Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Hệ thức lượng trong tam giác (mức NB – TH)

Ôn tập hệ thức lượng trong tam giác lớp 10 - có đáp án

Trong chương trình Toán 10, phần Hệ thức lượng trong tam giác là nền tảng quan trọng giúp học sinh hiểu sâu hơn mối quan hệ giữa các cạnh và góc trong tam giác. Bài viết này cung cấp trắc nghiệm Hệ thức lượng trong tam giác (mức nhận biết – thông hiểu) kèm đáp án chi tiết, giúp bạn củng cố lý thuyết, nắm vững công thức và rèn luyện kỹ năng giải nhanh các dạng bài cơ bản. Bộ bài tập Toán 10 Hệ thức lượng có đáp án được biên soạn bám sát chương trình SGK, hỗ trợ hiệu quả cho việc ôn luyện và chuẩn bị kiểm tra học kỳ.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 38 câu
  • Điểm số bài kiểm tra: 38 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn phương án thích hợp

    Cho \Delta ABC, biết \overrightarrow{a} = \overrightarrow{AB} =
(a_{1};a_{2}) và \overrightarrow{b}
= \overrightarrow{AC} = (b_{1};b_{2}). Để tính diện tích S của \Delta
ABC. Một học sinh làm như sau:

    (I)    Tính \cos A =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
\right|.\left| \overrightarrow{b} \right|}

    (II) Tính \sin A = \sqrt{1 - \cos^{2}A} = \sqrt{1 -\frac{\left( \overrightarrow{a}.\overrightarrow{b} \right)^{2}}{\left(\left| \overrightarrow{a} \right|^{2}.\left| \overrightarrow{b}\right|^{2} \right)}}

    (III) S = \frac{1}{2}AB.AC.\sin A =\frac{1}{2}\sqrt{\left| \overrightarrow{a} \right|^{2}\left|\overrightarrow{b} \right|^{2} - \left(\overrightarrow{a}.\overrightarrow{b} \right)^{2}}

    (IV) S = \frac{1}{2}\sqrt{\left( a_{1}^{2} + a_{2}^{2}
\right)\left( b_{1}^{2} + b_{2}^{2} \right) - \left( a_{1}b_{1} +
a_{2}b_{2} \right)^{2}}

    S = \frac{1}{2}\sqrt{\left( a_{1}b_{2} +
a_{2}b_{1} \right)^{2}}

    S = \frac{1}{2}(a_{1}b_{2} -
a_{2}b_{1})

    Học sinh đó đã làm sai bắt đầu từ bước nào?

    Hướng dẫn:

    Ta có: \cos A = \frac{\left|
\overrightarrow{a}.\overrightarrow{b} \right|}{\left| \overrightarrow{a}
\right|.\left| \overrightarrow{b} \right|} 

    Vậy học sinh đó làm sai từ bước (I).

  • Câu 2: Nhận biết
    Tính diện tích tam giác

    Cho \Delta ABCa = 4,c = 5,B = 150^{0}. Diện tích của tam giác là:

    Hướng dẫn:

    Ta có:

    S_{\Delta ABC} =\frac{1}{2}a.c.\sin B = \frac{1}{2}.4.5.\sin150^{0} = 5.

  • Câu 3: Thông hiểu
    Tính bán kính đường tròn ngoại tiếp tamgiác

    Tam giác với ba cạnh là 5;12;13 có bán kính đường tròn ngoại tiếp là?

    Hướng dẫn:

    Ta có: 5^{2} + 12^{2} = 13^{2}
\Rightarrow R = \frac{13}{2}. (Tam giác vuông bán kính đường tròn ngoại tiếp bằng \frac{1}{2} cạnh huyền).

  • Câu 4: Nhận biết
    Tính diện tích tam giác

    Cho \Delta ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Hướng dẫn:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông:

    S = \sqrt{p(p - a)(p - b)(p -
c)}= \sqrt{12(12 - 6)(12 - 8)(12 - 10)} =
24.

