack 3,0;3,3) \lbrack 3,3;3,6) \lbrack 3,6;3,9) \lbrack 3,9;4,2)

    Số ngày

    3

    6

    5

    4

    2

           Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Cỡ mẫu: n = 20

    Gọi x_{1};x_{2};\ldots;x_{20\
}là mẫu số liệu gốc về quãng đường đi bộ mỗi ngày của bác Hương trong 20 ngày được xếp theo thứ tự không giảm.

    Ta có:

    x_{1};\ldots;x_{3} \in \lbrack
2,7;3,0);x_{4};\ldots;x_{9} \in \lbrack 3,0;3,3); x_{10};\ldots;x_{14} \in \lbrack
3,3;3,6);;x_{15};\ldots;x_{18} \in \lbrack 3,6;3,9); x_{19};x_{20} \in \lbrack 3,9;4,2)

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{5} + x_{6} ight) \in
\lbrack 3,0;3,3).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 3,0 + \dfrac{\dfrac{20}{4} - 3}{6}(3,3 -3,0) = 3,1

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{15} + x_{16} ight) \in
\lbrack 3,6;3,9).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 3,6 + \dfrac{\dfrac{3.20}{4} - (3+ 6 + 5)}{4}(3,9 - 3,6) = 3,675

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} =
0,575

  • Câu 9: Nhận biết

    Tìm tọa độ trung điểm của đoạn thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; - 2;3)B( - 1;2;5). Tìm tọa độ trung điểm I của đoạn thẳng AB.

    Tọa độ trung điểm I của đoạn AB với A(3; - 2;3)B( - 1;2;5) được tính bởi

    \left\{ \begin{matrix}
x_{I} = \frac{x_{A} + x_{B}}{2} = 1 \\
y_{I} = \frac{y_{A} + y_{B}}{2} = 0 \\
z_{I} = \frac{z_{A} + z_{B}}{2} = 4 \\
\end{matrix} ight.\  \Rightarrow I(1;\ 0;4).

  • Câu 10: Nhận biết

    Xác định tiệm cận ngang của đồ thị hàm số

    Tiệm cận ngang của đồ thị hàm số y =
\frac{x - 2}{x + 1}

    Ta thấy \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } \frac{{x - 2}}{{x + 1}} = 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 2}}{{x + 1}} = 1 \hfill \\ 
\end{gathered}  ight.

    Do đó đồ thị hàm số có tiệm cận ngang là y = 1.

  • Câu 11: Nhận biết

    Tính số đo góc nhị diện

    Cho hình lập phương ABCD.A'B'C'D'. Số đo của góc nhị diên\left\lbrack
(BCC'B'),BB',(BDD'B') \right\rbrack bằng

    Hình vẽ minh họa

    Ta có góc nhị diên \left\lbrack
(BCC'B'),BB',(BDD'B') ightbrack bằng \widehat{DBC} = 45{^\circ}.

  • Câu 12: Nhận biết

    Tính tích phân

    Cho \int_{0}^{1}{f(x)dx = 2}\int_{0}^{1}{g(x)dx = 5}, khi đó \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
\right\rbrack dx} bằng

    Ta có:

    \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
ightbrack dx}

    = \int_{0}^{1}{f(x)dx} -
2\int_{0}^{1}{g(x)dx}

    = 2 - 2.5 = - 8.

  • Câu 13: Thông hiểu

    Xác định tính đúng sai của các nhận định

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại AB, AB = BC =
a,AD = 2a, hai mặt phẳng (SAB),(SAD) vuông góc với mặt phẳng đáy, góc giữa cạnh bên SC với mặt phẳng đáy bằng 60^{0}. Khi đó

    a) [NB] SA vuông góc với mặt phẳng đáy. Đúng||Sai

    b) [TH] Chiều cao khối chóp bằng \frac{a\sqrt{6}}{2}.Sai||Đúng

    c) [TH] Thể tích khối chóp S.ABCDbằng \frac{a^{3}\sqrt{6}}{2}. Đúng||Sai

    d) [VD, VDC] Khoảng cách giữa hai đường thẳng SBCD bằng \frac{a\sqrt{78}}{13}. Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại AB, AB = BC =
a,AD = 2a, hai mặt phẳng (SAB),(SAD) vuông góc với mặt phẳng đáy, góc giữa cạnh bên SC với mặt phẳng đáy bằng 60^{0}. Khi đó