  • Câu 5: Thông hiểu
    Chọn kết luận đúng

    Chọn đáp án sai: Một tam giác giải được nếu biết:

    Hướng dẫn:

    Ta có: Một tam giác giải được khi ta biết 3 yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá 2).

  • Câu 6: Thông hiểu
    Tính diện tích tam giác

    Cho tam giác ABCa = 4,b = 6,c = 8. Khi đó diện tích của tam giác là:

    Hướng dẫn:

    Ta có:

    p = \frac{a + b + c}{2} = \frac{4
+ 6 + 8}{2} = 9.

    Suy ra: S = \sqrt{p(p - a)(p - b)(p - c)}
= 3\sqrt{15}.

  • Câu 7: Nhận biết
    Tính độ dài cạnh tam giác

    Cho \Delta ABCb = 6,c = 8,\widehat{A} = 60^{0}. Độ dài cạnh a là:

    Hướng dẫn:

    Ta có:

    a^{2} = b^{2} + c^{2} - 2bc\cos
A

    = 36 + 64 - 2.6.8.\cos60^{0} =52

    \Rightarrow a = 2\sqrt{13}.

  • Câu 8: Thông hiểu
    Tính độ dài cạnh của tam giác

    Tam giác ABCa = 16,8; \widehat{B} = 56^{0}13'; \widehat{C} = 71^{0}. Cạnh c bằng bao nhiêu?

    Hướng dẫn:

    Trong tam giác ABC: \widehat{A} + \widehat{B} + \widehat{C} =
180^{0}

    \Rightarrow \widehat{A} = 180^{0} -
71^{0} - 56^{0}13' = 52^{0}47'.

    Mặt khác \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C}

    \Rightarrow \frac{a}{\sin A} =
\frac{c}{\sin C}

    \Rightarrow c = \frac{a.\sin C}{\sin A} =\frac{16,8.sin71^{0}}{\sin52^{0}47'} \simeq 19,9\ .

  • Câu 9: Nhận biết
    Chọn công thức đúng

    Chọn công thức đúng trong các đáp án sau:

    Hướng dẫn:

    Ta có:

    S = \frac{1}{2}bc\sin A =
\frac{1}{2}ac\sin B = \frac{1}{2}ab\sin C.

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Tam giác với ba cạnh là 5;12;13 có bán kính đường tròn nội tiếp tam giác đó bằng bao nhiêu?

    Hướng dẫn:

    Ta có: p = \frac{5 + 12 + 13}{2} =
15.

    5^{2} + 12^{2} = 13^{2} \Rightarrow S
= \frac{1}{2}.5.12 = 30.

    Mặt khác S = p.r \Rightarrow r =
\frac{S}{p} = 2.

  • Câu 11: Nhận biết
    Tính số đo góc B

    Cho tam giác ABC, biết a = 13,b = 14,c = 15. Tính góc B

    Hướng dẫn:

    Ta có:

    \cos B = \frac{a^{2} + c^{2} -
b^{2}}{2ac} = \frac{13^{2} + 15^{2} - 14^{2}}{2.13.15} =
\frac{33}{65}

    \Rightarrow B \simeq 59^{0}29'

  • Câu 12: Thông hiểu
    Chọn biểu thức tính độ dài đường trung tuyến tam giác

    Độ dài trung tuyến m_{c} ứng với cạnh c của \Delta ABC bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có:

    m_{c}^{2} = \frac{b^{2} +
a^{2}}{2} - \frac{c^{2}}{4}

    \Rightarrow m_{c} = \sqrt{\frac{b^{2} +
a^{2}}{2} - \frac{c^{2}}{4}} = \frac{1}{2}\sqrt{(2b^{2} + 2a^{2}) -
c^{2}}.