    a) [NB] SA vuông góc với mặt phẳng đáy. Đúng||Sai

    b) [TH] Chiều cao khối chóp bằng \frac{a\sqrt{6}}{2}.Sai||Đúng

    c) [TH] Thể tích khối chóp S.ABCDbằng \frac{a^{3}\sqrt{6}}{2}. Đúng||Sai

    d) [VD, VDC] Khoảng cách giữa hai đường thẳng SBCD bằng \frac{a\sqrt{78}}{13}. Đúng||Sai

    Hình vẽ minh họa

    a) Đúng. Ta có:

    \left. \ \begin{matrix}
(SAD)\bot(ABCD) \\
(SAB)\bot(ABCD) \\
(SAB) \cap (SAD) = SA \\
\end{matrix} ight\} \Rightarrow SA\bot(ABCD).

    b) Sai.

    Ta có: SA\bot(ABCD) \Rightarrow
AC là hình chiếu vuông góc của SC lên (ABCD).

    Góc giữa SC và mặt phẳng đáy là \widehat{SCA} = 60^{0}.

    Khi đó SA = AC.tan60^{0} = a\sqrt{2}.\sqrt{3} =
a\sqrt{6}.

    c) Đúng.

    Thể tích khối chóp

    V_{S.ABCD} = \frac{1}{3}S_{ABCD}.SA =
\frac{1}{3}.\frac{1}{2}(a + 2a).a.a\sqrt{6} =
\frac{a^{3}\sqrt{6}}{2}.

    d) Đúng.

    Gọi E là trung điểm của AD, ta có ABCE là hình vuông.

    Ta có:

    CD//BE \subset (SBE) \Rightarrow
CD//(SBE)

    d(CD,SB) = d\left( CD,(SBE) ight) =
d\left( C,(SBE) ight) = d\left( A,(SBE) ight)

    \left. \ \begin{matrix}
AO\bot BE \\
SA\bot BE \\
\end{matrix} ight\} \Rightarrow BE\bot(SAO)

    \Rightarrow (SBE)\bot(SAO);(SAO) \cap (SBE) = SO

    Trong mặt phẳng (SAO) kẻ AH\bot SO \Rightarrow AH\bot(SBE)

    d\left( A,(SBE) ight) = AH =\dfrac{SA.AO}{\sqrt{SA^{2} + AO^{2}}} =\dfrac{a\sqrt{6}.\dfrac{a\sqrt{2}}{2}}{\sqrt{6a^2 + \dfrac{a^{2}}{2}}} =
\dfrac{a\sqrt{78}}{13}.

    Vậy d(CD,SB) =
\frac{a\sqrt{78}}{13}.

  • Câu 14: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hàm số y = f(x) = x^{2} - 5x +
4 có đồ thị như hình vẽ. Biết rằng đồ thị hàm số f(x) tạo với trục hoành và 2 đường thẳng x = 0,\ x = 4 một hình phẳng (H) gồm 2 phần có diện tích lần lượt là S_{1},\ S_{2}.

    Xét tính đúng, sai của các mệnh đề sau:

    a) [NB] f(x) là một nguyên hàm của hàm số g(x) = 2x -
5 trên \mathbb{R}. Đúng||Sai

    b) [TH] S_{1} =
\frac{11}{6}. Đúng||Sai

    c) [TH] S_{1} =
\int_{0}^{4}{f(x)dx} - S_{2}. Sai||Đúng

    d) [VD,VDC] Biết đường thẳng d:y = x + m( m là tham số ) cắt đồ thị y = f(x) tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi d(P) bằng \frac{4}{3}. Khi đó tổng các giá trị của tham số m bằng -4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{2} - 5x +
4 có đồ thị như hình vẽ. Biết rằng đồ thị hàm số f(x) tạo với trục hoành và 2 đường thẳng x = 0,\ x = 4 một hình phẳng (H) gồm 2 phần có diện tích lần lượt là S_{1},\ S_{2}.