  • Câu 13: Thông hiểu
    Chọn phương án thích hợp

    Tam giác ABC\cos B bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có:

    b^{2} = a^{2} + c^{2} - 2ac\cos
B

    \Rightarrow \cos B = \frac{a^{2} + c^{2}
- b^{2}}{2ac}.

  • Câu 14: Thông hiểu
    Tìm diện tích tam giác

    Một tam giác có ba cạnh là 13,14,15. Diện tích tam giác bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    p = \frac{a + b + c}{2} = \frac{13
+ 14 + 15}{2} = 21.

    Suy ra: S = \sqrt{p(p - a)(p - b)(p -
c)}

    = \sqrt{21(21 - 13)(21 - 14)(21 - 15)} =
84.

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Cho tam giác ABC thỏa mãn: 2\cos A = 1. Khi đó:

    Hướng dẫn:

    Ta có:

    2\cos A = 1 \Leftrightarrow \cos A =\frac{1}{2} \Rightarrow \widehat{A} = 60^{0}.

  • Câu 16: Nhận biết
    Chọn đáp án thích hợp

    Cho \Delta ABC thỏa mãn: 2cosB = \sqrt{2}. Khi đó:

    Hướng dẫn:

    Ta có: 2\cos B = \sqrt{2} \Leftrightarrow\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} =45^{0}.

  • Câu 17: Nhận biết
    Tìm câu sai

    Cho tam giác ABC. Tìm công thức sai trong các công thức dưới đây?

    Hướng dẫn:

    Ta có: \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Tam giác với ba cạnh là 6;8;10 có bán kính đường tròn ngoại tiếp bằng bao nhiêu?

    Hướng dẫn:

    Ta có: 6^{2} + 8^{2} = 10^{2} \Rightarrow
R = \frac{10}{2} = 5. (Tam giác vuông bán kính đường tròn ngoại tiếp bằng \frac{1}{2} cạnh huyền).

  • Câu 19: Thông hiểu
    Tìm độ dài cạnh AC

    Tam giác ABC có   \widehat{A} =
68^{0}12', \widehat{B} =
34^{0}44', AB =
117. Tính AC?

    Hướng dẫn:

    Trong tam giác ABC:

    \widehat{A} + \widehat{B} + \widehat{C}
= 180^{0}

    \Rightarrow \widehat{C} = 180^{0} -
68^{0}12' - 34^{0}44' = 77^{0}4'.

    Mặt khác \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} \Rightarrow \frac{AC}{\sin B} = \frac{AB}{\sin
C}

    \Rightarrow AC = \frac{AB.\sin B}{\sin C}= \frac{117.\sin34^{0}44'}{\sin77^{0}4'} \simeq 68

  • Câu 20: Nhận biết
    Tinh độ dài cạnh b

    Cho \Delta ABCB = 60^{0},a = 8,c = 5. Độ dài cạnh b bằng:

    Hướng dẫn:

    Ta có:

    b^{2} = a^{2} + c^{2} - 2ac\cos
B

    = 8^{2} + 5^{2} - 2.8.5.\cos60^{0} = 49\Rightarrow b = 7.

  • Câu 21: Thông hiểu
    Tìm mệnh đề đúng

    Cho tam giác ABC thoả mãn hệ thức b + c = 2a. Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Ta có:

    \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R

    \Rightarrow \dfrac{\dfrac{b + c}{2}}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

    \Leftrightarrow \frac{b + c}{2\sin A} =\frac{b + c}{\sin B + \sin C}

    \Leftrightarrow \sin B + \sin C =2\sin A

  • Câu 22: Thông hiểu
    Tìm bán kính đường tròn ngoại tiếp tam giác

    Một tam giác có ba cạnh là 52,56,60. Bán kính đường tròn ngoại tiếp là:

    Hướng dẫn:

    Ta có:

    p = \frac{a + b + c}{2} = \frac{52
+ 56 + 60}{2} = 84.