    Xét tính đúng, sai của các mệnh đề sau:

    a) [NB] f(x) là một nguyên hàm của hàm số g(x) = 2x -
5 trên \mathbb{R}. Đúng||Sai

    b) [TH] S_{1} =
\frac{11}{6}. Đúng||Sai

    c) [TH] S_{1} =
\int_{0}^{4}{f(x)dx} - S_{2}. Sai||Đúng

    d) [VD,VDC] Biết đường thẳng d:y = x + m( m là tham số ) cắt đồ thị y = f(x) tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi d(P) bằng \frac{4}{3}. Khi đó tổng các giá trị của tham số m bằng -4. Đúng||Sai

    a) Đúng. Ta có: f'(x) = (x^{2} - 5x +
4)' = 2x - 5\ \ \ \forall x\mathbb{\in R}

    b) Đúng. Ta có:

    S_{1} = \int_{0}^{1}{f(x)dx =
\int_{0}^{1}{(x^{2} - 5x + 4)dx =}}\frac{11}{6}

    c) Sai. Ta có

    \int_{0}^{4}{f(x)dx} =
\int_{0}^{1}{f(x)dx + \int_{1}^{4}{f(x)dx}}

    = \int_{0}^{1}{\left| f(x) ight|dx -
\int_{1}^{4}{\left| f(x) ight|dx = S_{1} - S_{2}}}

    Suy ra : S_{1} = \int_{0}^{1}{f(x)dx} +
S_{2}.

    d) Đúng.

    Phương trình hoành độ giao điểm của d và đồ thị hàm số f(x)

    x^{2} - 5x + 4 = x + m \Leftrightarrow
x^{2} - 6x + 4 - m = 0

    d(P) cắt nhau tại hai điểm phân biệt

    \Leftrightarrow \Delta' = 9 - 4 + m = m + 5
> 0 \Leftrightarrow m > - 5

    Theo Viète: x_{1} + x_{2} = 6;x_{1}x_{2}
= 4 - m ( x_{1} <
x_{2})

    Ta có

    S = \int_{x_{1}}^{x_{2}}\left( m - x^{2}
+ 6x - 4 ight)dx

    = \left. \ \left( (m - 4)x + 3x^{2} -
\frac{x^{3}}{3} ight) ight|_{x_{1}}^{x_{2}}

    = \left( (m - 4) + 3\left( x_{1} + x_{2}
ight) - \frac{1}{3}\left\lbrack \left( x_{1} + x_{2} ight)^{2} -
x_{1}x_{2} ightbrack ight)\left( x_{2} - x_{1}
ight)

    = \frac{4}{3}\sqrt{(m + 5)^{3}} =
\frac{4}{3} \Leftrightarrow m = -
4

    Vậy S = - 4.

  • Câu 15: Vận dụng cao

    Xét tính đúng sai của các khẳng định

    Bạn Lan muốn dùng tấm bìa hình chữ nhật có chiều rộng 3\ dm, chiều dài 5\ dm để làm một chiếc hộp không nắp, bằng cách cắt bỏ đi 4 hình vuông nhỏ có cạnh bằng x\ dm ở bốn góc của tấm bìa như hình vẽ. Các mệnh đề sau đúng hay sai?

    a) [NB] Điều kiện của x0 < x
< \frac{3}{2}. Đúng||Sai

    b) [TH] Diện tích mặt đáy của chiếc hộp là (3 - 2x)(5 - 2x) Đúng||Sai

    c) [TH] Thể tích của chiếc hộp là 4x^{3} - 16x^{2} + 15. Sai||Đúng

    d) [VD, VDC] Với x =
\frac{8 - \sqrt{19}}{6} thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    Đáp án là:

    Bạn Lan muốn dùng tấm bìa hình chữ nhật có chiều rộng 3\ dm, chiều dài 5\ dm để làm một chiếc hộp không nắp, bằng cách cắt bỏ đi 4 hình vuông nhỏ có cạnh bằng x\ dm ở bốn góc của tấm bìa như hình vẽ. Các mệnh đề sau đúng hay sai?

    a) [NB] Điều kiện của x0 < x
< \frac{3}{2}. Đúng||Sai

    b) [TH] Diện tích mặt đáy của chiếc hộp là (3 - 2x)(5 - 2x) Đúng||Sai

    c) [TH] Thể tích của chiếc hộp là 4x^{3} - 16x^{2} + 15. Sai||Đúng

    d) [VD, VDC] Với x =
\frac{8 - \sqrt{19}}{6} thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    a) Đúng. Điều kiện của x0 < x < \frac{3}{2}.

    b) Đúng. Chiều rộng của mặt đáy là 3 -
2x, chiều dài của mặt đáy là 5 -
2x.

    Diện tích mặt đáy của chiếc hộp là (3 -
2x)(5 - 2x)

    c) Sai. Chiều cao của chiếc hộp là x.

    Thể tích của chiếc hộp là (3 - 2x)(5 -
2x)x = 4x^{3} - 16x^{2} + 15x

    d) Đúng. Xét hàm số f(x) = 4x^{3} -
16x^{2} + 15x trên \left(
0;\frac{3}{2} ight)

    f'(x) = 12x^{2} - 32x +
15

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = \dfrac{8 + \sqrt{19}}{6} \\
x = \dfrac{8 - \sqrt{19}}{6} \\
\end{matrix} ight.

    Bảng biến thiên

    Vậy x = \frac{8 - \sqrt{19}}{6} thì chiếc hộp có thể tích lớn nhất.

  • Câu 16: Thông hiểu

    Xét tính đúng sai của các mệnh đề

    Thời gian (phút) để học sinh hoàn thành một câu hỏi thi được cho như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a) [NB] Số trung bình của mẫu số liệu lớp 11A là: 23,9 (làm tròn đến hàng phần mười). Đúng||Sai

    b) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11A là: 11,77 (làm tròn đến hàng phần trăm).Sai||Đúng

    c) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11B là: 11,55 (làm tròn đến hàng phần trăm). Sai||Đúng

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B. Đúng||Sai

    Đáp án là:

    Thời gian (phút) để học sinh hoàn thành một câu hỏi thi được cho như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a) [NB] Số trung bình của mẫu số liệu lớp 11A là: 23,9 (làm tròn đến hàng phần mười). Đúng||Sai

    b) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11A là: 11,77 (làm tròn đến hàng phần trăm).Sai||Đúng

    c) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11B là: 11,55 (làm tròn đến hàng phần trăm). Sai||Đúng

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B. Đúng||Sai

    Ta có bảng giá trị như sau:

    a) Đúng. Số trung bình của mẫu số liệu lớp 11A là: 23,9 (làm tròn đến hàng phần mười).

    Xét mẫu số liệu của lớp 11A:

    Cỡ mẫu là n_{1} = 2 + 10 + 6 + 4 + 3 =
25

    Số trung bình:

    {\overline{x}}_{1} = \frac{5,5.2 +
15,5.10 + 25,5.6 + 35,5.4 + 45,5.3}{25} = 23,9.

    a) Sai.

    Phương sai:

    S_{1}^{2} = \frac{1}{25}(2.5,5^{2} +
10.15,5^{2} + 6.25,5^{2}+ 4.35,5^{2} + 3.45,5^{2}) - 23,9^{2} =
133,44.

    S_{1} = \sqrt{133,44} \approx
11,55.

    a) Sai.

    Xét mẫu số liệu của lớp 11B:

    Cỡ mẫu là n_{2} = 3 + 8 + 10 + 2 + 4 =
27.

    Số trung bình:

    {\overline{x}}_{2} = \frac{1}{27}(5,5.3
+ 15,5.8+ 25,5.10 + 35,5.2 + 45,5.4) = \frac{648,5}{27} \approx
24,02

    Phương sai của mẫu số liệu của lớp 11B là:

    S_{2}^{2} = \frac{1}{27}(3.5,5^{2} +
8.15,5^{2} + 10.25,5^{2}+ 2.35,5^{2} + 4.45,5^{2}) - 24,02^{2} \approx
138,47

    Độ lệch chuẩn của mẫu số liệu của lớp 11B là:

    S_{2} \approx \sqrt{138,47} \approx
11,77

    d) Đúng. Ta có: S_{1} <
S_{2} .