    Suy ra: S = \sqrt{p(p - a)(p - b)(p -
c)}

    = \sqrt{84(84 - 52)(84 - 56)(84 - 60)} =
1344.

    S = \frac{abc}{4R} \Rightarrow R =
\frac{abc}{4S} = \frac{52.56.60}{4.1344} = \frac{65}{2}.

  • Câu 23: Nhận biết
    Tính số đo góc A

    Cho \Delta ABC\widehat{C} = 45^{0},\widehat{B} =
75^{0}. Số đo của góc A là:

    Hướng dẫn:

    Ta có:

    \widehat{A} + \widehat{B} + \widehat{C}
= 180^{0}

    \Rightarrow \widehat{A} = 180^{0} -
\widehat{B} - \widehat{C} = 180^{0} - 75^{0} - 45^{0} =
60^{0}.

  • Câu 24: Nhận biết
    Tính bán kính đường tròn ngoại tiếp tam giác

    Cho \Delta ABCS = 84,a = 13,b = 14,c = 15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Hướng dẫn:

    Ta có:

    S_{\Delta ABC} =
\frac{a.b.c}{4R}

    \Leftrightarrow R = \frac{a.b.c}{4S} =
\frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 25: Thông hiểu
    Chọn mệnh đề đúng

    Gọi S = m_{a}^{2} + m_{b}^{2} +
m_{c}^{2} là tổng bình phương độ dài ba trung tuyến của tam giác ABC. Trong các mệnh đề sau mệnh đề nào đúng?

    Hướng dẫn:

    Ta có:

    S = m_{a}^{2} + m_{b}^{2} +
m_{c}^{2}

    = \frac{b^{2} + c^{2}}{2} -
\frac{a^{2}}{4} + \frac{a^{2} + c^{2}}{2} - \frac{b^{2}}{4} +
\frac{a^{2} + b^{2}}{2} - \frac{c^{2}}{4}

    = \frac{3}{4}\left( a^{2} + b^{2} + c^{2}
\right)

  • Câu 26: Thông hiểu
    Chọn khẳng định đúng

    Cho tam giác ABC. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Khẳng định đúng là: m_{c}^{2} =
\frac{2b^{2} + 2a^{2} - c^{2}}{4}

  • Câu 27: Thông hiểu
    Tính độ dài cạnh c của tam giác ABC

    Cho tam giác ABC có a = 8,b =
10, góc C bằng 60^{0}. Độ dài cạnh c bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    c^{2} = a^{2} + b^{2} -2a.b.\cos C

    = 8^{2} + 10^{2} - 2.8.10.\cos60^{0} = 84\Rightarrow c = 2\sqrt{21}.

  • Câu 28: Nhận biết
    Tính độ dài cạnh còn lại của tam giác

    Tam giác ABCa = 8,c = 3,\widehat{B} = 60^{0}. Độ dài cạnh b bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    b^{2} = a^{2} + c^{2} - 2ac\cos
B

    = 8^{2} + 3^{2} - 2.8.3.\cos60^{0} = 49\Rightarrow b = 7.

  • Câu 29: Thông hiểu
    Chọn kết luận đúng

    Cho tam giác ABC thoả mãn: b^{2} + c^{2} - a^{2} = \sqrt{3}bc. Khi đó:

    Hướng dẫn:

    Ta có:

    \cos A = \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{\sqrt{3}bc}{2bc} = \frac{\sqrt{3}}{2} \Rightarrow A
= 30^{0}.

  • Câu 30: Nhận biết
    Tìm số đo góc A

    Cho \Delta ABC vuông tại B và có \widehat{C} = 25^{0}. Số đo của góc A là:

    Hướng dẫn:

    Trong \Delta ABC có:

     \widehat{A} + \widehat{B} + \widehat{C} =
180^{0}

    \Rightarrow \widehat{A} = 180^{0} -
\widehat{B} - \widehat{C} = 180^{0} - 90^{0} - 25^{0} =
65^{0}.