    Nên nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B.

  • Câu 17: Thông hiểu

    Ghi đáp án đúng vào ô trống

    Đại kim tự tháp Giza là kim tự tháp Ai Cập lớn nhất, được xây dựng vào đầu thế kỉ 26 trước công nguyên trong thời gian 27 năm. Biết kim tự tháp là khối chóp tứ giác đều được mô hình như hình vẽ dưới với chiều cao bằng 147m, chiều dài cơ sở (chiều dài cạnh đáy) bằng 230m. Khoảng cách từ AD đến SC bằng bao nhiêu m(kết quả làm tròn đến hàng đơn vị).

     Đáp án: 181

    Đáp án là:

    Đại kim tự tháp Giza là kim tự tháp Ai Cập lớn nhất, được xây dựng vào đầu thế kỉ 26 trước công nguyên trong thời gian 27 năm. Biết kim tự tháp là khối chóp tứ giác đều được mô hình như hình vẽ dưới với chiều cao bằng 147m, chiều dài cơ sở (chiều dài cạnh đáy) bằng 230m. Khoảng cách từ AD đến SC bằng bao nhiêu m(kết quả làm tròn đến hàng đơn vị).

     Đáp án: 181

    Kí hiệu hình vẽ như sau:

    Gọi H là trung điểm của cạnh AC, khi đó SH\bot(ABCD).

    Gọi K là hình chiếu của H trên BC, M là hình chiếu của H trên SK.

    Ta có: d(AD,SC) = d\left( AD,(SBC)
ight) = d\left( A,(SBC) ight) =
2d\left( H,(SBC) ight) = 2HM.

    HK\bot BC \Rightarrow KB = KC \Rightarrow HK = \frac{1}{2}AB =
\frac{1}{2}.230 = 115.

    Vậy d(AD,SC) = 2HM = 2\sqrt{\left(
\frac{1}{(115)^{2}} + \frac{1}{(147)^{2}} ight)^{- 1}} \approx
181.

  • Câu 18: Thông hiểu

    Ghi đáp án đúng vào ô trống

    Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình s(t) = t^{3} - \frac{21}{2}t^{2} + 40t +
1. Trong đó t tính bằng giây và s tính bằng mét. Trong khoảng 5 giây đầu tiên thì tại thời điểm nào vận tốc tức thời của vật bắt đầu tăng.

    Đáp án: 3,5

    Đáp án là:

    Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình s(t) = t^{3} - \frac{21}{2}t^{2} + 40t +
1. Trong đó t tính bằng giây và s tính bằng mét. Trong khoảng 5 giây đầu tiên thì tại thời điểm nào vận tốc tức thời của vật bắt đầu tăng.

    Đáp án: 3,5

    Ta có: s(t) = t^{3} - \frac{21}{2}t^{2} +
40t + 1

    \Rightarrow v(t) = s'(t) = 3t^{2} -
21t + 40

    \Rightarrow v'(t) = 6t -
21

    v'(t) = 0 \Leftrightarrow t =
3,5

    Ta có bảng biến thiên như sau:

    Vậy từ thời điểm t = 3,5 thì vận tốc tức thời tăng.

  • Câu 19: Vận dụng

    Ghi đáp án đúng vào chỗ trống

    Một khối cầu có bán kính là 6\
dm, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng 3\ dm để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu dm^{3}(làm tròn đến hàng đơn vị)

    Đáp án: 622

    Đáp án là:

    Một khối cầu có bán kính là 6\
dm, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng 3\ dm để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu dm^{3}(làm tròn đến hàng đơn vị)

    Đáp án: 622

    Trên hệ trục tọa độ Oxy, xét đường tròn (C): (x - 6)^{2} + y^{2} = \ 36

    Nếu cho nửa trên trục Ox của (C) quay quanh trục Ox ta được mặt cầu có bán kính bằng 6.

    Nếu cho hình phẳng (H) giới hạn bởi nửa trên trục Ox của (C), trục Ox, hai đường thẳng x = 0;\ x = 3 quay xung quanh Ox ta sẽ được khối tròn xoay chính là 1 phần cắt đi của khối cầu trong đề bài.

    Ta có (x - 6)^{2} + y^{2} = \ 36
\Leftrightarrow y = \pm \sqrt{36 - (x - 6)^{2}}

    Suy ra nửa trên trục Ox của (C) có phương trình y = \sqrt{36 - (x - 6)^{2}} = \sqrt{12x -
x^{2}}

    Thể tích vật thể tròn xoay khi cho (H) quay quanh OxV_{1} =
\pi\int_{0}^{3}\left( 12x - x^{2} ight) = 45\pi.

    Thể tích khối cầu là V_{2} =
\frac{4}{3}\pi.6^{3} = 288\pi.

    Thể tích cần tìm là V = V_{2} - 2V_{1} =
198\pi \approx 622.

  • Câu 20: Vận dụng

    Ghi đáp án đúng vào chỗ trống

    Trong thùng có các gói kẹo cùng loại khác vị, trong đó có 15 gói kẹo vị cam, còn lại là kẹo vị chuối. Hà lẫy ngẫu nhiên 1 gói kẹo trong thùng, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm 1 gói kẹo khác từ thùng. Biết rằng xác suất Hà lấy được cả hai gói kẹo vị cam là \frac{1}{6}. Biết rằng mỗi gói kẹo có 28 chiếc kẹo. Hỏi tổng có bao nhiêu chiếc kẹo?

    Đáp án: 1008

    Đáp án là:

    Trong thùng có các gói kẹo cùng loại khác vị, trong đó có 15 gói kẹo vị cam, còn lại là kẹo vị chuối. Hà lẫy ngẫu nhiên 1 gói kẹo trong thùng, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm 1 gói kẹo khác từ thùng. Biết rằng xác suất Hà lấy được cả hai gói kẹo vị cam là \frac{1}{6}. Biết rằng mỗi gói kẹo có 28 chiếc kẹo. Hỏi tổng có bao nhiêu chiếc kẹo?

    Đáp án: 1008

    Gọi A là biến cố "Hà lấy được gói kẹo vị cam ở lần thứ nhấtt".

    Gọi Blà biến cố "Hà lấy được gói kẹo vị cam ở lần thứ hai".

    Ta có: xác suất Hà lấy được cả hai gói kẹo vị cam là \frac{1}{6}, suy ra P(AB) = \frac{1}{3}.

    Gọi n là số gói kẹo ban đầu trong thùng \left( n \in \mathbb{N}^{*},\ n
\geq 1 ight).

    P(A) = \frac{15}{n}\ ;\ P\left( B|A
ight) = \frac{14}{n - 1}.

    Theo công thức nhân xác suất ta có:

    P(AB) = P(A).\ P\left( B|A ight) =
\frac{15}{n}.\frac{14}{n - 1} = \frac{1}{6}

    \Leftrightarrow n^{2} - n - 6.14.15 =
0

    Ta được n = - 35 (loại) hoặc n = 36 (nhận).

    Vậy tổng số chiếc kẹo có là 36.28 =
1008 chiếc.

  • Câu 21: Thông hiểu

    Ghi đáp án đúng vào ô trống

    Một chiếc bàn gấp gọn đã được thiết lập hệ tọa độ Oxyz. Điểm A là chân bàn tiếp xúc với mặt đất thuộc đường thẳng \Delta:\frac{x + 3}{1} = \frac{y
- 1}{1} = \frac{z + 2}{4} cắt mặt bàn (P):x + y - 2z + 6 = 0 tại điểm F. Độ dài chân bàn FA = 40\sqrt{3}\ cm, khi đó hãy tính độ cao của mặt bàn tính từ mặt đất (đơn vị cm)

    Đáp án: 40

    Đáp án là:

    Một chiếc bàn gấp gọn đã được thiết lập hệ tọa độ Oxyz. Điểm A là chân bàn tiếp xúc với mặt đất thuộc đường thẳng \Delta:\frac{x + 3}{1} = \frac{y
- 1}{1} = \frac{z + 2}{4} cắt mặt bàn (P):x + y - 2z + 6 = 0 tại điểm F. Độ dài chân bàn FA = 40\sqrt{3}\ cm, khi đó hãy tính độ cao của mặt bàn tính từ mặt đất (đơn vị cm)

    Đáp án: 40

    Kí hiệu hình vẽ như sau:

    Đường thẳng \Delta:\frac{x + 3}{1} =
\frac{y - 1}{1} = \frac{z + 2}{4} có vectơ chỉ phương \overrightarrow{u} = (1;1;4) .