  • Câu 31: Thông hiểu
    Chọn kết luận đúng

    Cho tam giác ABCa^{2} + b^{2} - c^{2} > 0. Khi đó:

    Hướng dẫn:

    Ta có:

    \cos C = \frac{a^{2} + b^{2} -
c^{2}}{2ab}.

    Mà: a^{2} + b^{2} - c^{2} > 0 suy ra: \cos C > 0 \Rightarrow C <
90^{0}.

  • Câu 32: Nhận biết
    Tìm công thức đúng

    Cho tam giác ABC, chọn công thức đúng?

    Hướng dẫn:

    Công thức đúng là:

    AB^{2} = AC^{2} +BC^{2} - 2AC.BC\cos C

  • Câu 33: Nhận biết
    Tính độ dài bán kính đường tròn nội tiếp tam giác

    Cho \Delta ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp rcủa tam giác trên là:

    Hướng dẫn:

    Ta có: S = pr \Rightarrow r = \frac{S}{p}
= \frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 34: Thông hiểu
    Tính đường cao tam giác ABC

    Cho tam giác ABC có b = 7; c = 5, \cos A
= \frac{3}{5}. Đường cao h_{a} của tam giác ABC là

    Hướng dẫn:

    Ta có:

    a^{2} = b^{2} + c^{2} - 2bc\cos
A= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5} = 32
\Rightarrow a = 4\sqrt{2}.

    Mặt khác: \sin^{2}A + \cos^{2}A =1

    \Rightarrow \sin^{2}A = 1 - \cos^{2}A = 1- \frac{9}{25} = \frac{16}{25}

    \Rightarrow \sin A = \frac{4}{5} (Vì \sin A > 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.\sin A= \frac{1}{2}a.h_{a}

    \Rightarrow h_{a} = \dfrac{bc\sin A}{a} =\dfrac{7.5.\dfrac{4}{5}}{4\sqrt{2}} = \dfrac{7\sqrt{2}}{2}.

  • Câu 35: Thông hiểu
    Tìm câu sai

    Cho tam giác ABC. Đẳng thức nào sai ?

    Hướng dẫn:

    Ta có:

    A + B + C = 180^{0}

    \Rightarrow \frac{A + B + 2C}{2} =
90^{0} + \frac{C}{2}

    \Rightarrow \cos\left( \frac{B + C}{2}
\right) = \cos\left( 90^{0} + \frac{C}{2} \right)

    \Leftrightarrow \cos\left( \frac{B +
C}{2} \right) = - \sin\frac{C}{2}.

  • Câu 36: Nhận biết
    Chọn công thức đúng

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Hướng dẫn:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} = \frac{2b^{2} + 2c^{2} -
a^{2}}{4}.

  • Câu 37: Thông hiểu
    Tính độ dài đoạn AM

    Tam giác ABCa = 6,b = 4\sqrt{2},c = 2. M là điểm trên cạnh BC sao cho BM
= 3 . Độ dài đoạn AM bằng bao nhiêu?

    Hướng dẫn:

    Trong tam giác ABC a = 6

    \Rightarrow BC = 6BM = 3

    Suy ra M là trung điểm BC.

    Suy ra: AM^{2} = m_{a}^{2} = \frac{b^{2}
+ c^{2}}{2} - \frac{a^{2}}{4} = 9 \Rightarrow AM = 3.

  • Câu 38: Thông hiểu
    Tính số đo góc A

    Cho tam giác A BC, biết a = 24,b = 13,c = 15. Tính góc A?

    Hướng dẫn:

    Ta có:

    \cos A = \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{13^{2} + 15^{2} - 24^{2}}{2.13.15} = -
\frac{7}{15}

    \Rightarrow A \simeq 117^{0}49'\
.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (42%):
    2/3
  • Thông hiểu (58%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Chuyên đề Toán 10

Xem thêm