    Mặt phẳng (P):x + y - 2z + 6 = 0 có vectơ pháp tuyến \overrightarrow{n} =
(1;1; - 2) .

    \sin\left( \Delta,(P) ight) = \left|
\cos\left( \overrightarrow{u},\overrightarrow{n} ight) ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\sqrt{\frac{1}{3}} = \sin\varphi (vì hai góc phụ nhau)

    Độ cao của mặt bàn tính từ mặt đất là khoảng cách từ chân bàn A đến mặt phẳng (P)

    Suy ra d\left( A,(P) ight) = AH =FA.sin\varphi = 40\sqrt{3}.\sqrt{\frac{1}{3}} = 40\ cm .

  • Câu 22: Vận dụng cao

    Ghi đáp án đúng vào ô trống

    Trong không gian Oxyz, cho ba điểmA(1\ ;\ \ 1\ ;\ \ 1), B( - 1\ ;\ \ 2\ ;\ \ 0),C(3\ ;\ \  - 1\ ;\ \ 2)M là điểm thuộc mặt phẳng (\alpha):2x - y + 2z + 7 = 0. Tính giá trị nhỏ nhất của P = \left| \
3\overrightarrow{MA} + 5\overrightarrow{MB} -
7\overrightarrow{MC}\  \right|.

    Đáp án: 27

    Đáp án là:

    Trong không gian Oxyz, cho ba điểmA(1\ ;\ \ 1\ ;\ \ 1), B( - 1\ ;\ \ 2\ ;\ \ 0),C(3\ ;\ \  - 1\ ;\ \ 2)M là điểm thuộc mặt phẳng (\alpha):2x - y + 2z + 7 = 0. Tính giá trị nhỏ nhất của P = \left| \
3\overrightarrow{MA} + 5\overrightarrow{MB} -
7\overrightarrow{MC}\  \right|.

    Đáp án: 27

    Gọi I(x\ ;y\ ;\ z) sao cho 3\overrightarrow{IA} + 5\overrightarrow{IB} -
7\overrightarrow{IC} = \overrightarrow{0} (1).

    Ta có: \left\{ \begin{matrix}
3(1 - x) + 5( - 1 - x) - 7(3 - x) = 0 \\
3(1 - y) + 5(2 - y) - 7( - 1 - y) = 0 \\
3(1 - z) + 5(0 - z) - 7(2 - z) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 23 \\
y = 20 \\
z = - 11 \\
\end{matrix} ight. .

    Suy ra I( - 23\ ;\ 20\ ;\  -
11).

    Xét P = \left| 3\overrightarrow{MA} +
5\overrightarrow{MB} - 7\overrightarrow{MC} ight|

    = \left| 3\left( \overrightarrow{MI} +\overrightarrow{IA} ight) + 5\left( \overrightarrow{MI}+\overrightarrow{IB} ight) - 7\left( \overrightarrow{MI} +\overrightarrow{IC} ight) ight|

    P = \left| \overrightarrow{MI} + \left(
3\overrightarrow{IA} + 5\overrightarrow{IB} - 7\overrightarrow{IC}
ight) ight|.

    Từ (1) ta có P = \left| \overrightarrow{MI} ight| =
MI.

    P_{\min} khi MI ngắn nhất hay M là hình chiếu vuông góc của I lên mặt phẳng (\alpha).

    Khi đó: P_{\min} = d\left( I,(\alpha)
ight) = \frac{\left| 2.( - 23) - 20 + 2.( - 11) + 7
ight|}{\sqrt{2^{2} + ( - 1)^{2} + 2^{2}}} = 27.

Chúc mừng Bạn đã hoàn thành bài!

Đề khảo sát chất lượng Toán 12 (tháng 4) Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo